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On a class of quasi-conformal mappings
with invariant boundary points, II

Applications and generalizations

by J. LAawryNowIcz (Lo6dz)

§ 5. Applications to some functionals.

12. We proceed to applications of Theorems 5 and 6 (see the first.
part of this paper, [12]). We apply these theorems in order to find the
regions of variability of the functionals F(z; w) = log(w/2), F(2; w) = w—=2
and F(w,, w,) = log(w, —w,); 2,2,2, being fixed, w= f(2), w, = f(z),
w, = f(2,), and f running over Ey. We also obtain the Holder constant.
and exponent for the class Fj. :

We begin with the functional F(z; w) = log(w/2) where the branch
is chosen so that logl = 0.

THEOREM 7. (i) For any fe Eg and ze A, z #* 0, we have

1/ 1\, 1 flz) _1{. 1\, 1
—5(0—g)osry = el <5 (0—g)losyy

where arg(f(2)[z) = 0 for z= 1.

(ii) Moreover, the condition
(24) argl® — (0 Sliog Lsing  (—dm<p<in)
implies

1 1 1 1
@9 1=5(0+g)—3(0—g)eors
@), 1 1 1\ 1({. 1
< log — /108'm < 1—§(Q+g)+§(9‘—6)005¢ .

All the given estimates are sharp for any z e A, z £ 0, and Q ¢ (1, + oo)..
Given ¢, —4n < ¢ < }=, the only exiremal functions for every z in (25)
are: f(s) = |s|Pe**®° (s £0), f(0)=10 for the upper bound, and f(s)
= |8|"€**™®° (s £ 0), f(0) = O for the lower bound, where p, = 3(Q+1/Q)—
—3Q —1/Q)e®, B = HQ+1/Q)+ }(Q —1/Q)e*, and the branch of

a.rg(f(s)/s) 18 chosen in each case so that arg f(1) = 0.
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(iii) Purthermore, (24) and (25) give all points of the variability region
of the functional F(z; w) = log(wjz), where logl = 0, w = f(z), f ranges
over Eg, and z (z€ 4, 2 = 0) is fized.

Proof. The bounds for arg(f(z)/z) are given in Theorem 2. They
may also be immediately obtained from Theorem 5.

We proceed to prove (ii). We use the notation of Theorem 6. Applying
this theorem to F({; w)=log(w/{), logl =0, we have to assume
—3(Q—1/Q)log(1/lz]) < T < }(@—1/Q)log(1/l2]). Clearly D, = {&: 0 < [¢]
<1}, Dg1 = {w: 0 < |w| <1}, and f(s) = s is not an extremal function
in our problem. We have

1, wo 1. tw
FY¢: w) = —log— ——idlog=— .
(&5 o) 50877 —5thlee
Hence wF.(z; w) = $(1—iA) # 0, and
1 1y 1 1 . .
plei 1, 0) = 3(0+ 5] — ge@ —g) @+ imnt+ia,
‘where ¢ =1 or —1. Consequently
1 1\ Az, e) 1
ze|lQ—=)| ———log—=. .
28(‘3 Q) L+ ia(z, ) o]

Setting 7= 3}(Q —1/Q)log(1/[z|)sing, —imw < ¢ < im, which agrees
‘with (24), we get A(r, ¢) = etangp. Hence, given ¢, the maximum and
minimum are attained for the functions given in Theorem 7, and there
are no other functions for which the maximum or minimum is attained
for every z. These functions give the bounds in (25). We verify directly
that (ii) remains true for ¢ = }n and —3}=. This is also a consequence
of Theorem 1.

In order to prove (iii) we notice that given ¢, —§jn < ¢ < %=, and ¢,
—1 <t < 1, the function f(s, t) = |s["e**®° (s = 0), £(0, t) = 0, argf(1, 1)
= 0, with y(t) = }(Q@+1/Q)—3(Q —1/Q)(tcosp+ising) belongs to Ey and
satisfies (24) with f(z, t) substituted for f(z) and |f(z, ?)/z|/log(1/|2]) = 1 —
—3H@Q+1/Q)+ 3(Q —1/Q)tcosp. The proof is completed.

13. In this section the functional F(z; w) = w—z is considered.

THEOREM 8. The region of variabilily of the functional F(z; w) = w —z,
2 (zed,z # 0) being fized, w = f(2) and f running over Eg, is bounded
by a curve which is determined by the following system of equations:

u(p) = |2 @ TUO—HQ- 2080, (argz —% (Q - %) log[%lsin.p) —
(26) . . ]— [z] cosargz ,
v (‘P) — l‘zli(0+1/0)—i(0—1f0)608¢Sin (argz . Q (Q _ 6) logI_szinqy) —_

— |2} sinargz,
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where u(p)+ 1v(p) denote points of the curve; — = < ¢ < . The only extremal
function for which F(z; w) = u(p)+ iv(p) at z for every z is determined as
Sfollows:

f(s) = lsi'é(QHlQ)—é(Q—lIQ)exp'iweia-rgs for. sed, s#0,

f8)=0 for s=0,

where the branch of arg(f(s)/s) is chosen in each case so that argf(1)= 0.

Proof. Theorem 7 implies that for any boundary point of the region
of variability under consideration there exists a real number ¢, —3n < ¢
< 3=, such that if we denote this point by u(p)+ w(p), u(p) and v(p)
being real, then we have either

(27) w(@)+ iv(gp)+2 = lzlawﬂ/e)—&(o—l/wexpiweim-sz
or
(28) w(@)+ v (p)+ 2 = |z|L(Q+llQ)+=}(Q-—llo)exp(—iw)eiaxgz .

Conversely, given ¢, —in < ¢ < } =, the point u(p)+ iv(p) determined
by (27) is a boundary point of the region of variability under consideration,
and the point u(p)+ iv(¢) determined by (28) is a boundary point as well.
Moreover, the same theorem gives us the corresponding extremal func-
tions: f(s) = |s%e'"""" (s % 0), £(0) = 0 in case of (27), and f(s) = |s|e'*®*
(8 # 0), f(0) = 0 in case of (28), where f, and , are defined in the quoted
theorem, and the branch of arg( f(s)/s) 1s chosen in each case so that
argf(l) = 0. Hence Theorem 8 follows.

Theorem 8 may be applied in order to obtain an analogue of the
following well-known result of Shah Tao-sching [15]: For any fe Sg,
Qe(l, +0) and ze¢ 4 we have

(29) (&) —=1/l0gQ < (4w {I'(D}* ~ 4.4 .

The estimate is sharp. It seems to be easier, however, to derive this
analogue a8 a consequence of Theorem 3. As we now deal with applications
of Theorems 5 and 6, it seems more convenient to place the corresponding
result in the next paragraph.

14. Now we proceed to consider the functional F (w,, w,) =1log (w, —w,)
where the branch is chosen so that logl = 0.

THEOREM 9. (i) For any fe Eg and 2,2, € 4, 2, # 2,, |2y > [25] > 0,

we have
arg—’)}
’ 2

< arg(f(z;) _f(zz)) < a’rg(|z1|'%coi(Q—lla)eiamn{l —l/Al(

arg(lz, Iésoi(Q—I/Q)eiumn{l _1/A2(

%
2

2

2 z
=t ’a’rg—l)} ’
22 %y
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where ¢g=1 or —1, A, and A, are uniquely determined by the equations

3HQ+1/Q)+3ei(— 1" i(Q—1/Q) exp Targ (1 - 4p)

z]_ ei&rg(zllzz) (n = 1 ) 2) y

An= zz

&g =1o0r —1, arg(f (21) —f(25)) 0 for 2, = 1, 2,->0 with the correspondingly
chosen branches of the estimating functions, and A, = A, = expiarg(z/z,)
Jor 2] = |z

(ii) Moreover, the condition

(30) arg (f(zl) —f(zz))
— arg(lzll_5"’“"‘1’0’5‘“‘”6‘““‘“ 1 —llB( ?

2
) 3rg£1 'P)}) y

where B is uniquely determined by the equation

+HQ+1/Q)~151(Q—1/Q)exp ilp+arg(1-B)}

B = % evarg(z1/z)
%3
and B = exptarg(22,) for |z = |z,|, implies
BL) (4l 1-1B|2, arg2, g,

< If(2) —f(2)] < |2y |20

1— 1/3( :

)

where qu(pn) = HQ+1/Q)+ 3 (—1)"(Q@ —1/Q)cospn, (v =1,2), B, and 32
are uniquely determined by the equations

2, HQ+1/Q)+ 31 (—1)™Q—1/Q) exP ilgn+arg (1 Bn)}

By = eidrgllzs) (= 1,2),

%y

e1 = 1 or —1, B, = B, = exptarg(z,[2,) for |3 = |2,|, and ¢,, ¢, are uniquely
determined as the solutions of the equations

el

— arg(Izll—%eoikQ—IIQ)Sm¢{l _1/B( %

(32) a.rg(lz lé( —1)mi(Q— 110)51:1%{1 1/B,,( .
2

z
’a’rg—lyq’)}
(—11':<<pn in, m=1,2).

All the given estimates are sharp for any 2,, 2, € A y 21 F Zay 2| = 28] > 0,
and Q el, +o0). Given ¢, —in <@ < im, the only extremal functions
in (31) are:

f(s) = |s|Pe™™=e (lea] < I8] < 1),
F(8) = f(z) [s]2, P @B (12, < Js] < |ay)
J(8) = f(2)fils12,) (Is] < l2al)
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for the upper bound, and

f(s) = |sPe’r® (lea] < 8] < 1),
£(8) = f(z) 182" > (lz) < 8] < Jaal)
F(8) = f(22)fal8]22) (18] < |2q])

for the lower bound, where Bon= 3(Q+1/Q)+ 3(—1)"(Q —1/Q) exp ipx,
Bin = 3(Q@+1/@)+ e(—1)"(Q —1/Q)expi {pn+arg(1 —By)} (n = 1, 2), f, and
f> are arbitrary functions of the class Eq, and the branch of arg(f(s)/s) is chosen
in each case for |z,| < |s] <1 so that argf(l) = 0, and for |z,| < |s| < |3]
s0 that arg(f(s)/s)—>arg(f(z)/z) as s—2.

(iii) Furthermore, (30) and (31) give all points of the variability region
of the functional F(w,,w,)= log(w,—w,), where logl =0, w,= f(%),
wy = f(2,), f ranges over Eg, and 21,2, (21,2 € 4,2 # 2, || = || > 0)
are fized.

Proof. We start with proving (i). We use the notation of Theoremn 5.
We apply this theorem to the functional — %ilog((wl—'wz)/(wl—wg)) and
assume that D, = {{;: 0 < |&] <1}, Dy= Df? = {&: 0 < [&] < |Gy
La# Gl Die={0:0< | <1}, Dyo= D(z?cl;: {w: 0 < |wy] < feoy),
wy # w;}. Since f(8) = ¢ is not an extremal function in our problem and
conditions (18) take the form

1. 1 1. 1 1.
2", T, T3 T
1. 1 1. 1
2 M —w, 21 —w,Jw, #0,

the extremal functions are given by the formulae:

f(s) = |s|%e" > (Ja < ls] < 1),
F(8) = f(&) lsfa e ™= (Jg] < [s] < Ja4])
F(8) = f(za) fu(8/25) (18] < lzal)

and
fls) = Isfe™™e (la] < sl < 1),
1(8) = (o) 181226 ™0 (lzy] < [s] < Iai])
£(8) = f(2)fx(8]22) (Is] < l))

where ¢ = 3(@+1/Q)—16i(@—-1/Q), &=1 or —1, p=4(@Q+1L€¢)—
—}ei(@—1/Q)expiarg(1—4,), i = }(Q+1/Q)+}ei(Q—1/Q)expiargx
x(1—4,), =1 or —1, f, and f, are arbitrary functions of the class Ey,
and the branch of arg(f(s)/s) is chosen in each case for |z,| < [s] <1 so that
argf(1) = 0, and for |z| < [s| < |2, so that arg(f(s)/s)—>arg(f(z))/z) as

22%
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s—>2,. Since we may choose ¢, and ¢, so that the first function corresponds
to the maximum of the functional in question, and the second function

to the minimum, (i) follows.
Now we proceed to prove (ii). We use the notation of Theorem 6.

Applying this theorem to F(w,, w,) = log(w,—w,), logl = 0, we have

to assume
N
arg—
’ gzz)})

< 1T < arg (Iz,l_'5"""(9””0)6"“"?:‘{1 —1/A1(

2
Ra

arg(‘zlIéeui{O—l/Q)eiul‘gzl{l _.I/A2(

2

!
2, a,rgz—z)}) .

Clearly, we may define D,, D,, Dy g, D, s in the proof of (i). Next
we observe that f(s) = s is not an extremal function in our problem and

that

Fm(wla w,) = }log ((wl —my) (@, —&;z)) —4idlog ((wl—wz)/(f_f’l —52)) .
Hence w, F, (wy, w,) + wy Fo (w0, wy) = Jé(l** id) # 0, 1wy Fo,(w;, w,)
= (1 —iA) (1 —w,Jw,) " # 0, where wy = fP@&D(z), k=1,2;ef, e =1
or —1, and also
1 1 1 1 . .
By 2 1y 8 o) = [0+ 5 ) — 3ea(@ — ) L+ am+
1 1 1 1
Buleny 5 2,8, o) = (@) —ge(@—7) %
x expiarg (1l —w,jw,) (1 4-i4)[|1 +14] .
Consequently

i(z1,2e; ;-(1,80*,8;).5:,5:‘)

! eiul-g(znfzz)}) — .

%y

Auolz1,22; Ar,ed ;ef).vak,ér)e iargz, [1

o
Setting

2,
22

T = arg(lzll—'laoi(Q--1!Q)sinv-ez'urgzl{l —1/B( , al‘g';;, ‘P)}) (——%7: <g< %Tt) ,

which agrees with (30), we get (32) where ¢; = efef and
@n = arg((-—l)"“ls:|1+u(r, (—1)""'e, (—1)““er)|) (n=1,2).

Hence, given ¢, the maximum and minimum are attained for the
funetions given in Theorem 9, and there are no other functions for which
the maximum or minimum is attained. These functions give the bounds
in (31). We verify directly that (ii) remains true for ¢ = {= and —ir=.
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In order to prove (iii) we notice that given ¢, —3n < ¢ < 1r, and ¢,
—1 <t <1, there is a homotopy

fis, 1) = [s]"Ve">=" (lal < Is] < 1),
F(8, 1) = f(z1, 1) 5]z, O > (g < |s| < 124])
£(s, ) = f(z, O)f*(s/2, 1) (Is] < 1))
argf(1,1) =0, arg(f(s, 0)/s)>arg(f(z, V)/z) as s—z,
freEy for —1<t<1,

such that f(s,1) and f(s, —1) are the functions for which the functional
in question attains its maximum and minimum, respectively, and that
the function f(s, t) satisfies (30) with f(2, ?), f(z,, t) substituted for f(z,),
f(2,), and belongs to Eg for any t e« (—1, 1). Indeed, to this end we notice
that the equation

arg | 1000l 11 (12, arg, (1), 1))
‘2 2
= 3rg(|zl|_%£0i(Q—IIQ)Sin¢{1 _1/B( ~|y 3rgz17 ?’)}) ’
) 22
where C is uniquely determined by
o= 2 HQ@+1/Q)— 1@ —1/Q)exp i{w(t)+arg(l—C)}ei&rg(zdzz)
22

and C = expiarg(z/z;) for |z;] = |z,|, has a unique solution ¢(t) € gy, ps>

or {p,, ;> for any te(—1,1). Hence we define y,(t) and y,(!) by the
formulae

i) = 3 (0+5) 5 (@— 5 texpio

and

nll) = %(Q-F%) —%ei(Q —%)texpi{cp(t)-}- arg(l _0( z

1
=t

arg, 90, 1))}

respectively. The proof is completed.

15. Theorem 9 enables us to obtain an analogue of the following
well-known theorem of Mori [13]: For any fe 8o and 2,,2,¢ 4, 2, # £,
we have 1672, —2,|° < |f(21) —f(22)| < 16]2,—2,)"“. The exponents @, 1/Q
are the best possible (f running over Sy, and 2,2, over 4), and it is
conjectured (cf. [8], p. 71) that the best possible constants are 16'~9
and 16'"° which have to replace 16”9 and 16, respectively (16 being
the best possible constant independent of ¢, as proved by Mori).
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THEOREM 10. For any fe Eq and 2,,2,¢ A, 2, # 2,, we have

2%z, — 2% < 1f(2)) —f ()] < 2702 — 2,10
The constants 2'~°, 2'"Y° and exponents Q, 1)Q are the best possible,
f running over Eg, and z,,z, over A. Equality holds if and only if either
2, = €%, z, = —e* (# real), f (f € Eg) being arbitrary, or z, = re®, z, = — re®
(r,® real, 0 <r <1), f(s) = [s]"%"*™° (r<|s|<1), f(s)=f(r)f*s/r)
(18] < 7)y f* (f*eXy) being arbitrary — in the case of the wupper bound.
Equality holds if and only if either z, = €%, 2, = — e (9 real), f (f e Eg)
being arbitrary, or 2, = re®, 2, = —re®® (r,d real, 0 < r < 1), f(s) = |s|%" *®*
(r < 8| < 1), f(8) = f(r)f*(s/r) (|8] < 7), f* (f* € Eg) being arbitrary —in the
case of the lower bound. Moreover, the estimates obtained are also the best
possible estimates of the form

] Q 4 1
62|z1]?2|z2| N —2° < |f(2) —f(22)] < eilay] 12| |2 — 24 ¢

where ¢y, Cyy Y1, Va, 01, 85 are allowed to be dependent on Q only.

Proof. Suppose that the constants ¢, ¢ are the best possible in the
estimate |f(2;) —f(2;)] < ¢|2;—2,|°, f running over Egy, and z,,2, over 4;
2, # 2,. By Theorem 1 and f(0) = 0 we have ¢ >1 and ¢ < 1/Q. Since
this theorem implies the estimates given in Theorem 10 in case where
2, = 0 or z, = 0, we may assume 2, # 0 and 2z, # 0 without loss of generality.

Let us consider the expression |f(z,) —f(zz)]Q/Lz,—zal. Suppose, e.g.,
that |2;] > |2,|. By Theorem 9 we have

Q. 2
/=2l

where ¢, and B, are defined in the quoted theorem. Clearly, the expression
in the braces, considered as a funection of |z,|, |2,/2.|, arg(z/2;) and ¢, is of
the form |z,[°""7'B!(|2 /2|, arg(z/2), ¢) where Bi is independent
of |2,|. Hence it attains its maximum with respect to |2, when |z, =1
for any |2/2,|, arg(2/z,), ¢., cosg, # 1, and it is a constant with respect
to |2,] when ¢, = 0 for any |z,/z,|, arg(2,/z;). By |25 < |2 <1 we get

2

Q
Mz_)]_ < ma’x{‘zllom(w)—l 1 —1,B1( .

|2y — 2, o1

2
y aTg—, @y
27

2

1f (&) —f(2) [l — 22| < {2 —2eosarg(a/z)}t9d < 2977

Equality holds here if and only if either z, = e®, 2z, = —e® (3§ real),
f (f € Eq) being arbitrary, or 2, = re®, z, = —re® (r,d real, 0 <r < 1),
F(8) = [s]"06™" (r < Is| < 1), f(8) = f(r)f*(s]r) (]s] <7), f* (f* € Eg) being
arbitrary. Now, by Lemma 1, we may apply the result obtained to the
inverse function, whence |f(2,) —f(2.)] > 29z ~2,/° with equality if and
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only if either z; = ¢®, 2, = —e® (& real), f (f e Eg) being arbitrary, or
2, =re®, z,= —ret (r,d real, 0 <r<1), f(8)= |8 (r<|s|<1),
J(8) = f(r)f*(s[r) (8] <), f* (f* « Eq) being arbitrary.

The functions f(s) = |s|/“¢**™®* (s £ 0), f(0) = 0 and f(s) = |s|%"*®*
(s # 0), f(0) =0 give also the last conclusion in Theorem 10, and thus
our proof is completed.

§ 6. Distortion theorem.

16. Here we derive an analogue of (29) for the class Eg, as has been
announced in Section 13. The result is a consequence of Theorem 3.

THEOREM 11. For any fe Eg, Q € (1, +oc0) and z € 4 we have
[f(2) —2|/log@ < 1]e ~ 0.37 .

The estimate is sharp.

Proof. The proof is similar to that occurring in Shah Tao-shing’s
result (see [15]).
Let us use the notation of Theorem 3. Applying this theorem we have

1 a 1
0 0

<2f%|g(z,t)l f M]L:_Z(Tt)?zld dt .
0 |lo(z.t))

_zl

tg(z t)ldt

On the other hand, it can easily be verified that

v(g7 (w, 1), 1) = —»¥(w, t)exp(2iarg gy (w, 1)) .
Hence, by (13),
(33) w(r,t) = —v(g7'(r, 1), t)exp(—2iarg gy (w, 1)

= —tu(g™'(r, t)) exp(—2iarggy,'(w, 1)),

and, consequently,

1 1

1 ly(g—l(r, t))l
|f{2) —2] < 2 =[g(2,1)] 3
Elf‘]g(é[t)l r ? l_t2|."‘(g—1(ry t)H

Since f is a @-quasi-conformal mapping, we have

drdt .

|plg~r, )| <qg=(@-1)/(Q+1) ae.in4 (0<r<1,0<i<1).
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Hence we obtain

1 1

lf(z)—z[<2f f =|g(z, t)[ drdt
0 |o(z,0)]
1
=2 [ gmlete, Olog g gy
. . . 1+
_2 g 1
=7 [ it = ey =g = Gloee,

as desired.
Suppose now that there is a constant ¢, < 1/e such that

(34) 1f(2) —2i/log@ < ¢,

for every f e Eq. Then (34) holds, in particular, for any function f, such
that its complex dilatation uy(2) equals ¢ = (@ —1)/(@+1), 1 < @ < + oo,
in the whole dise 4. Similarly, (34) holds for every g,, where the functions
w = go(2, 1), 0 <?<1, correspond to w = fy(z) as described in Theorem 3;
but of course in (34) we have to replace

1
Q= l+q__

T—g = {1-+esssup |ug(2)[}/{1 —esssup lug(2)[}
q z€d

by
{1+ esssup [x(z, t)[}/{1 —esssup |(z, t)} = it 1
ze4q zed qt

where the functions », replace » in Theorem 3. This is a consequence of
conditions (2, t) = tu(2) analogous to (13). Thus we have

e, ) ~slflog T H <G <o (O<t<1),
and also
. 14 gt
(35) Lim llgo(z, 1) —I/log =1 < 0 < Lle,

since, as is easy to show, the limit in (35) exists.
On the other hand, applying Theorem 3 to f, we have

i B 072 _ g (5,0 f Wstr, ) g

2
0+ ¢ PV G / . — |93 (r, ¥)]
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Hence, by (33), by the relation uyz) = ¢ for 2 ¢ 4, and by a well-
known test concerning the integration of functions depending on a para-
meter, we get

10+ t

(1/r) uo(gg_l(r t))
o L t[l‘O(g (ry t)l

_ _zg’ﬂ{go(z’ 1) p( 2zarg[ g0 (w, t)]z=r)d"}

1
_ Qg — _ 1
= [r 2qzlog|zl .
Consequently,
go(2, 1) —
Im &2~ = 2210
Am == slog I2]
and
hm {[go(z 1) z]/log1+gz}

1 +qt} o2, 1) —
—i‘ﬁ’i{qtﬂ"g T—glie ¢
which contradicts (35) if we set 2= 1/e. Thus our proof is completed.

Remark 6. The previous considerations also imply that for fe Eg,
Qe<l, +o0) and 2¢ 4 we have

|f(2) —2] < clogQ {1+ o0(1)}|zllog(1/lz]) ,

where the best possible value of ¢ is 1, the symbol o being connected
with ¢ —1+4. An analogous result for the class Sy has been obtained by
Krzyz and Lawrynowicz [6] (a particular case of Theorem 3 in the quoted

paper).

§7. The class Ej.

17. The class E} is an analogue of Eg for functions defined in the
closed plane & We give here six equivalent definitions for Ej. The proofs
of equivalence are omitted since they are analogous to that given in the
case of Ey. Before defining Fj we introduce the eclass 83, which is an
analogue of Sg.

DEFINITION 3. A function f is said to be of class 83 if it maps & onto
itself @-quasi-conformally with f(0) = 0, f(1) =1 and f(oo) =
There are no analogues of Definitions 1B and 1C for S8§.

DEFINITION 4A. A function f is said to be of class EJ if it belongs
to 8§ and if f(z) = efamszf(|z|) for z€§, z # 0, oo,

1
—zlogl—z—l ,
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DEFINITION 4B. fe E§if f e 8§ and f(2) = e~ af(e'z) for z € §, 2 % 0,00,
where a is a real number such that a/= is irrational.

DEFINITION 4C. f e E§if f e 8§ and if its complex dilatation u satisfies
the condition u(2) = e %y (e*2) a.e. in § where a is a real number such
that a/n is irrational.

DEFINITION 4D. A function belonging to 83 is said to be of class E§
if its complex dilatation u satisfies u(z) = e*®®zy(|z|) a.e. in &.

DEFINITION 4E. fe E§ if fe 8§ and 2zf.(2) —Zf;(2) = f(2) a.e. in &.
DEeFINITION 4F. fe EJ if it is given by the formulae

(@) = exp( 1+”(T) dr-{—z argz) for z¢é, 2 %40, c0,

1—u(r) r
(36)
flz)==2 for z=0, oo,
where u is measurable with sup |u(r)] <1 and esssup |u(r)] < Q—_—l
0<r<+o0 0<r<+oo Q+1
Definition 4A immediately implies:
) = |f(]z])| = R(|z
(37) If (@) = [f(lzD] = R(l2])

arg(f(2)fz) = argf(lz]) = 6([z]) (2 # 0, o),

and the following
LEMMA 2. fe ES implies ' ¢ ES, and (37) implies

lf_l(w )| = R (jw])

38
e arg(f " (w)jw) = arg f T (jw]) = —O(R(lw])) (w # 0, o0),

where arg(f(w)w) = —arg (w/f " (w)).

We also notice the following trivial result, which gives the corres-
pondence between E, and E§:

LEMMA 3. If a function f belongs to E§, then the functions f, and f,
defined by f,(2) = f(2), fu(e) = 1f(1]z) for z € 4, z # 0 and f(0) = £,(0) = 0
both belong to E,.

Remark 7. Clearly, if fe Eg, then any function f* defined by
F*2)=f(2) for zed, f*z)= e-'ef(e®z) for 2¢ 4, 2 # oo, f(o0)= oo,
where a is real, belongs to E§.

Lemma 3 enables us to obtain easily some analogues of Theorems 1, 2,
7, 8 and 11 for the class £). An analogue of Theorem 9, and of Theorem 10
as well, can be obtained in a similar way only in the case where either
7)) <1, |2,/ <1 or |2 =1, |2 > 1. In order to get the corresponding
estimates also in the case where [2,| <1, |2 >1 or |3,] > 1, [25) <1 we
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need either some analogues of Theorems 5 and 6, where functionals de-
pendent on one arbitrary function belonging to Ej are replaced by func-
tionals dependent on two arbitrary functions belonging to Eg, or some
analogues of Theorems 5 and 6, where functionals depend on one arbitrary
function belonging to EFj. We choose the second way, and hence we have
to prove first an analogue of Theorem 3 or Theorem 4. For the completeness
of our considerations we give here both of these analogues.

18. We shall now give two theorems on parametric representation
for the class Ej.

THEOREM 12. Suppose that w = f(z) belongs to E} and has w = u(z)
as its complex dilatation. Moreover, suppose that the functions w = g(z,t),
0 <t<1, belong to 83 and have complex dilatations (13). Then w = g(z, 1),
considered as a function of z and t, satisfies on & x {t: 0 < t << 1} equation (14)
subject to the initial condition g(z, 0) = 2, where v* is the complex dilatation
of g7, and & = &\{oo}.

Remark 8. By Definition 4D the functions w = g(2,?), 0 <1<1,
belong to Ej.

Proof. We apply the theorem on parametrization for the class S
in the form which is an analogue of the theorem on parametrization for
the class Sg quoted in Section 9 (cf. also [16]). By this theorem w = g(z, t)
satisfies on & x {f: 0 <t <1} the equation

ow w(l w) p(l, 1) _ :
El m” gl €=t

subject to the initial condition g(z, 0) = 2, where v is defined by (16).
By (13) we have, as in the proof of Theorem 3,

(1/t) v*(w, t)

1—[p*(w, 1)

ow _ 1 —w) dédn
Eln H 1—|v c t]zc(l —O(z=¢)"

[¢l<+o0

Now we apply Definition 4D to g (c¢f. Remark 8). As in the proof of
Theorem 3, we get

p(w,t) = —
Hence

400

ow _ w(l— w)fj e2Py*(r, 1) rdd
1—

ot |v*(r, t)|2 re®®( l—fre‘”)(w—m”)dr

1
,__'wf (1/r)v¥(r, t)d
Tt ol — |v*(r, )2

as desired.
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Remark 9. Theorem 12 can also be proved directly by means of
Definition 4F.

THEOREM 13. Under the hypotheses of Theorem 12 the function
w = g(2, 1), considered as a function of z and t, satisfies on & x {t: 0 <t <1}
equation (17) subject to the initial condition g(z,0) = z.

This is an immediate consequence of Definition 4F.

19. Now we give an analogue of Theorems 5 and 6 for the class EJ.
Proofs are omitted since they can be performed in the same way as the
proofs of Theorems 5 and 6.

THEOREM 14. Theorems 5 and 6 remain valid if the following changes
are made.

(i) A, Eq and the conditions (2z| < [2x—1| (k= 1,..,m), 2g=1 are
replaced everywhere by &, Ef and the conditions (2| < |#x—1| (k= 1, ..., ny—1,
Ng-t1l, ooy nt1), 2= 2p41 =1, 0 < ny < n+41, respectively.

(ii) The function f, is defined by fi(s) = f(s) if |2ny—1] < 8] < |2nol,
by fi(8) = f(no-1)f*(8[2no—1) f 8| < |2no-1l, and by [i(s) = flzn,)[f**(Z5,[5)
if 18] = |ensl, where £*, f** ¢ Fq.

(iii) Conditions (18) in Theorem 5 are replaced by

no—1

D) Fe Fuftry ooy 23 f(&), s flen) 0 (m= 0, ..y ng—2)

k=m+1

Zf(zk)ka(zn ey 205 f(21), ---’f(zn)) #0 (m=mn+1,..,n41),

k=ng
and analogous conditions for f*° and f in Theorem 6 are replaced by

no—1

2 f“"’(zk)F(ﬁ,:(zl, very R f(“) (=1), -- f(;t o )) # 0 (m=0,..,n,—2) ’

kE=m+1

m—1
D ) FDery oy 2 f4U21), oy o) 20 (m= mg 1, ..y mt1)

k=ng
and

no—1

2 f(zk)m,:m)(zu wry 203 f(21), 7f(zn)) #0 (m=0,..,m—2),

k=m+1

m—1

Zf(zk)ﬂaf,:m)(zu vy 23 fl21), ’f(za)) #0 (m=mn+1,..,n+1),

k=no
respectively.
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(iv-a) Formulae (19) and (20) in Theorem 5 are replaced by
f(S) — ,wm|s/zmlﬁm(21.u--Zn;Em)ei&l'K(slzm)

Jor |zms| < [8] < [2m] (m = 0, ..., my—2) and for |zm| < (8] < [2m—1] (M = ng+-
+1,..,n+1), and

Bm(21y veey 205 Em)

no—1
1 1 1 1 . \ |
— §(Q+Q)—§em(Q—§)exp(—zarg 2/ kau,k(zl, ceey Zmy Wy eeey wn))
k=m+1
(m=20,..,n,—2),
Bm(21y «ovy 2 Em)
m—1

| =

1 1 1 .
(Q+6)——EM(Q—§)exP(—zarg 2 Wi F oy (21 ooy Zaj Wiy oey w,,))
k=mno
(m = ny+1,..,n+1),

em=1 or —1, wo=1, w, = f(21), ..., Wn = f(2r)y, Wn+1 = 1, where the
branch of arg(f(s)[s) is chosen for |zmii]| < |8| < |2m| (M= 0, ..., n,—2) and for
|2m| < 18] < |2Zm—1] (m = ny+1,...,n+1) so that f(8) >w, as s—>z,
(m=0,..,n—2, ny+1, ..., n-+1), respectively.

(iv-b) The formulae which determine the functions f*° in Theorem 6
are replaced by f*(s) = s for |s| =1 and by

f().,s)(s) — wg.;e)ls/zm lﬂm(Z[,...,Zn;l,e, eiarg(sfzm)

Jor |zmu| <8< |2m| (mM=0,..,n,—2) and for |z,|<|$|<<|2m-l
(m = ne-+1, ..., n+1), where

Bm(21y ovey 20y Ay €) = % (Q.;_%)_

no—1

1 1 3 ] L) 8
—-em|@Q — = |exp| —iarg ) wi ’Ffz(z,, ey 2y WY oy W)
2 Q Lad
k=m+1
: (m=0,..,m7%—2),

Bm(21y eeey 203 4, &) = %(Q.}_%)_

m—1

1 1 . 8, 8, 38,
—EE"‘(Q—Q_)) exp(—zarg 2 wh )F(u‘,l;(zl, ey %m} wi ), vy w§ )))

k=ﬂo

(m = ny+1, ..., 20+1),

wf)l,s) — 1’ w(ll.s\ — f(l.a)(zl)’ s w(ff,s) — f(l.s)(zn), /wg-::ll — 1, and the branch of
arg (f*"(s)/s) is chosen for |emii| < |8 < |em| (m=0,...,me—2) and for
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lem| < 18] < |2m-1] (M = ny+1,...,m4+1) 80 that f“"’( >t as $->2m
(m=0,..,7—2,n+1, ..., n+1), respectively. The extremal function f
satisfies a condition of the same form f(s) = f*™*)(s) but in {s: |2Zne_1|
< 8] < |2n,|} instead of {s: |za| < 8] < 1}

20. In this section an analogue of Theorem 9 for the class EJ is
established. According to the conclusion of Section 17, which was a con-

sequence of Lemma 3, we confine ourselves to the case where |z;] <1
and [z, >1

THEOREM 15. (i) For any fe B and 2y,2,€ 8, 2, £ 2, 0< |25 <1
1 < [25) < + o0, we have

arg (|2, [P 285 — |2, [P "% < arg (f(2,) —F(22))

< arg |2y [P — [g, [T 7)

where Pmn are uniquely determined by the equations

Pmn = % (Q + %) +%8m( —1)" (Q — %) expiarg (1 —[ef"[5"""%)
(m=1,2; n=1,2),

en=10r =1 (m=1, 2), arg(f(z, ) —f(2:)) >0 for 2,>0, 2, =1 with the
correspondingly .chosen branches of the estimating functions and 1°™ =1
(m=1,2; n=1,2).

(i) Moreover, the condition
(39) arg (f(2,) —f(22)) = arg(|o, [P’ — |, 1Pt eTe21)

where q,, g are uniquely determined by the equations
1 1y 1 1 X -\ aazm—
=3 (Q_}-@) —'2'£m(Q—§)eXp©{fp+ arg(1—[20/2 7" %) (m=1,2)
and 1% = 1% = 1, implies

< [f(2) —f(22)]

< | lzllml(wl)ei&mh

(40) l]zllﬂu(w)eia.rgzl_ ]zzlwn(wa)eimz,

—| zzlqn(m o T8

’

where qmn are uniquely determined by the equations

Qmn = %(Qﬁ-é—)-l—%%(—l)”(q—%)expi{cp,,+ arg (1 — [z 22" %)}
(m=1,2,n=1,2),
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th=10 —1 (m=1,2), 1" =1 m=1,2;n=1,2), and ¢,, ¢, are
uniquely determined as the solutions of the equations

arg ( lzllql”("’”)e"a‘rgzl — |2, |¢Ian(¢n)ei a.rgza)

_ arg(lzllql(w)e'iﬂ-l‘gz1 _ ]zlez(wei&l‘Ezz) (—in <

All the given estimates are sharp for any z,, 2, € §, 2, # 25, 0 < |2,| < 1,
1<z < +o0, and Qe 1, +oc0). Given ¢, —in<@ < 4m, the only
extremal functions in (40) are:

2—1‘!, n=1 2)

f(8) = |s|™e’=? (lz) < 18] < 1),
O e 1< 8] < |zl
f(8) = fle)ffslz) (sl < |al)

f(s) = f(2)[fT*(z,/5)

f(8) = o0
for the upper bound, and

f(s) = s|et™®

f(8) = [s[™e'™?

(2/3)

(Is| > [zl , 8 # o) ,
(s = o)

(ladl < |8l < 1),
(1< 8] < |2l),

f8) = fe)filslz) (sl < lal),
£6) = FEFFED  (s]> lal, 8 # o),
fls) = oo (s = oo)

for the lower bound, where ft,f1*, 2, 2* are arbitrary functions ;)f the
class Eg, and the bramch of arg(f(s)/s) is chosen in each case so thal
arg f(1) = 0.

(iii) Furthermore, (39) and (40) give all points of the variability region
of the functional F(w,,w,) = log(w,—w,), where logl =0, w, = f(2),
w, = f(2,), f ranges over Ef, and 2,2, (21,2, €8, 2, 25, 0< |2,] <1,
1 < |2] < +o0) are fizved. '

The proof is completely analogous to that of Theorem 9.

21. As an application of Theorem 15 we obtain an analogue of
Theorem 10 for the class #§. It is clear that there area no constants
and ¢ such that |f(z,) —f(2)| < ¢|z; —2,|% f running over EY, even in the
case where we confine ourselves to 2, and z, running over the exterior
of A. Nevertheless, we can find an estimate of the form |f(z,)—f(zy)]
< cllzll"‘]zzi"‘lzl—zzluo (where ¢, y,,d; do not depend on 2, 2,) in each
of the cases: (i) |2, <1, |2 <1, (i) [z] =1, |2 = 1, (il) |2] < 1, |2| = 1,
(iv) |21] = 1, |25] < 1, where we assume 2, = 0 if 9, 5% 0; 2, # 0 if §;, # 0;
and 2, # 2, in each of the cases under consideration. The result is as
follows.
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TBROREM 16. Suppose that f e Bf, 2, # 2,, and consider the following
cases: (i) |ol <1, |l <1, (i) lol>1, |2l >1, (i) &l <1, | >1,
(iv) |21] = 1, |22] < 1. Then in each of the cases in question we have a pair
of estimates of the form

ol lnlzzr"'zl —zz|o < |f(z1) —f(20)] 01|z1["1|z2|d‘]z1 zzlllo

The best possible values of ¢y, ¢y, y1y ¥sy 0y, 8, corresponding to the
cases indicated above are:

(i) 6=2""",6=2"% »=0, =0,  §=0, &=0,
" - - 1 1 1 1
W a=2" 6=2""% n=0—4, n=3-0 4=0-G &—5-0Q,
- - 1 1
(@) 6=27", 6=2"% yn=0,  pn=0,  4=Q—5, &=5—0,
. - - 1 1
(iv) ("l=21 IIQ’ (32=21 01 ‘)’1=Q_§a 72='Q'—Q1 61=07 0,=0.
In case (i) equality holds if and only if either z; = €%, 2z, = —e® (3 real),
[ (fe E§) being arbitrary, or z, = re®, z,—= —re® (r,d real, 0 <r < 1),

F(8)=1s["%€™®° (r < |s| <), fls) = F(r)f*slr) (s <7), fs) = 1f**(1]5)
(|s] > 1, 8 # 00), f(oo) = oo, f* and f** (f*,f** € Ey) being arbitrary —
in the case of the upper bound. Similarly, equality holds if either z, = &%,
2, = —e® (¥ real), f (f e E§) being arbitrary, or 2, = re®®, z,= —re® (r,d
real, 0 <r<1), f(s)= |s|%"™" (r<s|<1), f(s)=Ff()f*sir) (Is] <),
J(8) = 1f*(H) (s1>1, s # ), f(c0) = oo, f* and f** (f*,f* ¢ E})
being arbitrary — in the case of the lower bound. In case (ii) equality holds
if and only if 2, = €%, z,= —e® (& real), f (f € EQ) being arbitrary — in
the case of the upper bound and in the case of the lower bound as well. In
case (iii) equality holds if and only if either 2z, = €?, z,= —e® (& real),
f (f e ES) being arbitrary, or z,= oo, 2, and f (|z1] <1, fe Bf) being ar-
bitrary — in the case of the upper bound and lower bound as well. In case (iv)
equality holds if and only if either 2, = e®, 2z, = —e® (& real), f (f e Ef)
being arbilrary, or 2, = oo, 2z, and f (|2,] <1, f e E}) being arbztmry-—-m
the case of the upper bound and the lower bownd as well.

Proof. Theorem 16 is equivalent to Theorem 10 in case (i), and the
cases (iii) and (iv) are equivalent, so it remains to consider the cases (ii)
and (iii) only.

Suppose first (ii). By Lemma 3 and Theorem 10 we have |1/f(z,)—
—1/f(25)| < 2" ¥9|1/2,—1/2,|"® with the equality if and only if either
7, = €%, z, = —e% (0 real), f (f ¢ EQ) being arbitrary, or 2, = re', 2, = —re®
(r,#real, 1 < r < +00), f(s) = |s|'"%e™™* (1L < [s| < 7), f(5) = fH(3) (ISI <1),
F(8) =FIft*r[3) (Isl>r, s # o0), f(co) = oo, fI and fI* (fI,fI* ¢ BY)
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being arbitrary. On the other hand, by Lemma 3 and Theorem 1 we
have |1/f(2m)| > [1/2m|® (m = 1, 2). Equality holds here for m = 1,2 if
and only if either |z,|=1, f (feEQ) being arbitrary, or |zm| > 1, f(s)

= 5% (1< s} < feml), S(9) fw)ﬂﬂ<nyﬂﬂ—ﬂ%W1mM
(I8 >r, 8% 00), f(oo)= oo, f¥ and f3* (fs,f:* e Eg) being arbitrary,
for m = 1, 2, respectively. Hence, by Lemma 2, we obtain both the desired
estimates and all the extremal cases when (ii) holds. Henece it follows,
in particular, that the values obtained for ¢; and ¢, are the best possible.
We claim that the values obtained for y,, v,, é,, J, are also the best possible.
Indeed, by the symmetry to this end it is enough to prove that the best
possible value of 6, is @ —1/Q. Suppose therefore that there is a constant
8o = 64(Q) < Q —1/Q such that |f(z,) —f(2,)] < 2" Y92, [0 0,2, —2,*'°
for every |z, =1, |z,| = 1, z1 # 25, and f ¢ E§. Hence this estimate holds,
in particular, for z(l Y= 1, 2" = n and f(s) = ls|° S (g £ 0, o0), f(s) =8
(s =0, oo0), where n =1, 2, ... Consequently

Q@
%>nm§@@*wﬁﬁiﬁaﬁ%4=Q—%,

n—+00

which contradiets é, < @ —1/@, and thus the proof is completed in case (ii).

Suppose next (iii). Since Theorem 16 is a consequence of Lemma 3
and Theorem 1 in the case where 2, = 0, and is trivial in the case where
2, = oo, wWe may assume 2; # 0 and 2, # oo without loss of generality.
Let us consider the expression |f(z,) —f (zz)lo/ ]zz|Q'—1|z1—z21. By Theorem 15
we have

Q’I |z1/z2|q:1(¢1)ei arg(zi/ze) _ 4 IQ

'f(zl) _f(zz)lo < max{‘zleQn(m)—

lzzIQLI 2, — 2, #1 [21/2, —1]

PA /z21qﬂ 1le1) o ar8(z1/za) 12y [an(m)—qn(tm) -1

Q
!,
where ¢,, and ¢,; are defined in the quoted theorem. Clearly, |z2|“° <1,

q* = Qqu(p,) —Q?, with equality if and only if either |z, =1, or gy(p;)
= . Next we observe that

gz1(¢1)

lzl./zzlqu(m)eiarg (z1/22) 1

2,
2

Q
etarg(zilze) _ ] ' / 1

2

30-
l < {2 —2co8 arg?}
2

with equality if and only if |z,| = [2,| = 1, and, finally,

aale)

2 |231(p1) .
618-!'3(&!2:) -1 ’

e:arg(zn/ 2)1 lQu(m)"‘Gn(ﬁ) 1) < %

2y

[2

E23

with equality if and only if either |2;| =1 (also if |21|—>0) OT ¢11(@1) = Qur(py)-
Consequently |f(2,) —f(2s) |Q/|z2|Q ey —2y < 29~ . Equality holds here if
and only if z, = e®, 2z, = —e*® (4 real), f (f €.EQ) being arbitrary. Hence

Annales Polonici Mathematici XXI 23
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it follows, in particular, that the value obtained for ¢, is the best possible.
Now, by Lemma 2, we get an analogous result for the lower bound. It
remains to prove that the best possible value of §, is @ —1/Q. This can be
done with the help of the same example as in case (ii): 2{” = 1, 2" = »
(n=1,2,..) and f(s) = |s|%"*™®° (s £ 0, ), f(s) =8 (=0, oo). Thus
the proof is completed in all cases.

Conclusions.

22, We conclude the paper with some remarks on possible ways
of generalization of the results obtained.

The first way of generalization is to consider classes of Q-quasi-
conformal mappings connected with an equation

(41) p¥(z) = e G (h(Z))

in the same sense as the class Eg is connected with (2) (cf. Definition 2C),
where u* denotes the complex dilatation of the continued function f*,
and h, h(z) == 2, is a fixed, arbitrarily chosen homography. Clearly, func-
tions of any class under consideration should be defined in a domain D
which is invariant under w = h(z), i.e. D = k(D) where D = {z: Z e D}.
Any such (closed) domain will be called natural with respect to w = h(z).
It can be proved that equation (41) corresponds to h(f*(z)) = T*(r(2))
in the same way as (2) corresponds to eis/f*(z) = f*(e[z), i.e. to f*(z)
= e~%a/f*(e'a/Z) (cf. the equivalence of Definition 2C and 2B).

The same way of generalization may also be applied to the class E§.
In this ease we consider classes of ¢ -quasi-conformal mappings connected
with an equation

(42) p(z) = e-siamsn @ (i (2))

in the same sense as E§ is connected with the equation u(z) = e~%eu(eiaz),
where u denotes the complex dilatation of f, &, h(2) 5% 2, is a fixed, arbi-
trarily chosen homography, and functions of any class under consideration
are defined in a domain D which is invariant under w = h(z),i.e. D = h(D);
any such (closed) domain will be called natural with respeet to w = h(z).

Now, by a well-known theorem on homographies (see e.g. [14],
pp. 86-87), the investigation of the classes of mappings generated by
all equations (41) and (42) can be reduced to the investigation of some
normalized classes. Here we give a list of some normalized classes and the
corresponding normalized (closed) natural domains D, and we present the
proposed names and notation. Throughout this list a denotes a real number
and » a positive integer. Mappings are always assumed to have 0 and 1
as their invariant points in the case where D is the closed unit dise,
and 0, 1, oo in the other listed cases.
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(i) h(z) = €@/, a=2n/n, n % 1; D= {z: |2| <1} — the class Eg’
of n-eyclic elliptic Q- quasi-conformal mappings.
(ii) h(Z) = e'2[Z, a/x irrational; D = {2: |2| <1} — the class Fy of
limit elliptic Q- quasi-conformal mappings. He)re the adjective “limit”
n

is justified by an obvious relation Eg= () Eg".

(iii) B(2) = a3, 1 < a< +o0; D= {2: 0 < argz < n} — the class HS
of a-discrete hyperbolic Q- quasi-conformal mappings.

(iv) h(Z) = a3, a—1; D = {z: 0 < argz < =} — the class Hgy of limit
hyperbolic Q- quasi-conformal mappings. Here “a—1" means that equa-
tion (41) should read as follows: there is a sequence of real numbers ay,
ar—>1 a8 k—-+ oo, such that u*(2z) = u*(axz) for 2¢D and k=1,2,..
Clearly Ho = () HS.

(v) h(2) = Z+1; D = {z: 0 < argz < =} — the class Py of normalized
parabolic Q-quasi-conformal mappings.

(vi) h(2) = e'a2, a = 27n/n, m #1; D =& (the closed plane) — the
class E""“’ of n-cyclic continued elliptic @ -quasi-conformal mappings.

(vil) h(2) = e®z, a/n irrational; D = § — the class EJ of limit con-
tinued elliptic Q- quasi-conformal mappings. Clearly E§ = ﬂ Ex™.

(viii) h(2) = az, 1 < a< +o00; D= §—the class Hg ) of a-disorete
continued hyperbolic Q- quasi-conformal mappings.

(ix) h(2) = a2, a—1; D = & — the class H} of limit continued hyper-
bolic Q- quasi-conformal mappings. Here ‘“a—1"" means that equation (42)
should read as follows: there is a sequence of real numbers az, ax—1 as
k—-+ oo, such that wu(2) = u(axz) for z¢& and k=1,2,... Clearly
HO — m Ha(a)'

a

(x) h(z) =2+1; D= &—the class P§ of normalized continued
parabolic Q-quasi-conformal mappings.

In this place I should like to express my thanks to Dr J. Chadzynski
for his remarks concerning this classification.

23. It is particularly interesting to consider the classes Ho and HJQ,
which are ‘“dual” to Ey and E§, respectively, have a clear geometric
interpretation and may be widely applied in physics. Here duality is under-
stood in the sense that we obtain some analogues of Definitions 2A and 4A
by replacing in them the condition f(2) = e*®®2f(|z|) by f(z) = |2|f(e*er82).
Since the same domain, namely the closed plane §, is a natural domain
for EQ and HY as well, it is natural to consider the classes B = Ej o H},

=FEY o ES™ (n=2,3,..) or HY=HS-ES, HP =HY - H"‘“’
(n= 2,3,..), where 4 - B denotes the class of all compositions f o g,

23*
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ie.w=f (g(z)); feA, geB. These classes have also a clear interpretation,
and the methods given for E§ can be transferred to them.

24. The second way of generalization of the results obtained is to
consider various classes of quasi-conformal mappings which are solutions
of Beltrami differential equations with separated variables, e.g. mappings
with the complex dilatation of one of the forms shown in Section 3. The
classes Eq, E§, Hy, H) may serve here as examples. Two of these classes,
E, and Ej, consist of mappings f which transform concentric circles
{z: 2| =71} (0 <7r<1 in the case of Fy and 0 <7 < +oo in the case
of EJ) onto concentric circles {w: |w| = |f(r)|}; the other two consist of
mappings which transform concentric rays {z: argz =49} (0 <d <= in
the case of Hp and —n < ¢ < = in the case of HY) onto concentric rays
{w: argw = arg f(e*®)}. It is natural to replace here the family of con-
centric circles or of concentric rays by another family of curves, e.g. by
a family of logarithmic spirals. In this way we may try to investigate
most of the important plane quasi-conformal mappings. This is an analogue
of the situation in the theory of partial differential equations, where
a great number of results have been obtained with the help of equations
with separated variables. .

It is also natural to look for some analogues of the classes FEg, Ej,
Hg,, H ete. in three and higher dimensions, and to apply them to various
three-dimensional physical problems. '
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