ANNALES
POLONICI MATHEMATICI
XXT (1969)

Periodic solutions of '+ f(z)a® + g(x) = up(t)

by S. Sgpziwy (Krakéw)

1. We shall deal with the second-order non-linear differential equation

(1) x” +f(z) x4 g(z) = up(t),

where n > 1 is an integer, u is a parameter, functions f(z), g(x) and p(t)
are continuous in their respective arguments (—oo < 2,t < o0) and, for
a positive w, p(t+ w) == p(1).

In the present note we state the sufficient conditions for the existence
of periodic solutions of (1) with period w (Theorem 1). The cases n =1
and f(x) = 0 are considered separately (Theorems 2 and 3). Equation (1)
with f(z) == 0 has been considered by Kulig [2]. Theorem 3 gives a generali-
zation of her result.

2. Define the function G(x) by

G@) = [ g(u)du.

THROREM 1. Assume that

(2) xg(x) >0 for x #0,

(3) lllim G(z) = oo,

(4) lim supg(z)/z = a,

(B) 0<b<f(r)<c< oo for all x.

' Then for every p(t) continuous and periodic with period w, there is
po > 0 such that for all |u| < uy (1) has at least one periodic solution with
period o.

Before proceeding to the proof of Theorem 1, replace (1) by the
equivalent system

(6) =9, §=—f@)y*"—-g(@)+pp()
and consider the autonomous system
(M =y, ¥ =—f@)y"—g@)
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corresponding to (6). It will be assumed in the sequel that (1) has the
property of uniqueness of solutions.

The proof of Theorem 1 will be based on the following lemma, due
to Bernstein and Halanay [1].

LemmA. If (7) has a periodic solution with period w, and if w #+ w,.
then for |u| small enough (6) has a periodic solution with period w.

For the completeness of the proof, we shall prove Lemma. Our proot
differs from the argumentation used in [1].

Proof of Lemma. Let I' be the simple-closed curve in the (z,y)-
plane representing the periodic solution of (7). Let £ e the domain con:
taining the origin, bounded by I Denote by = z(t; g, Lo, Yo)-
y = y(t; u, %y, 9,) the solution of (6) satisfying

T(05 4y Toy Yo) = Toy  Y(05 1, To, Yo) = Yo
and define in the (z, y)-plane the vector fields C, C,:
C: (x,y)—>v(@,y)=(—2,—Y),
Cut (@, 9)>v®, y) = (2(w; 0, 2, 9)— 2, Y(w; 4, 2, 9)—Y) .

To prove the lemma it remains to show that €, has a singular point.
Sinee I' is compaet and z(w; u,r,y), y(w; u,x,y) are continuous in
(B, ,9), from o # w, it follows that for |z| small enough C and C, ar¢
never in opposition on I'. Hence (cf. [3], p. 184)

(8) Ind(C,,,F)zInd(G,I’),

where Ind(C,I") (Ind(C,,I")) denotes the index of I' relative to the
field C (C,). (For the definition of the index see for example [3], p. 337.)
Since Ind(C, I') = 1, (8) implies that C, vanishes in a certain point of Q.
which completes the proof of Lemma.

8. Proof of Theorem 1. From Lemma it is clear that to prove
the theorem it is sufficient to show that (7) has periodic solutions with
distinet periods. To this end we shall prove that (7) has a non-periodic
solution, say == z(t), y = y(), defined for all t, such that in every
neighbourhood of (:v(O), ¥(0)} there is (z,, ¥,) such that the solution of (7)
through (z,, ¥,) is periodic. The desired property of (7) will follow from
the continuous dependence of solutions on initial conditions.

Let = @(t; xq, Yo), ¥ = y(t; o, ¥,) De the solution of (7) satisfying
the initial condition «(0; z,, ¥o) = %o, ¥(0; Zo, Yo) = ¥,. The system (7)
has the following properties:

(I) For an arbitrary point (,, y,) there 18 T'(x,, y,) such that

‘y(T(‘vo,?!o);woy yo)= 0, m(T(%a?/onoa?/o) >0.
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(IT) There are points (2, %,), Y, > 0 such that y(t;z,,y,) >0 for
all t <0 for which x(t; xy, y;), y(t; 21, yy) exist.

\We shall prove (I) for y, > 0. For y, < 0 the proof is similar.
Consider in the (z, y)-plane the set of points
Kz, yo) = {(®,9): 9 = 0, V(x,y) <V(a, o)}
where V(x,y) = y2/2‘+ G (r). From the formula
v ov , oV N a2n 1 er
@t T @ Tag¥ T @y seny
and (3) it follows that for t > 0 sufficiently small

(w(ti Xoy Yo)s Y(T5 X, ?/o)) e K (x4, Yo) -

By (3), £ («x,, y,) is bounded. Since the origin is not a cluster point
of x = w(t; xy, Yo), ¥ = Y(t; %o, Yo), t—>o00, there is T'(x,, y,) << oo such that

($(T(w09 Yo) 5 Lo, f'/o), ?/(T(woy Yo) 5 %o, ?/o)) e FrK (%, ¥a) ,
i.e. property (I) holds.

To show (II), put k= — (a+1)/b and define the functions Uz, y),
W(z,y) by

) | aU aU -
Ulz,y) =y —kn, W(z,y) = 7 @y —g(@) .
A simple calculation gives
Wz, (ke)™) — (kw)m"( k- 2n (k)™ P f(2) 4 g ( w)/(kw)))

By (4) and (5), there is M < 0, such that W(z, (kz)'™) < 0 for <. }.
Thus, if @, < M, y; = (ka,)"™™", then, for t < 0, U (@ (8321, 1), ¥ (21, %1)) > O,
which proves (II).

Since the integral curves of (7) are situated in (z, y)-plane sym-
wetrically with respect to the x-axis, (I) implies that for arbitrary s < 0
the solution z = z(t;s,0), y = y(¢; 8, 0) is periodic. Moreover, from (I)
and (IT) it follows that (7) has non-periodic solutions.

It is easy to see that solutions with initial points belonging to the
set 8= {(z,y): U(z,y)=0 for z < M, y>»=EkM for 0 <z < M} are
all non-periodic.

For 2, < 0, y, > 0 put Y (x,, y,) = ?/(T (%o, Yo) 5 o Jo)y where 7(x,, ¥o) €
€ (0, T(x,, y,)) is the root of the equation

Z(T; To, Yo) = 0.
The uniqueness of solutions of (7) implies that
(9) Y(8,0)> Y(s,,0) for s < s,,
(10) Yoy, yy) < Y(xy, )  for (e, y:)eS (2=1,2), r, <o,
16*
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Let ¢ = sup{s € (— o0, 0): ¥ (3,0)} and let
(11) z=at), y=y(
be the solution of (7) starting from (0, ¢). (9) implies that (11) is not
periodic. Let B be the set {(z,y):2 <0,0 <y <ys, (v, ys) ¢ §}. Since

Y((—oo,0)x {0}) is connected, the inequality ¥(s,0)< ¥(0, (kM)"")
and (10) imply that

(12) (x(t), y(1)) eIntR for t < 0.
By (4) and (5), for (z,y) e R we have

(13) lyl+1—f@)y»—g(x)| < |y|+cldx+B]|,

where A and B are suitably chosen constants. From (12) and (13) it follows
that (11) exists for all ¢ < 0, which completes the proof of Theorem 1.

4. For the differential equation
(14) @+ f(w) a2+ g(w) = pp (),
obtained from (1) by putting » = 1 the conclusion of Theorem 1 holds

under the weaker assumptions. Namely we have the following
THEOREM 2. Assume condition (2) and (3) of Theorem 1. Let f(x) satisfy

(15) fl@) 20  for all x,

(16) fepr(u)du < oo,

where F(x) = [f(8)ds. Then (14) has at least one periodic solution with
0

period o, for arbitrary p(t) (p(t+ ) = p(1)), provided |u| is sufficiently
small.

Proof. As previously, the proof reduces to showing that the system

(a7) ¥=y, y=—f()y*—9(2),

which corresponds to (14) for x = 0 has a family of periodic solutions
with non-constant periods.

We shall prove first that in a certain neighbourhood of origin (17)
has only periodic solutions.

System (17) has a first integral

H(z,y) = y*(2a(z))+b(),
where '
a(@) = exp(—2F(2)), b(@) = [ g(s)a(s)ds .

0
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By (2), (3) and (15), b(x) is increasing and unbounded in (0, co) and

decreasing in (— oo, 0). It is easily seen that for
0< C< lim b(x) =

the level curves H(x,y) = C are closed. Hence, for 0 < C < K, the so-
lutions z = x(¢, C), y = y(t, O) of (17) determined by the initial con-
ditions (0, C) = 0, y(0, C) = Y2C are periodic.

The period T(C) of the solution x= z(t, C), y = y(¢, C) is given
by the formula

B
(18) T(C)=1y2 f
J, a(:n)(C b(a:))
where A, B > 0, b(—4)= b(B) = C.
Define (see [4]) the function X = X (x) by

(19) 1 X¥z) = b(zx), xX(x)>0 for z+#0

and let ¢(X) be the inverse of X(x).

Put R(X)= XVa(p(X))lg(p(X)). R(X) is defined and positive
for 0 < |X| < Y2K. Making the change of variables (19) in (18) gives .

VzC

R(X)
T(C) = — dX
-v{—c y2C—X?

A slight modification of the reasoning in [4] proves that T(C) = «,
for all 0 < C < K if and only if the function i}—ﬁR(X)—l is odd, i.e. if
0

and only if V(X)= R(X)+4R(—X) is constant for 0 < |X| <

Since RB(X)> 0, V(X) may be constant only if R(X) is bounded.
We shall prove that, for X < 0, R(X) cannot be bounded. From this it
will follow that (17) has solutions with non-constant periods.

Assume the contrary and let N > 0 be a constant such that R(X)< N
for X < 0. Since X(z)=—Vy2b(z), ¢lp(X))=V(p(X))a(p(X)), this
inequality implies that

(20) 0< — —'/é—b@ <N
b'(x) y a(x)

From (20) and b(0) = 0 it follows that

g

for x < 0.

2Vb(z) <

= IE.
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Thus, by (16), b(x) is bounded. Therefore there is a sequence {z,}
such that z,->— oo, b'(2p)—>0, b(2s) K. Since 0 < a(zs) < 1, we would

have — y2b(2a)/(b'(%a)V a(®a))—>o0, a contradiction. Thus the proof of
Theorem 2 is completed.

5. The system of differential equations

(21) =9y, ¥y =—g@+up
corresponding to a''+ g(x) = up(t), may be considered as a special casec
of (6).

Since the lemma remains valid if (6), (7) are replaced by (21) and the
system

(22) =y, y=-—g@),

the conclusion of Theorem 1 will hold for (21), if (3) will be replaced by
any condition which assures the non-constancy of periods of solutions
of (22). This suggests the following

THEOREM 3 (compare [2], Th. 1). Assume (2) and (3). Let one of the
Jollowing conditions

lim g(z)/r =0, limg(z)z=0,

r—>—00 T—>00
(23) : .
lim G(x)/a? =0, limG(z)/x®2=10
T—>—00 z >0

hold. Then if p (1) i8 periodic with period w, then for |u| sufficiently small (21)
has a periodic solution with period w.

Proof. Let z = =(t, O), y = y(i, C) be the solution of (22) satisfying
2(0,C)=0, y(0, C) = Y20 and let T(C) be the period of this solution.
Put T(C) = T,(C)+Ty(C), where T,(C), To(C) satisfy

"”(Tl(C)’C):Oa y(Tl(O)’G)=_]/2—Cy
o(—TyC), C) =0, y(—Tx0),C)=—y2C.

From (2), (3) and anyone of conditions (23) it follows that one of
the half-periods T'; and T, tends to infinity as C—oco (see 5, pp. 62 and 65).
So T'(C) is unbounded, which completes the proof.

6. The lemma, and hence Theorem 1, 2 and 3, were proved under
the additional assumption of the uniqueness of solutions of (1), (14)
and (21). This assumption is quite immaterial and can be easily
removed.

To see this, notice that (1), (14) or (21) may be approximated by
equations with the property of uniqueness of solutions, for which the
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assertions of theorems are true. By an appropriate passing to the limit,

one can show that the limit equations (1), (14) and (21) satisfy Theorems
1, 2 and 3.

References

[1] M. Bepmreiin, A. Xanauait, Hrdexc ocoboti mouKu & cywjecmeosarue nepuoduwecKux
pewienuil cucmem ¢ masuin napasmempon, JAH CCCP 111 (1956), pp. 923-925.

[2] C. Kulig, Periodic solutions of the differential equation z”'--g(x) = up(t), ZN
TJ, Prace Mat. 10 (1965), pp. 25-31.

- {3] S. Lefschetz, Differential equations: Geometric theory, New York 1957.

[4] J. J. Levin and 8. S. Shatz, Non-linear oscillations of fized period, J. Math.
An. Appl. 7 (1963), pp. 284-288.

[6] Z. Opial, Sur les périodes des solutions de Véquation différentielle z'’-}-g(z) = 0
Ann. Polon. Math. 10 (1961), pp. 49-72.

Re¢u par la Rédaction le 11. 3. 1968



