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On sums of four cubes of polynomials
by

L. J. MorpeLr {Cambridge)

It is well known that all integers » 5 44 (mod 9) ean be expressed
as a sum of four integer cubes, and numerical evidence suggests that
this i8 nlso true for integers = --4 (med 9). A method of trying to prove
this is to find polynomials P, ¢, B, § in » with integer coefficients and
degree < 4, such that '

(1) P QP+ B8 = 9o+ 4.

Schinzel (Y has recently proved the more general result that smch
a representation with polynomials not all eonstant cannot hold for

(2) PP R+ 8 = Le+- M,
where L and M are integer constants and M == 4 (mod 9). Let
P = axt L bttt et - dote

and write (2) 48 say,
(3) Daat+ b2 + e+ do-t-of = 3°La+M, a0,
where here and throughout, summations will refer to the four sets typified
by a, b, ¢, d, e. Suppose a representation is taken where the product of
the leading coefficients of P, Q, R, 8, has its least absolute value. Schinzel’s
proof, which is really -a 3-adic one, is rather complicated gince it requires
the expansion of P in powers of » and so it is not easy to see what underlies
his proof. - :

Te shows that @ ==0 (mod8l), b =0 (mod2T7), ¢ =0 (mod9),
d =: 0 (mod 3). Since obviously > 1, then on replacing » by /3, we
have a representation '

a b 4 e o d g ael
. E e g e e g — — =3 LA
(8 %" - 0‘750-1-‘ m+3m+e) @ - M

with a smaller product for the leading coefficients.

(*) J. London Math. Boc. 43 {1968), pp. 143-145.
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I give & simpler presentation of his method based on 3'-adic ideas
where A =1/4 and 1 /3. A great simplification arizes in the calculation
since if, for example, n is an integer and » =0 (mod 3**), then n =0 (m(4d 3).
The successive stages in the proof are & = 3a,, b = 3b;, ¢ = 3¢, & = 3d,;
then @, = 3a,, b, = 3by; then a, = 3¢5, ¢, == 3¢, and finally b, = 3b,,
Uy = 30.

Both proofs depend upon the obvious results:

Lemma 1. The only integer solution of

2

is given by ¢ == 1 (mod 3) elo.
Lemua 2. The only integer solution of

is given by a =0 (mod 3) de.
Front (3), on equating coefficients of , we have

= 4 (mod 9)

Na* =0 (mod 9), (mod 3)

(4) ‘ 3 )_‘dez = 3L,

and so ¢z 1. Taking residues of (3) mod 3, we have

D@ e+ b0’ + ¢ o'+ da) ;——;—:0(1110(1.3),

and &0 t0 mod 3, since a® =

ZaEO, szo, Zc%:o, Ed- 0.

Since e =1 {mod 3), (4) gives u = 2. We may now take « =2 on
absorbing powers of 3 in L. From (3), it iz obvious that for all integers z,

az'+ ba* + et 4 d = 0 (mod 3).
From ¢ = +1 {mod 3), then to mod 3,

= @, We have

i

a+a:§:(b+d)f:0, ¢c=—qg, {d=—b
Now (3) gives identically in w,
_ 2(a(m"--mﬂ)+b(m3—m)+ e* == 4 (mod 9),
3 (5" —2) (a4 b) + ¢t = 4 (mod 9).

Expanding and noting that 3a = }b = 0 (mod 3), we have
(' —a) {3 ¥ (az-+) }+( ~m)3{2(am—|—b)3} == 0 (mod 9),
3 3 (awe b (2 — ) D (av+b)* =0 (mod 9).
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Ta,Le this a8 a congruence polynomial in & mod 3. Then > (aa-+b)*

(mod 3) identically in 2. Now take residues mod 9 for integers m.
‘%mce = O(mod 3)

Mlas+b) = 0(mod 3).
From # = 0, +1,

"

ZQ“EO, 259‘50._
Since > a® = 0, Lemma 2 gives ¢ = 3a,, etc.

Now (3) beeomes
S (ba®+ er®+- dis + €)® == 4 (mod 9),

Hence J'b% =0 (mod9), and so (b) gives b = 3b,, and then ¢ = 3¢,
d = 3d;. We now write (3) as

D'(8a,0" 4 85,48+ 30,0% + Bdyw+ o) = 9L, a4+ 11,
Replace # by #/3Y*, Then
(6) D+ 31,0 - 8 00 3, e) = 3L 0
MTake this to mod 354,
™ 2/ (ma' o't 330 =4
From the coefficients of #'? in (6) and of &* in (1),
Za? = 0,

and %0 a, = 3a, etc. Now (6) becomes

Then

2@‘;’ = 0 (mod 3%,

- (8) Yot + 8% 0P+ 3 4 o) o) = 3 Ly 4 (mod 9),

or
Z{(B”" b+ 6)* 4 B (84D, 7 o) (3% e, 0" + 334 Ay )+ (B ¢, o)) !
‘. ‘ == 4 (mod 3™*).
From the cocfficient of 2® here and of 2’ in (8) '
Ebi gz ) Zb = ( (mod 38y,

and so by = 3b, ete. Now (8) becomes

(mod 3%,

2(36&293“—}- 35 b’ o 3%, 0 4 34 -0, ) == 3L - M(mod 9).

- With 2 — 2/3"*, this beeomes

E(a2m4+_32/“’b2w3+ ot 3 d w4 e)* = 8L x4 4 (mod 9),



L.J. Mordell

368

or
Z(agw‘*—}— ¢, + ) = 4 (mod 35%).

Since this is an identity in 2, we can put #* = 4 1. Then to mod 3

e, =0, ay=0, .0 =0,
and 80 @, = 38, 6, = 36,. Then (3) becomes
Z(ZTaam“«F 9b,2? + 00,7+ 3d, @+ e) = 9L -+ D1.
Wlbh z — /3%, this becomes
N (8 aat by 3 +31 dyotef = 3P Lo+ M.
Hence _
V(b6 +8(ay0" + 0,0} = 4 (mod 3%).

Then from the coefficients of &°, #°,
'8} = 0 (mod 3*), M8 = 0 (mod 31),

and so b, = 3b, eto.
Now (3) becomes

2(27a3m4+2,7b3m3+ 9¢,2°+ 3d, 6+ ) = 9L w4
Write & — /3%, and so

(e 80b, 27 43 g0+ 3 d w4 0)° = 3 Lo+ M.
Then
Dlaat+ 39 da6) = 4 (mod 3%),

2 (a,z* - ¢)®

Hence from the coefficients of a'® and a®,

Za,g‘ == () (mod 9}, 2‘1?}3 0 (xod 3),

and so @, = 3a,. Hence replacing # by «/3 in (3),

Sles

and

(3%, 1) == 4 (mod 3%4),

4+ $3+ f_f,{_ﬂm-l.g) B 3'1_'1L{.1')—E—M-

This is an integral representation with a smaller produet for the
leading term. This cohtradiction establishes the main result:
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The success of the method depends on the existence of the congruences,
d = — b (mod 3).
I we had tried a polynomial of the fifth degree, say,

P o= 0L bat L on’ L de* -} e+ f,

= —a (mod 3},

we have now

a+c+e=0(mod3), bs+d=0{mods3).
These do not seem helpful, and so the possibility of representatmn by
fifth degree polynomials is suggested (*).

1970. Dr.

(1) Note added Apxil &, J. H. E. Cohn has shown that this is

impossible.
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Reducibility of Iacuhary polynomials 1I
by

A, BomiNzeL (Warszawa)

To the memory of my feachers
Waclow Sierpiishi and Harold Davenport

Thiz paper is based on the results of [6] and the notation of that
paper is retained. In particular |f| is the degree of a polynomial f(») and
Ifll is the sum of squares of the coefficients of f, supposed rational.

The -aim of the paper is to prove the following theorem.

THROREM. For any nonzerc integers A, B, and any polynomial f(x)
with integral coefficients, such that f(0) = 0 and f(1) #+# — A — B, there
ewist infinitely many drreducible polynomials Ax™+ Ba™--f(x) with
m > > |fl. One of them satisfies

m < exp ((31f]+21og|AB|+ T)([Ifi-+ A2+ B2).

COROLLARY. For any polynomial f(z) with integral coefficients there
exist infimitely many irreducible polynomials g{x) with integral coefficients
such that
if f(0) 0,

always.
One of them, go, satisfies |go| < exp{(3|fl+ T)(Ifl+3)).

The example A = 12, B = 0, f() = 3"+ 82°+ 62"+ 92° - 8x* -} 30° +
+ 6245 taken from [4], p. 4, shows that in the theorem above it would
not be enough to agsume A?4- B2 > 0. On the other hand, in the first
agsertion of Corvollary the constant 2 can probably be replaced by 1,
but this was deduced in [5] from & hypothetical property of covering
systems of comgruences. Corollary gives a partial answer to & problem
of Turén (see [5]). The complete answer would require |g,| < max {|f], 1}.

' 2
If—gli< 5

k .
Lumyma L. If X a,Ci = 0, where a,, o, are indegers, then either the sum
LA .

D can be divided into two vanishing summands or for ol =<k
| (a,—a,) expd(k).



