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Thiz paper is based on the results of [6] and the notation of that
paper is retained. In particular |f| is the degree of a polynomial f(») and
Ifll is the sum of squares of the coefficients of f, supposed rational.

The -aim of the paper is to prove the following theorem.

THROREM. For any nonzerc integers A, B, and any polynomial f(x)
with integral coefficients, such that f(0) = 0 and f(1) #+# — A — B, there
ewist infinitely many drreducible polynomials Ax™+ Ba™--f(x) with
m > > |fl. One of them satisfies

m < exp ((31f]+21og|AB|+ T)([Ifi-+ A2+ B2).

COROLLARY. For any polynomial f(z) with integral coefficients there
exist infimitely many irreducible polynomials g{x) with integral coefficients
such that
if f(0) 0,

always.
One of them, go, satisfies |go| < exp{(3|fl+ T)(Ifl+3)).

The example A = 12, B = 0, f() = 3"+ 82°+ 62"+ 92° - 8x* -} 30° +
+ 6245 taken from [4], p. 4, shows that in the theorem above it would
not be enough to agsume A?4- B2 > 0. On the other hand, in the first
agsertion of Corvollary the constant 2 can probably be replaced by 1,
but this was deduced in [5] from & hypothetical property of covering
systems of comgruences. Corollary gives a partial answer to & problem
of Turén (see [5]). The complete answer would require |g,| < max {|f], 1}.

' 2
If—gli< 5

k .
Lumyma L. If X a,Ci = 0, where a,, o, are indegers, then either the sum
LA .

D can be divided into two vanishing summands or for ol =<k
| (a,—a,) expd(k).
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Proof. This is the result of Mann [2] stated in a form more con-
venient for our applications. If }' cannot be divided into two vanishing
summands, the relation > = 0 is in Mann's terminology irreducible.
Then aceording to his Theorem 1 there are distinct primes p, ps; ..., D,
where P, < Po<< ... < P, <k and PP, ... pth roots of unity n, such
that

tr=nt, v=1,...,k

' Hence we geb
o, —a)pips-..ps (Apu<r<h)

and since PP, ... P, expd (k) the lemma follows.

. Lemwma 2. Let A, B, f satisfy the assumptions of the theorem and besides
[f] > 0, f(x) # eda®+yBa" (e = £1, 9 == =1). Then there evists an inte-
ger d such that

L) d < expilf|
and :
(2) . AP BEHf(L) =0
implies 1|d.
Proof. Set

7 = expy(Ifi) expd(If|+3).

By the mequahty #e) < p(@) < 1.042 (see [3], Theorem 12) it follows
that d < exp }|f| for if; p 7 and for |f| <7 the same can be verified

I .
directly. Assume now (2). Setting f(z) = 2 a; " we get

171 '
8 = AC%"‘—{—BC?—I—Z%@}' = 0.
i=0

The sum S can be divided into a certain number > 1 of vanishing sum-
mands for which further such division is irmpossible. If at least one sum-
mand with % terms, say, contains at least two terms from f(¢;), a,%%
and a,87 {g =), say, then by Lerma 1 ll(q—r) expd(k) and rince
g—rlexpy(If), k< If|+3 we get Ud. '

If each summand containg at most one term from f(;), then since
each term is contained in a certain summand the nmmber of terms in

(&) is at most two. Since |f] > 0, f(0) # 0 the number of terms is exactly
two,

f(@) = et a0 and ALt =Bltal =0 (g7

It follows hence a, = ¢4, a, = 5B, s = +-1,9 = +1; f(¥) = edat+ B,
contrary to the assmmption.
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LeMMA 3. If A, B are integers, 0 < |A| < |B|,e = 41,9 == +1 and

3) AL B+ e A+ B = 0,
hen either _

(4) G4l =+yli =0

or

B=204 (0= 41),
(5) W =ell, (B0 el = {4, 83}
or
B=94 (0=41},
(6) 0=l (O, el = {—07, —nbl}.
Proof. Set 4 = (4,B)4,, B = (4,B)B,. By (3)

‘ A (G4 el%) = — By{{] +ndD)

and it follows on talking norms that Bf® divides the norm of [P+ elf.
The latter can be divigible by @{f)th power of a prime only when it iy ¢
or 2"%. Hence we get either (4) or B, = 41 or B, = L2, = &%.

Sinee |A,| < |8,| and (4,, B,) = 1 we gebt besides (4) the two possi-
bilites ‘

B =204 (0= 411), 7o=ell, eLF+00-0nl =0

or - - : .
Be= 04 (0= £1), PH000+elitn0l =0, et 0.

Taking the complex conjugates we get in the former case
ey 100 0l = 0,
in the latter case

G0 e O = O

It follows that the elements of both sets occurring in (5) or (6) have the
same nonzeroe sum and the kame sum of reciprocals, hence the sets coineide.

Lumma 4. Let 4, B, f aaﬁ;sfy the assumptions of the theorem and besides
lA| < |Bl; |f] == 0 or f(2) = eda®tgB2"y e = +1,n = +1. Then there

-ewist integers a, b, d such that
(M ' d<3|f|+3

«md m >0, n >0, m = a,n =bmodd implies

(8) X (Aw’“—|— Ba" (@) = Aa4 Ba* 4 f(a)
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Proof. Assume first that f(o) = sda®+nBx", where gr = 0. Since
f(iy # —A —B it follows

(9) s =1 or ’Jyml.

(8) holds unless for some ! we have (3). Consider separately four
Cases ‘

{10) B#+4, +24,
{11) B=204 (§=+1),
(12) B =4,

(13} B=A.

In cage (10) by Lemma 3 3) implies (4) and by (9) I =0mod 2. We
setd =2,a=¢q+1,b=r+ T I m=amodd we mfer from (4)

A
=1, 1=2mod4, n=r+ 5" _gn mod I, n = r+ # mod 2,
which contradicts n = b mod 4.

In case (11) by Lemma 3, (3) implies (4) or (b). We set d =6,

-1

1
a=g+1,b=r

. By the argument given above, (4) is impossible.

(8 is impossible also since it implies I =0, m =gmod3. If g=r =10
it iz enough to take d == 2, thums (7) holds.

In case (12) by Lemma 3, (3) implies (4) or (6). Since f(1) = — A4 — B
= 0 we have ¢ = —17. In view of symmetry between ¢ and r we assume
r =0 and set

- 1 .
3— 3 -
d—4, a=g—>, b=gq ";s if ¢=1mod2.

_ —e 1
=g+ ——. n=— ‘gm.ocll,

hence it m =amod2, e=1, I=0mod4, n=0mod4 contrary to
% == 6 mod 4. (6) implies ! = 0 mod 2 and eithér m = nmod 2 or

14+¢ 1 1—s¢
| m = 5 -'5, %=q+—§-"--*§n10dl,
hence if » = b mod 2 then either m =bhmod 2 or & = -1, 1= 0 mod 4,

m = 0mod 4 eontrary to m = a mod d.
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In case (13) by Lemma 3, (3) implies (4) or (6). In view of symmetry
between ¢ and r we assume # == 0 and set

d=2, G=0,b=g—l—1 if sm/ﬂ::l,

d=2¢, a=b=1 it e=1,9=—1,
d=2q¢, a=0b=yg+1 i e=—1,9=1
(note that if ¢ = -5 we have g > 0 since f(0) 3= 0).

If ¢ =5 =1, {4) or (6) implies I = 0 mod %, m~» = g mod 2 which
iz incompatible with m = 0,7 = ¢+ 1 mod 2.
If e=1,7= —1 (4) implies I==0mod 2, n =0mod 2 econtrary

s 14
ton = bmod Z; (6) implies == 0 mod 2, m = 0mod 2 orm—n = Emodl,

g = 0mod ! contraxry to m =amod2, m—n = 0modyg (g even).
¥ e= —1,n=1, (4) implies I = 0 mod 2, 1 = ¢mod ! contrary to
m = @ mod 2; (6) implies { == 0 mod 2, nuqmod‘) or m—n = } mod I,
¢ = 0mod ! contrary to # = b mod 2, m—n = 0 mod ¢ (g even).
Agsume now that |f] = 0, f(x) # ¢A-+-yB. Then by Theorem 4
of [4], (8) holds unless

flz) = ed x‘?]B, My+n, = 0mod 3, &M=yl

where my = m[{m,n), n, =n/(m,n). We set d=3, a=0b=1 If
m=a,n=0mod d we have m-+n == 0mod3 and m,+#, = ¢ mod 3.

LummA 5, Let D = {{m,ny: 0<m<d, Osn<dandletly,. ..l
be divisors of d relatively prime in pairs. Set

Dy = {Km,mp: 0<m<l, 0Kn<l} @AKi<h)
and let S(L;) be a subset of D such that _
{14) {mynyel(l), {m',n'deD and {m,n)=(m,n)modl
tmply {m', n'yeS(L).
Then
d""lﬁ’ =1 IS( i) 0 Dyl
e — )
a 'JQ B !;[ a-2|8(y
where |8| i the cardinality of 8.
Proof, Set
L=ty l, Do={m,nd: 0m<dLl™?, 0<n<dl™}.
Choose integers a; such .'tha;t .
@, =1modl;, e =0modLyy' (1<j<k).
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The formula
(e, MY = (Mg, Aoy Lo+ Z {my, nyy aymod d,  (my, n;) el}zj
settles one-t0-one correspondence between D and the cartesian produect
Dyx Dy X ... xDI], in such a way that
myny = {my, ) mod 1.
If y; is the characteristic function of 8(f;) then by (14)

XJ'(m’ "V"’) = x:i(mjf n.’l)'
Hence .
CIS@ =a N glmyn) = a7 3 Y D gyl wy),
{nenyeD Mg Mgreldy
where }. is taken over all <ml, nyy e Dy, and

a*18(,) = a0y H \Dy,| S‘ tilmi; n5) = G18(5) 0 Dyl
t%l,wéa
It follows further
x
a8
Fe=1
X k . Rk
= 4% E‘_ ”xj(m, n) = 4 Zl...zknxj(mj, ;)
(i, nyeld =1 {71L0,?LO)EDO =
= OIHZ 23 (myy ) = L~ H|S : mDn—Hd* 8.
R =] =1

i

LeMyma 6. The following mequalmes hold

o ] P 2'” P
1f 1+ —————| < 1.377, 0.3445
(.l)) ( + pl—pr—2p+ 1) ‘p=3 pP—pr—2p+1 - ’

. .
. p P

16 1 T )< 1460 e P 0175,

{16) H( + ps—p2—3p+1) ) gjﬁa—p“‘MSp—}—l > ]

0 T 2= -
) H(l p{psmp2—~3p+1))>0'3676’

j‘ P2_1 > 0.3804,
L i —p—3p 1)

awhere p TuUns over primes.
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Proof. We have for p =11 and ¢ =2 or 38

¢+ 1 P 1 1 ¢4-32
= + 5+ < — D
PSP gt S T T
hence
P“‘+ 219”3+3 Pt <
; Po1t a% gpa—pz Zp+1
P 3 P
<< log( ------- __,)< ——
I% —p'—=3p+1 Ié:p“’—pﬂ——Serl
-2 - -1
< D D Yo
=1l n=1l1 n=11
Now
oo =] 7
Npt= Ep"ﬂ—— Zp—ﬂ = 0.452247 ... —0.421519 ... = 0.030728+ &,,
p=1l p=2 Jre=D .
0 oo ‘in" : :
2 P = Z Pp0— Y p P == 0174766 ... —0.172952 ... = 0.02810 1 ¢,
D=1l p=2 ]
[+ (&S] 7 .
Dlpmt= Ypi— DTt = 0.076993 ... —0.076862 ... = 0.000131+¢,,

=11 n=2 n=1%

where the values of Y p~" (i =2, 3,4) are taken from the tables [1],

Yl

p. 249 and |e] < 107°. Hence

log ( + P 0.034193 1 8y + 5+ bz, < 0.0342,

8 by '
Z i iy ] > 0033051 etk 8o, > 0.0350.

FIIN Y G

~ On the other hand,

- 19
E log (1 e ) < 0.2806, - .
£ ,.%p—]— . - pP—pi—2p+1
T
¥ r
1og [ 14~ o 0.3442 > 0.3836,
,; 4 i3 +1)< ’ ;;S-‘:P —op+1
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hence _ l
log{1 —ff_—mw)< 0.3198 “ 0.3445
g g( T ’ 12: PPt Bp L )
O_QT P ‘
1 -— | < 0.3784, e~ 04175
2 Og(l'I" 3P+1) p%}; PP—pt—3p+1 > 04175,

which implies (13} and (16).
In order to prove (17) we notice that for p = 11

Tos (1_ (p*—1) ) B IR N |
"V pp—p—3p+1) P (p*—p*—3p-+1) oot gt
p—1 1 1 3
S R R
p{pP—p2—3p+1) 7 p? PO
hence :
2(p*—1) )
lo ( —92 —13 —4
jg/: ¢ p(p*—pi—3p+1) ZP ZP
Hrmll
— —0.068779—2e,— Ze,— 13¢, > — 0.0688,
2N pi— . L
3 i}
Z;:m 3p41 Zp +5p+£ﬁp

= 0.033951 - 2¢,+ 25+ 3¢, > 0.0339.
On _the othef hand,

(pz—l)
10g( - ) > —(.9319
pza —3p+1) ’
T . p2 1 .
— > 0.3465
gp(ps— —apyy
whence '
2(p*—1)
log (1— )> ~1.0007
; PP pre-3p 1) !

S - > 0.3804
p@—p—3pt1 T T

which completes the proof.
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Leveca 7. Let A, B, f satisfy the assumplions of the theorem. Then
there ewist inlegers a, b, d such thal

(18) < 3 exp ilf]
and m > 0,1 >0, m = ¢, n=bmod d implies
(19) bid (Awm—}— Ba"+f(x)) = Aa™+ Bg"f(#)

Proof. In view of syoometry we can assume 0 << [A] < | B[, In virtue
of Lemma 4 we can suppose that 4, B, f satisfy the assumptions of Lemma
2 set d = 2dy, where dy is an integer from that lemma. (18) follows from (1)
and (19) holds unless we have (2) for some [|d,.

Put

D o= {m,n): 0<m<d,0<n<d},
D= {m,my: 0<m <, 0Kn<l},
_ B, = {(m nyeD: AL+ BTHF(G) # 0}
If <a, b)e ﬂ ¥, then m >0, # >0, m =a, n=>bmodd implies (19).
Since f(1) # —A— B we have B, = D. We show that (| ¥ # @ separa-
Ild

tely in each of the cases (10), (L1), (12), (13). In the first two cases we
use the Inequality

| () B >IDI— D IDNE,

1< el
where in virtue of Lemma 5 _
|[DNEY = @173 |(DNE) 0 Dy

In case (10} we have
(DNE) 0 Dyl <71

Indeed, if (m,nd<DN\J,; and {g, r><DN\E; we get

@0 AtT 4 Brp— AU— B, = 0,
hence by Lemma 8 with &= =—1, ('—{=-=0; ny
== (¢, ¥y mod . Therefore,
cl“lﬂﬂ;“L-—~21”2>2 z~2w—2~m~>0
<1|d t=1
Tn cage {11) we have
1 if 1z 0mods,

{DNE) n Dyl < it « 1==0mod6.
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. iom

Indeed, if ¢m, n)eDNE; and {g, >« D\E; we get again (20) and hence
it follows by Lemma 3 that

By =t =0 o =i

{—00777, 007 = {4, &)

{m,nd =g, rpmodl or =0 mod6,

(i, vy = <q—|—l/2 2g—¢—|—7/2> mod, 1.

Therefore,
2 2 37 ., 37
l_' % Zuz = 2-‘"“——7 \" U = % — --T—-?-:m- = .
e 36 Z 36
i<iid I Tl
l=0med 6

In case (12) let § be the least exponent such that f(Z;) = ¢ if such
equality is possible, otherwise 8 = oo, 27 = 0. In the for1ne1 case 2714,
gince A (" W0 —C25)+f( 2ﬁ) = 0. Set '

B = {(m, n)eD: m = n mod I}

~and

, (BNE if 1=2 orl is‘ an odd prime,
BT E, 0 E' otherwise.
If 7 has an odd prime factor p then
By 0 BN\E;, < B 0 E, < B{\E, = 06.
If I = 2%, where a < # then by t]ie choice of g
ENE, c B/\B, =0.
If 1 =2 where uz= f then.
B nHpNE,c B 0By c BYNB) = 0.

Hence ME; = M E; and it remains to estimate [ﬂ] With this

‘ U na oo
end we note that

0 it 1

(21) ' (DNENE) n Dy <it it 1=
. (2, 1) otherwige.

Indeed, if (m,n)e DNENE,, <q, 1> eD\E,\Ef' we have
(22) AP

1
[
o

i
Lo

W+fll) =4 (¢{— ElH-f(C;) =0; mzmn, ¢ rmodl,
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thus (20) holds with B = — A, "7 = 0. Hence in virtne of Lemma 3
E:in:i:g; C?=C; or C;nm“a;9 C?:'—C?

cand

{m, n> == {q,r> modl or I =0med2,

ey my = r-+112, g4+-1/2> mod 1.
This gives (21) for 1 2% 2. If 1 =2" then (22) is impossible, thus
g BB = @. Finally, if 1 =2 (22) implies ¢ == #-1 tod 2, thus (23)
is satisfied by only one residue class <m, n> mod 2.
We have further

(23)

B, n Dy =1.
In virtne of Lemma 5 it follows from (21),.(24) and the definition of F,
that
7'+7* i 1 is an odd prime,
a it ] 28,
47t it 1=2 #2f
_ (2,017 otherwise.
Set ord, d = 0,. We get

A D\E;| <

2= +221—2‘*=3 it p=1,

02 =
@ Y |D\Tgl < w
a= 4—1+2ﬁ+.221—2a — %+2—ﬁ~21—2ﬂ<§ i ﬁ>1;
n;ﬁ :
Qg
ey = d- |m Bz 1—d* Y |DNBl >} = o,
=]
o ’
oy = d~ Dy 3 1= d7 3 | DNFja| > 1—p~* Z p*
ezl ,,,,,1 =232
PP pr2p -1
U AT S - == g {p > 2).
p(p*—1) ?

On the other hand,
mﬁ m]ﬂlu\u (D\E)ﬂmﬂp,

e pd i

ptl
N ) = nE’ = D [DNE) 0 () B,y
i :pﬂ

:m“
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where {J, and }}| ave taken over all divisors ! of d except the prime -
1

powWers.
The families of sets {S(p™) e V{8 (1)} and {S(p ?’)};aﬁ; where 8(p°»)

= ﬂ].'}jg , §(1) = D\E;, satisfy the agsumptions of Lemma 3, hence

JlmEl He HZ d-* 1D\L‘z\ne}, Hep( Z (1,2)r* —1)
»

old MI
>”3'-" (l—— II 2)1)‘2“0;,‘1).
nd =2 yﬂ>1 .
The function (I, 2)I72[{¢;* is multiplicative. Therefore
P2
o = Ej—j 122
Swar[la =[]+ Yo o)
=2 :pzz q==

_ 3“(1+e-1 N SH( _mép_ﬁ) 1,
Z(pu . p —1_221_&02_1_1_2 Zp.mu —1 Zz_i_zm‘}_?_s_:}jgiigp_i_l.

291 Pe=3 aex] D=3

In virtue of Lemma 6 we have

=)

P
4 — e > (L2
3H(1+ 9p+1) +p_3 pipBptl

hence
2}m13|>02d2ne > 0

pld

and the proof in case (12) is complete.
In case (13) let § be the least positive exponent such that f({) # 0.

Since
afi—2

: BeTr -+ L0e -1 f(lw—) = 0
we have 2°7%|d,, hence by the choice of d, 2%|d. We et
B = {¢m, n>eD: m = n mod 1},
B it 1=2%a<§,
B {KmynyeD: m—n =2 mod 27 it T =27,
ENE; it 1is an odd prime,
B U B otherwise.
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If 7 has an odd prime factor p then
B, nEBN\E c B B, c B\E, =@.
It 1= 2% 0< a< f, {(mndeB; then by the choice of g

BP A0 i a<f,

E?“‘-l“‘ "u;_!_
T = iy #0 it a=4,

thus Ez\,E] = ﬂ.
It 1=2"a>f then
Hy N B \B, c B nByp e Hp By = 0.
Hence
NE = NE

id la

and 113 remaing to estimate m Iﬂll Wlth this end we note that
id

(24) (DNENE) n Dy <2
Tndeed, if (m, nde DN, <g, r>e DNENE; we have

AT -J) = A+ IN+fL) =0; m#An, g=rmodl,

- thus (20) holds with 4 = B, {J'--{} % 0. Hence in virtue of Lemma 3

p=t, d=4 o B=0, 0=04
and
{(25) _ e, ny == {g,ry or <r,q> modl.
We have further
(26) B Dy =1, |Bap 0 Dyl == 28,

In virtue of Lemma 5 if followq from (24), (26) and the definition .
of By that

Yp-d if 1 composite =£2° {u< B
(%7) 2N = , o ’
v l—-] 9% it 1 prime > 2.
On the other hand, sinee Jy < Ep (o < p)

() el = & | Hpp| = 27",

L)
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Set ord,d = o,. We get
02 02
b =AY () By = @7 Bl — & > |D\Fil
a=l a=fd1
- 2_.;1__ 21—2(: — 2-”_%.21‘2/] = Cy,
azzﬁ:-iul
ap Op , it
e, = d—ii N E;u = 1l—d? Z [DNBpe| 2> 1—p™t— pie
a=1 a=1 u==2
pP—pi—3p+1 |
=== "———"'_'_“"2—"—“'_ == c:p.
»(p*—1)

It 1 =2%%,a>0,1, odd > 1 then
(28) A (DNE;) N Byg| < 2mexlraip-2,

For 3> f the inequality follows at once from (27). In order to show it
for a < i suppose that {g,+> eD\FE; and set

Eﬂ,zl = {{m,nyeD: {m,n) # g, 7>, {r, g mod i},
Ejge = {{m, nyeD: {myn) s (g, 1>, <r, ¢> mod 2},
Since ¢m,n)<D\E; implies (25) we have

DNH; = (DNEy ;) 0 (DNEysa).
The sets .
8(L) = D\Eyy,

8(2%) = (DN\E},0) N Bap

satisty the assﬁmptions of LLemma 5, hence

()] = 428 (L) N Dyl < 24,
o if == rmod 2%
SR = 2 P88 A Dy =] e ’
g-e=f if ¢ = rmod 2%,
&(DNE) o B} < d~*1S () A 520 = a8 ()] d~* 8291,

which implies (27).
" " Now we have

NE = NEpen ﬂE,,Q,\ U (DNED 0 M B U (DNE) N Bgp 0 () Bye
T nd % 2p|d T opYd ) n%d
ntt il
(20) @ HN Bz d AN Epn m Ezp{—z A(DNEY) O () By —
lid bl p¥d
ptl -
_\“* dH(DNEDY N Eae 0 (Y By,
p+lﬂl
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where U, and 3 are taken over all !|d such that I = 1mod 2,71, p*,
U, and Zq are taLen over al I|d such that = 0 mod 2 2,1 #219 (pis a
prlme) Z “and 2 are estimated easily. Indeed, the family of sets
8} v {8(E"pgpr,  Where (1) =

' OT‘
DBy, 8(p%) = (M Bya
a=]

satisfies for each 7 the assumptions of Lemma 5. Hence by (27

Y’d D\Eflr]ey,ﬂ’l_]e},yzl e HepZ’zz—Hc—l

s»lnl Pl plt i Bl
<[l S5 Surva)
: nd nil Tt
Iodd nodd :

The function I-* ]l; ] e;' is multiplicative and in the set of odd numbers
2

there is the uniqueness of factorization, thus

(30) Mz [ ot = 2H 1+ Zp-m
fodt o
=2 H( 3p+1) .
-2a,-l ~20,-1 _ 3
3%219 zggp 201 12 3p+1

We get by Lemma 6
(31) Iy < [ [ op(21.46—2—2:0.4175) = 0.085 [ ] e

~
Pl Did

Similarly, the family of sets

{8 (20 E-0O9) O (8 (0" i, prats
0
where §(2UWa0y) e (DNE) N By, S(p°r) = () Bje, satisfiesfor each
. a=1 .
I'= 24,1, odd, the assumptions of Lemma 5. Hence by (28)

zﬂ = Z a 2] DN ""l n EﬂIIYBP ”6112 21”11‘“('8*“ o)l_ n

D) pid

2t Pl
. 00
< H e,,( 2 Z QL-maK(i- g, ﬂ}wzar nc—-l 2 ﬂp—z —1)
:nlr[ Ty==8 teal nliy : 2?-“'3 .

Pl Iyodd
Acta Arithmetica XVI 4 b
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Now
e 2 -
Zﬂl;max(ﬂ”a’m'z“ = 221‘{“"-{— 2 920 o gl=d__gl=2f | 10128
a=1 u=] a=pg+1
== 20y L 2y

On the other hand, by (30) and Lemma 6

2 [ e = B} m B B 1A 2 e 0,92
2‘” [l ”(+ 3p+1) S A AlmE =0,

e BEGE
~2g-1 0.3804.
2 2 P T
n=3 N=
Hence
B2 Z<[]e (092 9 f g Zp‘2051)< [] e (0.92-~277¢;10.38),
pld . p=3 pld

It remaing to estimate | (} B, N ﬂ B,,|. Here we distinguish two cases
f=1and f>1. If 8 ;J"{z we pui’:]d
E;, = {{¢m,ndeD: {m, ﬁ) = <0, 1> mod 2},
I = {(m, nyeD: (iny my = (1,05 mod 2},
50 that ' ‘
{33) EBEVE =F,, EnE=0,

I \Em =0 we put further H;,,= Hj,, =D (p prime = 3). If
ENE,, O leb (g, > cENE,,. Then also <7, 9> el N\H,, and in view
of symmetry we niay assume <g, +>eE;. We set

Bipp = {{m,n>eD: {myny & g, rs mod p},
21,1, == { ﬂ)eD {m,nd &L, g modp}
Since {m, n) eD\D:,_p implies (25) with | = 2p, we have
_ R 'E’nE;meq N B, UEE A B,
(34) m E,0 N By = ﬂ B1(p°r) U () Ba(p),
R Md 2pld wld
where ’

. . : 02 ,
8N =B A B, 80 = (4 B, n B,
g=]

a=]1
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The family of sets {8,(p")},, satisfies for 7 = 1,2 the assumptions of
Lemma 5, and by (38) the two swmmands in (34) are disjoint, hence

“1 m 'D S0 N En == (l S O - J o
OV 0 () Byl = !;[ | P)H—ﬂ i 8, ()
However, by (33)

27|+ 18(2%9)] = 18,(2°) U 8,(2%)] = 11, ﬁ Bl = ey,
a=1

a8, (p")] = 4| m B |- “|D\B

ppl

== 0, —p (D\E.‘E)m) N Dyl = e,—p.

Henee

@) B 0 ) B0 (180200 |+ 8,(2°0) [ ] (- p7%)

Bl 2p|d fJid

__,” ] [I 1-—19 >”31;> n P76

el a3 M p=

=] ”(1_21’ "6 +3705 ""”05105'1)>Hep(1014— 217_2 ‘1).

DI Did

It follows from (29), (31) and (32) that

a2 N Ej “"H@I,(O.G()Qezm‘pf —|—2“ﬁ3_12p“2 Al)>o 009 [ [e,>0.

{d pld DB bl

If =1, we put .
B = {{m, n)eD: (m,n) = <0, 0> mod 2},

By == {CmyndeD: {mymd =<1, 1> mod 2}
50 that agaun (33) holds.
If p>2 is o prime, By, # D and (q, ryeD\E,, we get

By, = {<my, adyeD: lny ny-st (g, 1>, &, ¢ mod p}

and we asgign p into class Py, P, or P, according to whether.{q, v} {%,,

{g, 1yl or (q,1><HE, Jehpevhvely

Since (m, nyel)\H,, implies (25) with ! = 2p, the vesidue classes

of {g, >, <r, ¢> mod Zp are determined uniquely up to a permutation and

sets By, ,, Py, P, ave well defined. We have
BuBng,,

}’Jz -’21) = -E:E W Eﬂ N Ezp,p i pekb,y,

it pePy,

B otherwise.
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Hencs .
B n QEMD_E2 s ﬂ By VB3 O QEW,
2pld
998?1 ;sz
and
{35) QE ﬂﬂﬂzpwﬂ&(ﬁ'puﬂﬁ’z ),
 pma P o n)d
where
0g ,
8;(2%) = B n () B,
aml
an N ﬂ E if  peP,,
o=l
8i(p°r) = .
mEu it péP,p > 2.

a1
The family of sets {S,-, p% }pig Satisfies for ¢ = 1, % the assumptions of
Lemma 5 and by (33) the two summands in (35) are disjoinf. Hence -
| QdE nn Bl =[] 1801+ []18:(p°0)!
i DI ol

On the other hand,

8,(2°9) = (VBN

a==1

(D\E) n B,
T 18,{(2°0)) 2 e a7 (DNER) 0 Byl
~ 27 |(DNH}) N By 0Dyl = e,— 27",
’ 03 . .
CA7HSL (204 a7 8(2%)] = d77|8.(2%2) U 8,(2%)] = A7 ) Biy| = ea,
' a=i

whence

d-%18,(2°)] = _‘;3(1»}; (—1fc)  where |e|< 2Pyt~
Further, for p > 2

-l D?’ 1 — : +
d’zlﬁi(p"f)l > d Ql B |~d * 1D\ Ty, |

o= ty— 9 |(D\Eyy,) N Dy| ==0,—2p7F  if  pePy,

A |8(p)| =6, it p¢P,.

icm
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Hence
(36) oy Jz,,]>nep ((3—he) T+ (+1e) ITy)
Dl
> [ [ el It} Ho—3@ 6 — 1)L, — T,
»1d
where
= [ [[pe 202
:Z]Ez“.'; ps_EJ p(pa_p2m3p+ 1)

It follows from Lemma 6 that

I I, = 1 (
== lf

and since 1—2:37° ‘Im{g<}/0

(192-1)
—3p+1)

) w= O > 0.3676

$HL—OILY 2 3 (70 —5),

%ﬂl-l“%ﬂz.;? YU A0 = '/G+i(n1"0ﬂfl)z,>f%(17—50+115)> 0.627,
[T~ T, < 1— 0 < 0.632.
It follows from (29}, (31), (32) and (3

a7 O B =[] e, (0.627— (2%

6) that
—1) 0.316 —1.005+ 2~ ¢; - 0.38)

ld P
= [ (00024 (27,1~ 1)0.064) > 0.002 [ [ ¢, > 0
vid _ P

and the proof is complete.

Levma 8. If A4 -+ B then each rational factor of Aa®+ B is of degree
at least ¢ AB[™,

Proof. Bach zero of Ax*+ 1 has absolute value |BA™'M°. Hence
any monic factor of d#"4- B of degree y has constant term with absolute
value |BA™4" If this term is rational we have in the notation in Lem-
ma 1 of [6]

e(BA77, Q) = yo(BA™, §).

However, since cither BA™' or B~'A is not an integer we get by that
lemma :

log (4% B%)
B4, Q)< =T < 4B,

o(B4 Q)me( 2103

y = ol4dBi™
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rProof of Theorem. Let @, b, d be integers from Tomma 7 and set
(37) ¢ = a—b-+dld™ (0—d+|fI"14B)],
(38) €= b+d+-a[—bd'+d tlog(||fl+ A?+132)120(402 4 gyt BE
where as in [6]

, [f* = Vmax {|f]?, 2}+2.
It follows

(39) ¢ > |f|*|AB| 2= max(|f], 2) 4B

(40) ¢ > 120 (463 8)/+Plog |||+ A%+ BY > |f].
We note that

(41) (42 B)(A+ Ba) = 2"f(a)f(27Y),

(42) (K (4a°+ B), Bf (@) = (L(4a°-- B), If (v)) =

{41) follows from (39) by comparison of degrees of both zides, (42) is
obvious if A = +B. If A %= + B any rational factor of 42°4B iz by
Lemma 8 and (39) of degree greater than |f|, which implies (42). Agsume
now ;

(43). , n=dit+e (13=0)
and set in Temmata 12 and 13 of [6].
Pla, m) = (Aoy+ Bywy +fm), ng =0, 0y, = 1.

The assumption of Lemma 13 is satistied since by (41), (42)

Floy,w) [ Ad+B  fia)
KF (w0, 2s) ( E(A# 1B Ef(w ) (4a"-+ B, f())
| :( Ae°+B  f(@) ) F(wy, #g)
L(dsr -1 B) If(w LP(m,, 2,)

In view of (39) .
B =e>2;  |F*=V42,  ||F| = A4 B

In view of (40) and (43) the numbers n,, #, do not satisty any relation
Yifi-t Yoty = 0 with

0 < max{lyal, ]} < 120(2 " log| ).

Therefore, by Lemma 12 of [6] there is an mtegml matrix M == [py;]
of degree 2 such that

(44) o 0 oy < iy, 0= A”'.lz_ < fizzy
(45) BN CIRAR N CREN L
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and
(46) ((Afﬂzn_{ B)y"ll'z/"°l+f(r/""")) " const HF (Y1 ¥a)'e
implies

5
L{da"**~ Ba"+f (#)) = const H LF (1, oz,

q=z]

- where polynermialy LF (s, 5™) (¢ < 5) are either irreducible or constant.

Now by (44) and (él 6) pge == 1 and the left hand side of (46) becomes
L{(Ays 4 B) g g2+ (9.) »)) which itself is not vedueible.
Indeed, since ¢ > {f| and Ay;+4- B has no multiple factors

LD
#21 (Ay; -+ B)
is not a power in the field @ (y,) and by Capelli’s theorem

J(y)
mpg o JE
Yt Y42 (Ayy-+ B)

i irreducible in this field. It follows that

(A Byyimyin--f(y,)
(Aya+ B)yy=, f(yo)

i8 imeducible. Sinee by (42) and f(0) =0

(L(Ayi+ B)yin, If(y,) = 1,

we have on the right hand side of (46) ¢ = 0 or 8 = ¢, = 1. We infer
that L(Az"""+ Bz f(#)) is not reducible. By Lemma 13 of [6] we have

L{Aa"""+ B+ f(2)) = K (Am““—{—Bw“—]—f (z}).
Finally by (37), (38) and (43) n+t-c = a,n = bmod d and by Lemma T
' KA Ba* - f () == Aa™**+ Ba® - f(w),

thog Aa” - Ba™ -+ f () i¢ irreducible for any m = n4-¢,n = di-+¢ (1 2= 0}
By (40} we have » > |f|. On the other hand, by (18) and (37)

A1 LAB| - d <5 |fIY |AB|--Bexp §|f] < Sexp(|f|+log [4B])
and for ¢ == 0 we get by (18) and (38)
M= o650 0o b Log (||f] 4 A% - BY) 120 (46 -+ B WIT-£+ 5
< Bexp (171 log |AB|)+ 614 (108 exp (5 ]+ 2log | A B 144+
< exp((5 |f]-+21og | AB|+ T) (If]|+ A* -+ BY)).

The proof iy complete.
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Proof of Corollary. If f(0) # 0 we set g() = Ax"+ Ba™+ f(x)
and apply Theorem with 4 = B =1 if f(1) # —2, with 4 = — B =
Af f{1) = —2.

The inequality for ig,| follows,

If f(0) = 0 we set g(z) = Aa™+ Ba"™ 4 f(a)+ 1 and apply 'l‘heorem
with 4 =B =1 if f(1) # —3, with 4 = —B = 1 if f(1) =

-If f(x) # 0 we have |f( 50)-4-]\ = [fl, If (@) + 1| = f+1, which unphes
the inequality for |g,. If f(z) = 0, |f] = —co we seb g (2) = a.
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On a generalization of a theeorem of Borel
by

SANDRA MONTEFERRANTE (Oakdale, N. Y.)
and P, Szisz (Stony Brook, N. Y.

1. Let = be a real number bebtween 0 and 1. A classmal theorem of
Borel asserts that il we put

= 2 & (7)

i=1

“F (e =0 or 1)

Lo

then we have for alnost all »
1 7
2, g (v) ~ T
Rowsd = ’

An analogous result holds, of course, for expansions with respect to an
arbitrary basis, for instance, for decimal expangions.

Now let a he. an irrational number with the regular continued fraetmn
expansion

(1.1) . a={0; @, tby, ...}
and put
: ' (_]_)n
(12) D o= e i e Bna_-An!

" L-n.ll"Bn, i ]")n 1

where 4, /B, are the convergents of ¢ and &, = {a,; a1, ...}.
It is well known [3] that each = with D, < » < 1— D, can be repre-
sented in the form

0y

(1.3) Z T2 (1) Dy

&

“where Uy (7) < @y, 0 < Oy (7) € @py 800 Oy (1) = @y = Cie(3) = 0, We

have nnigqueness if in addition we do not allow C; yo = a,c 12 TOT gome k.

and 4 =1,2, ...



