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L. Introduction. In part I of this paper [4] there appeared various
numbers, which, it was asserted, could be effectively determined, but
which in fact were not explicitly calenlated. The purpose of the present
paper is to derive appropriate values for these numbers, and thereby to
obtain expliciti statements of the principal results of [4]. As in (4], f(z, )
will signify a binary form with integer coefficients and degree = > 3,
irreducible over the rationals, and m will gignity a non-zero integer. By
Pry .-y Py we ghall denote a set of = 0 prime numbers, and vwe shall -
usem to denote the largest integer, comprised solely of powers of p,, ..., p,,
which divides m. We denote by § any number not less than the maximum
of the absolute values of the coefficients of f(z, ¥), and we suppose that
& = 2. We write P for the maximum of p,, ..., p,; if no primes p,, ..., 9,
are specified, we take J2 = 2. Finally, we signify by » any number satis-
fying 2 > n(s-+-1)-+1. Then we shall establish the following explicit
form of Theoren. 1 of [4].

TusorREM 1. Al solutions of the equation f(x,y) = m in inlegers
&, y, with (2,4, py ... po) = 1, satisfy '

max(lxl, |yl < exp {3"21326”'6” ’{gi"s"—{-(log(}mUm))”},
where v = 645 (34 1) [(x—n(s+1)—1).

It will be observed that when ¢ = 0, that is when no primes p,, ..., p;
are specified, Theorem 1 reduces to a slightly weaker form of the main

result; of Baker’s paper [2]. On the other hand, if m is comprised solely

of powers of p,, ..., p, 50 that |m|/m =1, then Theorem 1 implies thab
all solutions of the equation f(x, ¥) == m in integers @, y with (=, ¥, p; ... 7;)
= 1, satisty

1y max(jw], ly]) < exp{2’ P .

The interest of this result lies in the fact that the number on the right
does not depend on the exponents to which p,, ..., p, divide m. In partic-
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ular, it can be used to give the following explicit lower bound for the

" greatest prime factor of f(=, ¥).
THEOREM 2. If @, y are integers with (v, y) = 1, then the greatest prime
fuotor of flx, y) exceeds
loglog X \*
(Tﬁ?}_“logﬁ) ’
where X = max (el lyD).
Theorem 2 is the first quantitative formulation of Mahler's theorem
[3] asserting that the greatest prime factor of f(x,y) tends to infinity
with max (|2}, [y)). In order to deduce Theorem 2 from (1), we lot P be
either 1 or the greatest prime factor of f{z, ¥), according as [f(z, ¥)| =1
or [f(z, ¥)| > 1, and we let p,, ..., p, be the primes not exceeding P,
We apply (1) with s == 2n(s+ 1}+-2; then P < 26, s+ 1 <X 2P, v < 10" 0 P2,
and so0 ‘
X = max(|al, ly|) < exp {2103n4ﬂ54 (2513)25.104.;‘31{2 %2-10437.511#}
< expexp{P*(10n)’log §},

which Is equivalent to the assertion of Theorem 2.

The main part of this paper involves the detailed estimation of the
various unspecified constanty appearing in the proof of Theorem 1 of
[4]. It will be assumed that the reader iz familiar with the work of [4],
and only a minimal amount of the discussion of that paper will be repeated
here. We also assume that the reader is familiar with § 4 of [2].” Finally,
certain. auxiliary results will be required concerning the S-units of an

algebraic number field, and § II is devoted to an account of their deri-
vation.

In conclusion, I wish to express my thanks to D1 Baker for his
advice on this work. -

II. S-umits of algebraic number flelds. The purpose of this section
is to construct &- unity of an algebraic number field with the properties
required in § V of [4].

The construction of these wumits 'Wl]l be based upon the following
generalization of Minkowski’s linear form theorem, due to Mahler [6].
Let @ be the field of rational numbers, let gy, ..., p, be s prime numbers,

and let ¢, be the completion of § with respect to the valuation [ g
defined by Pi-

Limvwa 1. Let Ly (z Za,mmk (L<h<<n) be n Unear forms in

n mz}’mo'wns wmth real coeffwzems cmd non-venishing determinomt d, and

let Ly, (x) Z U, (L <18, 1< h<my) be fimitely many linear forms
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in the same wnknowns wilh integral pr adw coefficients. T f i A<h<gn)
are posilive real numbers, and f, 1<i<s,1<h< N} NON- 'n-ega:tfi'ug
integers such that

5w

) (H a([T]] 2> ai,

=1 Jpms

then there emist rational integers ®,, ..., x,, not all 0, satisfying
(3) Mp(a)l <<y (L<hsin), |Lyla)l, <pr'™ (1<i<s, L<h<n).

Proof. By hy‘pohhwm, the a,. are pradie mtegers, and hence there
exist rational integers ag, such that | — thi‘cip < prlin, Hence, in order
to establish the assertion of the lemma, it suffices to prove that there
exist integers », ..., #,, not all 0, satisfying

1) |Lu@)<h L<hsn),  |Lal),<pi'™ 1<i<s, 1<h<ny,

Where Ly, () == Z Gim®. We introduce new unknowns X, (L<i< 8,

< h < ny), and new linear forms Liy(e, X) = Ly @)+ plin X,,. Then
it is clear that (4) will be valid if we can prove t;ha.t there exist integers
@y Xy, not all 0, satisfying

I @) < hy (Lhsn),  g(e, D)<l (1<i<s,1<h<ny).

Note that, for such integers x,, X, not all of &,,...,z, can be 0. To
prove the existence of integers @,, X, satisfying this last inequality,

we observe that the linear forms Ly, (#), Ly, (v, X) have real coefficients
8 ng

. and. determinant equal to d [] n P, and so, by virtue of (2), the assertion

$=1 fyo=
follows from Minlkowski’s llnear I01n1 theorem (cf, [3]). This completes

the proof of Lemmsa 1. .
Let o {lenotc an algebraic integer of degree n > 3, andlet ¢ (1 < j < n)

- denote the conjugates of a, arranged so that o, ..., ™ are real, and

a1, L at ave the complex conjugates of oPotY .. o™ respectively.

Let & be the algebraic nwmber field obtained by adjoining « to ¢, and
let 0¥ he the conjugate of an element  of & corregponding to the con-
jugate o) of uw, By | Iy, (1 v) we signify the vsuluations of &
extendma the ordinavy absolute va]ue of ¢, and by | gy (L8,

1< je ) the valuations of & extending the valnations.| |, p (L £ <3 8)

-Of Q. Wo c'[ennm the set of valuations | |y, (0 <i<{s,1<J <) by &,

and let g == 2, »,; be the number of elerents of . We recall that an S-unit
B )
is, by de.’cmmon, an. element of & whose valuation is equal to 1 for all

va:luatlom of & not in 8. In the following, We sha,ll prove that for each

- Acia Arlthmetica XV 4 . 8
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vajuation | |y, D S, except | |g}0;u, there exists an S-unit %, satisfying
the inequalities .

(3) © o flogln Iwy S tlogD  for all Ry = Ry,
6) (0— 1)1 og D < log el << ¢! D2 log (DP),

where P is the maximum of 2 and p,, ..., p,, and D is any nuamber not

less than the diseriminant of o, that is i[;j el — 0|2,
1T

‘Now let A, {(L<j<v—1) be arbitrary positive numbers, and
F A<i<sy i) arbitrary non-negative integers. Then, if my
denotes the degree of the completion oi £ at | 1%; over the corresponding
completion of @, we puti

1,‘9&0,,0
o fi [l f]
i =4 11 !
P

so that

(7) : (n}'in))( 8 ﬁp;—nigm) — Dl,'z'.
i=k =1

We first establish the existence of an algebraic integer 0 in K satisfying
DR 0y, <4 (LS <m),

8 . .
® ppliDT (B, PP (LSis, 1<),

"To prove this, wé let 0 = ﬁmka’““l, where x,, ..., %, are unknown integers.
We define » linear formsk?m-(w) (1< j< n) with real coefficients by
| Ly(e) = 80 {1<j<0), |
Ly (@) = #69  (x-1<j<ry), Iyl =200 (4-1<i<n),
where #60, J‘.B(f’- denote the real and imajgmé;ry part: of 6. TFurther,

‘ v _
for each suffix i we have n = 3 1y, and so we can define » linear forms
- . (et

Ly (2 y o (LK< vy, Lk ng),
1==1

with integral pi-adic coefficients, where the «;, are given by

nif

-1 :
a = 2 Ayt Wiy

. k=1

-
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Where gy ...y Wy, denote an integral basiy (cf. [8], p.104) of the

completion of R ab |, i over p,- We now apply Lemma 1 to these Linear
forms, and eonclude that there exist integers @, ..., s,, not all 0, such
that

M@ <% (1<i<),
Do)l < AVZ (1<), (Dylo) < A WeelV2 (1< < m),
g (.’1’})!1,5 < P ki (l<igs, 1<) v Lk <oy,

This ig valid, since by (7) the product of the numbers appearing ag upper
bounds in these inequalities is equal to DY22-%1="  ang this is greater
than or equal to the absolute value of the detemmnant of the # real
linear forms. We conclude that, for this choice of L1y eey B,y We have
|0l < A (L J <0 wg) and

'H.;j
7 a4 - +
|Glae,, = _}_J L. () 23 Lﬁﬁ = 111;["33 L@y, <p77% (1<i<8,1< <),
k=) it

go that 0 satiglies the upper bounds required by (8). But, as ¢ is » non-

zero algebraic integer,
a3 i
[[T ]y =1

Yl fe=)

whencsq these upper bounds, together with (7), clearly imply the lower
estimates given in (8). This complefes the proof of the existence of an
algebraic integer 0 zatisfying (8).
We now establish the existence of the S-units #;,, by making appro-
priate choices for the J; and the f;. Mirst assume that & = 0, and define
A=1 (Lssjeog—1,f k), A= Dlabn

where I denotes any positive integer. Let 9, be the algebmic integer
satisfying (8) with this choice of parameters. Since by (8)

r[].[“%:;] i DV,

it is clear that among the numbers Oy, with 1 < b [DMP1FR4 1, there
is at least one pair :

L kg
N LT . LERE = |
by = _}J wje ™ Oy = 2 e

Jel F=1
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‘with 7 = 1", and at least one positive integer N, such thab

”” |G 5 == ”H | B ;mz? =N,

=0 j= t=p f=
and @) = 2; (mod ¥) (L<j<n). We then define ny, == B[Oy Thus

¥q

(%) ]%kh&” =1,
=l

3

?

o]
=

and as

%

8 4 '
F ” IO{,M,,{;ﬁg = |Norm8y»| n INorm Oy |y, = N,
1=l

T=0 fa=el
it is plain that & /8y, has valuation at most 1 for every valuation of &
not in 8. Since (Oye— o)/ N is an algebraic integer, it follows that
N . (Bﬂkl"_oﬂkl”)
60]::1” N

o, = 1+

also has valuation at most 1 for every valuation of & not in 8. Hence,

by virtue of (9) and the produet formula for the valuations of & (cf. [8],
p. 158), we conclude that 7, is an S-unit, The estimate (5) is an imme«
diate congequence of (8), and the estimate (6) also follows {rom (8) by

noting that loginewln, is not less than

(ie— 1+ 1) —v)— 3} logD = (p—1)! log D,
and czmnot exceed
Ho—1-+3)(F —1" +%] log D < p! DY 10g(2D).

Thig completes the proof of the existence of the S-unit %y
We next suppose that h >> 0, and define

' log D
1), fhk = [logp;
. L

with f; = 0 otherwise. Let 6, Dbe the algebraic integer satisfying (8)
with thiz choice of para.meters Since by (8)

”” whkll'ﬂ” <D v

07=1

=1 (1<~

le—1)1+ 1)+1]

it is clear that among the numbers 6, with 1 <1< [D**]"* -1, there

in ab least one. pair O, O with ' >17, and at leagt one positive .

mteger N, such th&t

” n Wh.m'ﬁn” = H H lﬁhkr'ﬂﬁ = N,

=0 f=1 i=0 j=1
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and @ =& (mod N) (1< j<m). We then define Nt = O | Bz «
A snmlar amgumenb to that given in the case b = 0 shows that pp I8 AN
S-unit, and thus it only remains to establish (5) and (6). The inequality

(5) follows from (8), and it is also plain from (8) that log|mals,, i not
less than. '

(e 1)) ('~ 1)~ 4 Jog D = (o—~1)! log D,
and cannot exceed

{{le—DH2)(F'—=1") -4} log D+ (' —1") log P < p! D*21ag (DP).
This completes the proof of the existence of the S-units .

II. On the logarithms of algebraic numbers, By arguments analogous

to those employed in [2], we deduce eagily that a suitable value for the
number ¢ appearing in Theorem 4 of [4] is given by

(10) O = 8 max {(ug)*, 2" ns~ 0" log(dB)},
where '

(11) Be=max{d,p, Ay, .0, 4,1}, 5 = Sus{nt nd-1)(n—n—1),

and where also it has been assumed that & <C 1. This iy the same a3 the
value for ¢ obtained in [2], except that the term A’ oecemrring in the
definition of ¢ in [2] has been replaced by p (). This latter term arises
from the need to satisfy the inequality [£|, < p~* (see § IV), and also the

", . "_ﬁ"ﬂ By )3V ) .

inequality ¢ * < p~C~H¥FH) gecurring in the proof of Lemma 5 of [4].
The arguments confirming that H is sufficiently large for the vali-

dity of Lemmag 1 to 7 of [4], if the above value is taken for 0, are slightly

simpler than the corresponding arguments of [2], and so we omit them.

~However, it may be useful to record the following points. The values of

the various constants appearing in Lemmas 1 to 7 can be assigned as
follows:

¢, = 9B, e = (3B)", ¢ = (dB3Y, ¢ = (dB)™,
o = 2BV, o = (AB)™, o = (dBy™, = 4ndlog (dB),
6y = 427, 0, = A/2%Y, o, = (dB)™,

Again we have

e = 2% dlogey,.
ho> max {(2ug)*, 2% s~  d"log (dB)}. :
Algo we have H = I, whence

Fi-metkt - 16670 logH,

{9 Note that cur definition of is slightly different from that given in [21.
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and & > ¢,/e,; these inegualities are used in the diseussion of Lemwoa 4.
{I‘he contradmtlon at the end of §IV is established by means of
1 "
= g(r—1)+1-n"
LYk = 0a/0-

To estimate the value of the number ¢ appearing in Theorem 3
of [4], we first note that, if ay, ..., a, satisty the condition (7) of [4],
then one can take o
(12) OV = QYT 51 @Mlog (dB).
This follows at once from the value of ¢ given above and remarks of
the kind occurring at the end of §4 of [2]. Tt remains to obfain an
-appropriate value for ¢ when the condition (5} of [4] iy satisfied in place
of (7). Following the disenssion of §III of [4], we see that, provided
Hz 96"110,5: &, we can apply Theorem 3 with «ap,.
a ..., oy, where af = (am” %)%, & replaced by 4/2, and with 2 1ep1aced
by #' = %{x-+n-+1). We conclude from (12) that H < max (", (legA")* )
where

A" =47, B ' =max{d,p,A,..., 4,1},
u = 8nw (1) (' —n—1), €V =2 Hps @log (AB').

Now cleaxly u”' < 24. We shall prove below that
(13) log(d4;") < (L=j=tn),
provided that Zz 3, and where @ > 3 now denotes any number exceed-

ing the maximum of the absolute values of the conjugates of 0. 1t is
also now assumed that 6 is an algebraic integer. This gives

H < max(0, (log4"y),

p*rax {log 4,, log® log&}

Wwhere

(4) ¥ = 2"‘“%6“161”1?25‘1210553, u = 8nx(x-t+n+1)/(x—n—1)

and B = max(4,, ..., 4,_,, @), On distinguishing two cases according
as logA <log®logZ or logd > log®logZ, it is readily scen that the
concluswn of Theorem 3 is valid with the value of ¢ given by {14).

To establish (13), we recall that, by (5)
1<ji<

) of [4], we have |o| <

n). Further by [8], p. 151, we see that
g < Np)(w-l] ompp < Pal;zfp ordyp < Pamﬂ_ ‘

the last inequality is true by virtue of the fact that f, ord,p < d. Further-
more, w is given by one of the elements of an integral basis o, .
of p, and, if ‘

oy g

D= lg(‘v) g(J)lﬁ
1<i<i<d B

icm

., o, replaced by -

‘Since |aaf? < dA
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then one can take

0 = G LDk 6,107 D4 67D (L < a),
where the ¢, are inbegers satislying 0 < ey < pD. For the ideal p is
a sublattice of the lattice with basis 0/~!/D (1 < j < d), and, on the other
hand pD-6¢" /D (1 << d) belongs to p, whence the a,sser‘l:ion follows
by Minkowski’s adaption argument (cf. [8], p. 144). Thus we have
m(f)‘ e ]’)@"{ < psdhma (1<i<d).
If 0,5 0, b = =V L m@), and a; denotes the leading coefficient of the
minimal polvumnmls of u;, 111(,11 clearly the minimal polynomial of ay
divides the polynomial

i

a’r){dbu;,-qdn {w— ()!jﬁ)q/ﬁ"?}'(i)sﬂ) .
i=1
; (¢t [1], p. 178), and |bjn"| < p*@98€ the inequality
(13) follows at once. A similar argument establishes (13) when ¢, < 0.

IV. Proof of Theorem 1. We now ugs the results obtained in § IT
and § JII to establish Theovem 1. It will be assumed that the reader is
familiar with §V of [4], on which the discussion will be based.

In the following we shall suppose that the coefficient of ™ in f(x, ¥)
is equal to il, and we shall establish a slightly ditferent form of Theorem 1
involving »' == § {x-+n{s--1)+1) rather than ». We shall subsequenﬂy

verify that this implies Theorem 1.

The number field & appearing in § 1T of the present paper is now
taken to be the number field & of § V of [4], and in bith cases § denotes
the set of valuations of & extending the valuations | |, | |p;.oes |1y,
of Q. If we asswme, as we may, that | |, #, iz the archimedean valuation
denoted by | |y, in § 1L, then we can tale Ty o»ey Hpng 10 be the units #,,
whose exiﬂisenceﬂwasj proven in §IL -

We shall not specify (!, explicitly, but shall instead employ (5) and (6)
directly at the poimf where (!, becomes significant. €; can obviously be
taken a the number on the extreme right of (6). Further, as I3 remarked
in §n of 2], a suitable choice for I iy given by n’“‘{ygn“

We. now eome to the main argnment of § V of [4]. Recalling that
0'= 81 and g < no, it is'clear that an appropriate value for ¢, is }(no)*C,
We do not ’pomiv ¢,, but use a direet argument later. In order to deter
mine ¢, we observe 1hmt by virtue of (5) and (6), the same reasoning
as given in §5 of [2] shows that

A1, ] < {(e—1) log D),
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]
where $ = DH log |7yl and Ay denotes the cofactor of the element in
=1 :

the jth row and kth column of the determinant A. It is therefore plain
that we can take (; = § logD.

The most important part of the argument is to apply the explicit
forms of Theorem 3 of [1] and Theorem 3 of [4] to establish the ine-
quality
(15) H <
where »' == } (%-+no-1), and ‘ .

u == 8now (' +no+1) /(8 —no—1}, A = G L'.%I/m)“",
C(r — {255’ (no.)tk7bal)251bﬁg02}2,u' )

- max{C’, (logA)“},

We proceed to do thizs by obtaining estimates for the variouns numbers
oceurring in these theorers.

We can evidently assume that H > n?elogP--0;. It follows that
we can take ¢, to be 1. Suitable values for ¢, and ¢, are given hy ¢'%

and —21—1og1) ; for, since of!— ol iy an algebraic integer of degree at
NG .

most 2, we deduce from (4) of [4] that ja{*— af’l,, is ab least (2ng)~™+

or (2%%)““2 according as 4 = 1 or ¢ > 1, whenee

o

16) ST | (@) < O

v

and the agsertion follows. We also conclude from (16) that we can choose
Cyy = Oy = Y3, Bstimates for the heights of ay,..., a'g are provided by
the following lemma.

LeEMMA. 2. The height of a, (1 << g=< p—1) is at most e
height of «, is at most A = (672 | ) .

Proof Noting that each conjugate of a, = niil/nl) (L < g o—1)
in Q, (L<1< o) has valuation at most ¢“, and that o, has degree at
most n%, we conclude, by the same argnment as that wsed to estimate
the helght of y in [4], that «, has height at most 2% ¢#"**%1 « ¢, This
establishes the first assertion of the lemma. Next let K be the number
tield obtained by adjoining ¥, of?, al® to Q. It is clear that K hag degree
d <08, and that «, belongs to K. Hence the roots of the minimal poly-
nomial of g, in 2, will be a subset of the field conjugates of”, ..., a!”
of u, in 2. Fmthel, if we now write 4' for the symbol d occurring in
the estimation of the height of » in § V of [4], and put

i ?gn)[:

mieCs  and the

a=d . b= o) — oD,

1 <tsin

icmn

o, o instead of o, al?

Noting the upper bounds for 4, ..
that (15) is an immediate conbequence of Theorem 3 and the exphc],t
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it is casily seen that @’'abo, iy an algebraic integer. It follows th.t the
minimal polynomial of «, divides the polynomial

d
(@ ab)?

=1

— oy,

In addition, by {43) and (47) of [4], we have
max {|ad'|, |ad'0[} < €7, max (b, [b|} < (20F)",

@ [ (g ) (o) — g
. Hence the height 4 of o, satisties the inequality

where ¢, & denote arbitrary conjugsites of 4
in £,

lOng < 10{2_’,' (271,3 (24?18;)%5 627@4003(7)2?#1‘0) < nd log(e(na)ac'z l,m’”m)’

as required. This completes the proof of Lemma 2
We can now apply Theorem 3 of [4] and Theéorem 3 of [1] to obtain
(15}, The argument divides into two cases, according as ¢ >1 or ¢ = 1.

In both cases it is clcc;a,r from the explicit values for ¢, and ¢, that we can
"y .

e e B

assume (O,gM—Neg 2
is certainly valid.

Suppose firgt that ¢ > 1. To obtain hefter estimates, we let K be,
ag in Lemma 2, the number ficld generated by o, of?, o over @; the
remarks made in § V of [4] evidently continue to hold with this modified
definition. In order to apply Theorem 3 of [4], we must construct an
algebraic integer ¢ which generates K over €. This can be done by fixst.
observing that there is at least one integer I, with 1= 1< #% such that
all of the nwmbers

« 1; for if this inequality does not hold, (15)

att - W (1gig<n,l<r<n)

are distinet from o = of?+1af, exeept when A== h,v =j. For such
a choice of 1, it is well known (ef. [7], p. 126) that o' generates the field
obtained by sadjeining o, o’ to @. Repeating this argument with
, we conclude that K is generated over @ by
an algebraic integer 0 with the maximum of the absolute values of its
conjugates at mogt n*fF. It is now clear that we ean apply Theorem 3
of [4], with the following values for the quantities appearing in the
theorem .

”-—»(%"HW\ 1}, oL, d<n, O<L#°F.

§e=lfoy, E=¢
oy Aqg 1y A given in Lemma 2, we see

value (14) for the number C appearing in it, which was denved in § ITT.
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Suppose next that ¢ .= L Then we can plainly apply Theorem 3

of [1], with the following valnes for the quantifies appearing in the

theorem '
Tai

¥ =1 (xtnotl), 0 =1o, A =%, ds

recall also that p < no or ¢ < wo—1, aceording as oy, ..., ¢, are or are
not all real. Again noting the upper bounds for A, ..., A, .., A given
in Lemma 2, we see that (15) follows directly from Theorem 3 and the
explicit vaiue for the number ¢ appearing ip. it, which wag dervived in
§4 of [2]. This completes the proof of the inequality (15}

Having established (15), the rest of the proof follows easily. As in
§V of [4], we have, assuming o=,

. it ol e . \
}B?)L% < q,gﬁa tolighl < mﬁ(na) [opY:d (1 <4 a, 1o

whenee, by a similar argument to that used in deriving (16), we conelude
that o
max (17|, 1'l,) < 2@nF" g (L<i< o).

Hence we have

(17) (na)302II N

max(|zl, Y1) < ¢°¢
We simply substitute the upper' bound for H, given by (15),‘ into this
inequality.

Suppose first that (logA) < ¢'. In particular, this implies that
imijm < %, whence it follows from (15) and (17) that

max (jal, [y]) < 07

Defining v == 32002 /(%' —no—1), and observing that »-—2u' 1, we
deduce that

logmax (laf, ly}) < {277 (o)™ P5 FC,) .

icm

- Sinee (,is given by the number on the extreme right of (6), and I} == #™ "%, ’

it is readily verified that
(18) FC, < (m«)mﬂnm2 FEP.
Herice, as v [2 3> 64(nc)?, we obbain _
(19) logmax (||, ly|) < 327 Po* g,

()_n'the other hand, it (logA)* > ', .then e™°Vs < mi|fm, and we
.conclude from (15) and (17) that ‘

wax (o], lyl) < gPexp ((n0)s 0y (20 Tog (I )|
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Thus, noting that ¢, is bonnded above by the number on the right of
(18), we obtain '

(20)

where I e q?‘Sx’(ﬂ_O,)Z‘na%G:ﬂ? %295‘31)-

The estimates (19) and (20) have been established under the hypo-
thesis that the coefficient of «® in f{=, ¥} i equal to 1. We now show that
these estimates imply the conclusion of Theorem 1, whether this hypo-
thesis holds or not (). 'We follow the argument given at the beginning
of §V of [41 Let m" == | "m/[b"], and Jet m* be the largest product
of powers of py,...,», which divides m*. Since b” is comprised solety
of powers of Py, ..., Py, it i clear that m*/in* is equal to the quotient
of la®~'mi and the largest product of powers of py, ..., », which divides
ja*'m}. Hence |

logmax ([a], ly)) < I {log (jm| )",

" b im < § ]

 Now apply the known results (19) and (20) to F(X, Y). As the coeffi-

cients of F(X, ¥) have absolute value at most F*, b hag absolute value
at most ¥, and o' < w, it follows that cither

e b ax :*:
) | Im:\( i

v

X
) ) < eX]p {2"2'@’-‘5“(’7' %g.;-,ﬂ,,} ’

max (|,

Y

H

in which ease the conelusion of Theorem 1 is valid, or

a
kd l (a

mass(fo, ) = 0] w15, ) < exp {47 g (57 ml )

where I" = n% (na)™ 5" F* P, It, in the latber case, we have [mim < §*7,
then Theovem 1 iz plainly valid. On the other hand, if [m|/m > F7Y
we ohtain -

max (@], [y)) < exp | D{log (Im) m)}).

By considering the possibilities (log{lm|m)j*~ > I, (log{jm|m))* ™ < T
it is then rvendily veritied that the assertion of Theorem 1 holds.
This completes the proot of Theorem 1.

(8 It sewtis to hinvoe been asswned in the sorresponding deduction on p. 200

of [2] that » ineronses with r; this, however s true only when x> 2{n-1). The
argminent ol this point would bo valid for all » i an exira factor 2 were included
in the definition of v, but the extra factor can cagily be avoided by obsorving that,
i wa replace m by M = mial* L on p. 200 of [2], then the bound asserted on-p. 207
is unoltered. . ’ _
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ACTA ARITHMETICA

XVI {1970)

Dirichlet’s theorem on diophantine approximation. 11
by

L. Davenvortt and W. M. Scamror® (Boulder, Colo.) '

1. Introduction. Wo ghall he interested in simultaneouns approxima-
tion to m veal wunbhers ay, ..., ,. There are two forms of Dirichlet’s
theorein: :

(a) For any positive integer N there ewist integers @y, ..., &,y not
all zero, satisfying

(1a)  m@ b a@e byl < NV max (i), . |2 < N

(b) For any positive inleger N there ewist integers Tiyoeny Wy Y, MO
all zero, with
(1b) M ([ty Y= Bl ooy [ Y— 2} < N7 [yl < I

For particular ay, ..., u, we ghall say that (a) can be improved it

there exists & 4 == g(ty, ..., ¢,) <1 such that, for every suificiently
large N, the inequalities (la) may be replaced by

(28) @yt a2,y < a0 max{o, . la]) < gl

We shall say that (b) can be jmproved if there exists a u< 1
such that, for every sufficiently large N, the inequalities (1b) may be
replaced by

(2'1)) ]‘I]I‘d-x(lﬂil‘y—-aﬂll, ey 1({%1‘?/—""591.'). < MN—-l! !’yl < MNW

One main theorem iz as follows.

TuworuM 1. For almost cvery wlbuple (ay, ... o), neither form (a)
nor form (b) of Diriehlels theorem can be improved.

Tn this theorem albmost every is used in the sense of n-dimengional
Lebesgue measure. Thiy theonem was announced in the first paper [2]
of thiy series. Khintchine [4] showed that for almost every (Cyg erey )
there existy & u = p*(ay, ..., &) such that (1a) may not be replaced by
(2a), and (1b) may not be replaced by (2b). Thus for almost all {ay, ... Oyl

* The seeond anthor was pzurtiallﬁy supported by NSE-GP-08515.



