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Dirichlet’s theorem on diophantine approximation. 11
by

L. Davenvortt and W. M. Scamror® (Boulder, Colo.) '

1. Introduction. Wo ghall he interested in simultaneouns approxima-
tion to m veal wunbhers ay, ..., ,. There are two forms of Dirichlet’s
theorein: :

(a) For any positive integer N there ewist integers @y, ..., &,y not
all zero, satisfying

(1a)  m@ b a@e byl < NV max (i), . |2 < N

(b) For any positive inleger N there ewist integers Tiyoeny Wy Y, MO
all zero, with
(1b) M ([ty Y= Bl ooy [ Y— 2} < N7 [yl < I

For particular ay, ..., u, we ghall say that (a) can be improved it

there exists & 4 == g(ty, ..., ¢,) <1 such that, for every suificiently
large N, the inequalities (la) may be replaced by

(28) @yt a2,y < a0 max{o, . la]) < gl

We shall say that (b) can be jmproved if there exists a u< 1
such that, for every sufficiently large N, the inequalities (1b) may be
replaced by

(2'1)) ]‘I]I‘d-x(lﬂil‘y—-aﬂll, ey 1({%1‘?/—""591.'). < MN—-l! !’yl < MNW

One main theorem iz as follows.

TuworuM 1. For almost cvery wlbuple (ay, ... o), neither form (a)
nor form (b) of Diriehlels theorem can be improved.

Tn this theorem albmost every is used in the sense of n-dimengional
Lebesgue measure. Thiy theonem was announced in the first paper [2]
of thiy series. Khintchine [4] showed that for almost every (Cyg erey )
there existy & u = p*(ay, ..., &) such that (1a) may not be replaced by
(2a), and (1b) may not be replaced by (2b). Thus for almost all {ay, ... Oyl

* The seeond anthor was pzurtiallﬁy supported by NSE-GP-08515.
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no arbitrarily good improvement of Dirichlet’s theorem is possible.
When n = 1, Theorem 1 follows easily from the theory of continued
fractions. :

As was shown in [2], Dirichlet’s theorem inay be improved for
a single number a, (in this case forms (a), (b) ave identical) precisely
if the partial quotients in the continued fraction of «, are bounded. But
almost every «; has unbounded partial quotients.

We shall give o direct proof of the assertion concerning form (u)
of Dirichlet’s theorem only. The agsertion concerning form (b) follows
from the following trangference theorem,

TREOREM 2, For any n-tuple (ay, ..., a,), form (a) of Dirichlet’s theorem
can be improved if and only if form (b) con be improved.

The standard transference theorems, while rather iwore general, are
not gutficiently precise to yield Theorem 2.

2. Deduction. of Theorem 1 from a metrical theorem on lattices.
Let » be a positive integer and putb

(3) =il

" Points in I-dimensional space will be denoted by a, b, ... An n-tuple
(e, ..., &) of guch points may be interpreted as a point A of In-dimen-
sionad gpace. A set of n-tuples (@4, ..., a,) will be called everywhere dense
if the corresponding points A are everywhere dense in In-dimengional
space.

Given real numbers a,,..., o, and a positive integer N, we define
Alagy ..oy a3 N) to be the lattice in I-dimensional space with basis vectors

9. = (I\IMI? 0,...,0, lf""l-Z\’m):

g: = (O,N*l, sery 03 a2Nﬂ)a
g, =1(0,0,..., -N‘la N,
g, =(0,0,...,0, ™.

_ TuroREM 3. For almost every (ay,...,a,) the set of n-tuples {ay;...,a,)
which are part of a basis (a,,..., a,, @) of a lattice A(uy, ..., a,; N} for
some N is everywhere dense. ' .

It may be true that for almost every (u,, ..., u,) the set of lattices
Afay, ...y o3 N} with & running through all integers iy everywhere dense

in the space of lattices of determinamt 1. This would be stronger than
Theorem 3, but we are unable to prove it ()

I X . .
_ Y] A&deq in proof. Bub see a paper Diophantive appromimalion and ceriain
sequences of_ latbices by the second author to appear in this jonrnal,

icm
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Deduction of Theorem 1. As pointed out above, we shall
give o direct proof only of part (a). Suppose 4 is a lattice of
determinant 1 in I-dimensional space which has & basis containing the
vectors €, = (17 O; sy 0): €y = (0: 1, Ty D)? sy €y = (03 0y ey 1, 0)' Then
every point p == (7, ..., m) # 0 of A satisfies

max{lmyjy ...y |mf) 2 1.

Now suppose that g << 1, Continnity arguments show the existence
of a number & == a(u) > 0 such that every point p = {(my, ..., ) #= 0
which belongs to a lattice A’ of determinant 1 which has o basis containing
vectors €@y, -.., @, With |e;—e)| < ¢ (i = 1,..., n) satisfies

max{lml, ..., lml) = p.

Aggmime now that («y, ..., «,) 18 an nw-tuple and N, is an integer such
that the inequalities (2a) have a non-frivial solution for every N > N,.
Snch a zolution @y, ..., @,, ¥ Satisfies

max (o, N7, .o, o, N7, @y oy N0 0, NP -y N <

The point (&, N7", ..., 5N Y 2a N+, 4o, N +y¥") is a point
(71, -e-y ) % 0 0f the lattice Alay, ..., a,; N) with max (|, ..., ) < g
Hence by what we said above, there are no n-tuples @y, ..., a, With
l@;—e;] < & (i == 1, ..., n) which are part of a basis of A(ay, ey @3 N
Thus the n-tuples of points @y, ..., @, which are part of a basis of a lattice
Ay, ooy 03 N) for some N are not everywhere dense.

By Theorew 3, this happens for almost no (e, ..., a,}

In the course of the proof of Theorem 3 we shall need the following
theorem which may be of independent interest.

TrroRnM 4. Suppose 1< m < 1 and write points of Im-dimensional
space o8 '

X (g, 000, @)y

where ®y, ..., %, are in l-dimensional space. Let 8 be a bounded Jordan

measurable sct in lin-dimensional gpoce of volume TV (8). Then as ¢ — oo,

the mumber of dnteger poinls X in 08 such that &, ..., &, o6 pait of a basis
of the integer latlhice of l-dimensional space is asymptotically equal to

. (4) PV (EBE 1) = m 1)

“When m. = 1 the points X reduce to primitive lattice points X = (x,),
and the result is well known.

We shall first prove Theorem -, then Theorem 3, then Theorem. 2.
To avoid cumbersome notation, we shall prove Theorems 2, 3, 4 only in

the cage @ = 3, which is quite typical.
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3. Proof of Theorem 4. Since we resfrict ourselves to I =3, and
gince, as pointed out, the case m = 1 is well known, we may asgume that

(5) m=2,1=23.

An integer point ® 0 can be nniquely written 2 = kx* where &
is a positive integer and a* is a primitive integer point. We have

O pd) =

ll if-k = 1, hence if @« is primitive,
e

0  otherwise.

Now d|k holds precisely if & may be written in the forn & = de’ with
gome integer point x'. Hence

D u(d)

d=1

1 if there is an o' with a = dw’
0 otherwige

is equal to 1 if @ is primitive, and it is zero otherwise.

Now assume & to he primitive and @, y to be linearly independent
points of 3-dimensional space. The points ax4- by with integer coeffi-
clents e, b form a sublattice of the (2-dimensional) lattice of all integer
points in the plane spanned by @, y. Denote the index of thig sublattice
by r. Then » = 1 precisely if x, y are part of a basis of the integer lattice
of 3-dimensional space. Thus

D ule)

[_ it » =1, hence if @, y are part of a basis,
e

otherwise,

Now elr precisely if ¥ = s ey’ for some integer ¢ and some integer
" point y’. We have sz+ey’ = $a -+ eif exactly if (s—§)x = e(y’ —y'), and
since @ is primitive this is possible precigely if s == § (mod ). We may
therefore restrict ourselves to numbers s in 0 < ¢ << e. Hence if @ is primi-
tive and if «, y are linecarly independent, then

g~1

Z F

is equal to 1 if @, y are part of & basis, and it is zero otherwise.
Combining our arguments we see that for independent «, y,

- 1if & = dae’ el
('czé; uar lO otherwise ])(Z Z

LEY =0

it there is a y' with y == sae- ﬁy’l

otherwise

1-if o == s+ oy’ )
0 otherwise ‘

is1if gy are part of a basis, and is zero otherwise.

Since k == 8, m = 2, the set § is in 6-dimensional space. l’omm of
this space will be ertten (@, ¥y} where x, y are in 3-dimengional gpace.
Write 2(18) for the number of points (x, y) in 7§ with the property that
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@,y ave part of a basis of the 3-dimensional integer lattice. Liet x,(w, 1)
he the characteristic function of ¢8. Then we have

(6) a(18) = 12;( Z 6)2 vz wlda’, sda + eyy’).

.’D
x',y mdep

Put
fildy ey 5) = 5 2 nldx, sda'+ey').

y “iileg,

For given d, ¢, ¢ it is elear that we have the asymptotic formula

(7) Jldy e, 8) ~EV($)d e as 1 co.
Since
oo o .f'r'*]. o o0
OEWIGHWIOHN STAE BT a-?) (Du@e) =1jz@u6),
el sl LR =l - . a=1

we have almost completed the proof — but not quite.

4. An auxiliary lemma. If we replace 3 3 on the left hand side

Yy M flaet o=l
of (8)by 2} D, we obtain o sum which comes arbitrarily elose to 1/{¢(2)¢(3)
d l 6]

as M ->oc. Hence if we replace the summation over d, ¢ on the right
hand side of (6) by summation over the finite intervals 1< d< M,
1<e< M, we obtain a sum which comes close to & V(8)/(((2)4(3)).
It remains to give an upper hound for the terms on the right hand side
of (6) with d > M or e > M. Since

=53] o0

[e+] (48]
N gd el : 1 g-3 -2
Z 2/ a*e and d3e
e B @enl =1 ¢=R

tend to zero as M - ow, the following lemma will finish our proof of
Theorem 2.

LmuMA 1,
fild, ¢, 8) < WBd e,

The constant implied by << is independent of dy.e, s, t.

Proof of Liemma 1. Sinee the congtant implied by <€ may depend
on 8, and by homogeneity, we may assume that & is the unit ball:

® | ol |9 == )] w;%-%—w§4-yi-l—y§+y§s:1

Acta Arithmetica XVI. 4 ) "
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We now put 2, = (%, ¥2), Zz = (g, ¥s), 2 == (%, ¥3). Then fild, e, 8)
is bounded by the number of triples of points z, #;, = of 2-dimensional
space which span this space and which have each z; in the ellipse

(10) } “(dm)? - (sde-+ ey)® < 2,
Thus
(11) ft(dagvs)s‘;(gi(d: 373))3;

where g;{d, ¢, 5) is the number of integer pointy in the ellipge (10). We
also note that f;(d, e, s) = 0 if the ellipse (10) containg no two linearly
independent points. Hence it will suffice to show that

(12)  g,(d,e,8) < 4-(area of the ellipse (10)) = dnt*d~'e™!,

provided the ellipse contains two linearly independent integer points.

We may replace the ellipse by a circular dise D of equal area if we
replace the integer lattice by amn arbitrary lattice of determinant 1.
Suppose the disc .} has radius ¢. Since two independent lattice pointy
lie in it, there is a fundamental parallelogram [T of the lattice having
diameter less than 2¢. With every lattice point g in the disc D we associate
the tranglate II(g) of /T which has g as its center. These parallelograms
II{g) are disjoint and they all are contained in the disc D’ of radius 2.
Hence their number does not exceed the area of D', which is four times
the area of D. This completes the proof of Lerama 1.

5. The method of proof of Theorem 3. Weo shall restrict ourselves
to the case n = 2, I == 3. Throughout the proot, , y, ... will denote points
of 3-dimensional space. We shall write (a, #) instead of (ay, ).

Let e = {yu; v12, ¥s)y €2 = (Y, ya, ) Do points with

{13) . Vi ¥ea Vs ¥e 7 0.
Put
(14) y = 1Wax (lyul, ..., rval).

~ Let & Dbe positive and €7 (j = 1,2) the cube’ congisting of points @
= (2, &y, 23) Wwith
1) m—l< s,

oy =yl < 8, |z < 8.

Fu:rther let €; (j =1,2) be the cube defined by

(16) _ - [ —y5] < 6, 22— py2] < 6,

[%"‘?’fa' < 8.

Write G} for the cone of points Az with xcCf.

(24) Gy == (Guy Qusy Ts) s
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We shall assume & > 0 to be so small that

(17) 6oy +d)r <1,
(18) |V11?’;2““7’;27;1[ =0 if |?’-r‘:i“‘?£;’| <0 (6,§=1,9),
(192)  Of is disjoint from —C, 207, £307, ... (j = 1,2),"

(19D) the intersection of €Y, €} consists only of 0.

Since §-dimensional space is separable, since ¢,, ¢, were subject only to
(13) and since 6 > 0 is arbitrarily small, the following will suffice to prove
Theorein 3. '
For almost oll (a, f), there emist points a,, a, with a;eC; (§=1,2)
such that @y, &y ore part of a basis of a latiice Ala, f; M),
Let XZ(N) be the set of pairy (e, f) for which Ao, 85 N) has a basis
@y, ty, @ With @; 0 (§ == 1, 2). The following proposition implies Theorem 3.
ProposITION. There 45 an e > 0 such that for every square Q of the
fype .
(20) la—al < n, [B—Pol < 7

and every N > Ny (Q), the intersection of § with Z(N) has measure
(21) #(@ N Z(N)) = eul(@) = edne,

6. Analysis of the set Z(N). Recall that the lattice 4(a, 8; N) has
the basis

(22) glm(N_l,O,aNg), gz=(0:NWI7ﬁN2)J 93':(050:-N2)'

Any ftwo lattice points a,, @, may be written

(23) a4 = guf:+ Gt Guls,
@y = (o191 Qoafat G2l

with integer coetlicients ;. They are part of a basis of A(a, §; ¥) precisely
if the integer points

@2 = (Ga1y oy Gua}
are part of & Dasis of the integer lattice.
For given integer points q,, 9, let B(V, ¢, q.) be the set of pairs
(e, B) for which ., @, as given by (22), (23) lie in C,, C,, respectively.
LemmA 2. Suppose the points ¢, ¢ satisfy :
@1z Ny1a] < NG,

|2'22“N?22| < Né.

(25) (g — Nyul < N4,
(26) {q21— Ny | < NG,
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Then BN, q., qs) 18 a parallelogram of area

(27} M(E(N: /S QS:)) > N
and of diameter
©(28) AB(N, q1,¢a)) €N

(The constants implied by < may depend omn ¢, ¢y, 6 (which
remain fixed throughout), but they are independent of €).)
" Proof. Write @, = (a1, gy G}y Gy = (Gar, tag, Gag). BY (25) we have

.

lag—yul = gV —yul< d and o=yl < 4.
The inequality |og— sl < 6 8 equivalent with

29) |q|_1!]+ Q12ﬁ+ ﬂ'ls ?}13N ‘ _Z\T“2

Thus @, les in ¢, precigely if (29) is satisfied. Similarly, @, lies in C,
precisely if . _

(30) . |ga2 0 Gon Bt Gos— Vs V Y < ONTE,

The set B(N,q,,q.) consists of all pairs («, f) with (29) and (30).
This set is a parallelogram of area

. SN |y oo — Gaalln] ™' B> N6
sinece :
. {31) ' N &€ |11 922— ¢1aal <—N3

by (18), {(25), (26 g
Let (a, f) &nd (¢, f') be any two points in this paraﬂelogran1 Then

|galo—a' )+ gu(B—8) < 268" ?

a1 (@— 6"} + g2 (B — )] < 26N,
Hence

‘a__ a'| < 26N (|gaal - 1902]) 1901 Fop = Gra g L N7,

and similarly |§-— 8’| < N~°. The lemma follows.
Limma 3. Suppose N is large and suppose the integer poms 41y @2

satisfy (25), (26) and
/ I i tu Qu‘/ Ju G2
Qa1 o Goa Gor)/ | Gea Qe

Then BH(N,qy,q,) s contained in the square Q‘defmed by (20).

|
(12 G1n

Qe Gos <l

(32) —ay

— B

< nld,
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Proof. By what we said above the parallelogram B(N, qy, ;) has

center
(33)
(( Do Bis) _ pronjfn2 Vs )/ Q11 1o (Qm UERY —r CE It )/ 01 Ghe
oo G2z G2z Vo Go1 G2a) \|@on G Vs Qa1 o1 dual]

In view of (2B), {26), (31), (32) this center will He in the sqnare
@' la—agl < /2, |f—PFol < 79/2

i N is large. Since H(N,q,,q,) has dimneterlA(E(N, G, @) €N,
fhe whole parallelogram X (N, q,,q;) lies in @ if ¥ iz large.

7. Parallelograms 7" (¥, q,, q,). Suppose (25) and (26) hold. Let
F*(N,q.,q:) be the parallelogram of points («, §) which satisfy (29), (30) -
with v, ves replaced by zero. In view of (33) it is clear that E(¥,q,, q.)
is obtained from E*(¥,q,, q,) by translation by a veetor whose length
is O(N ). .

TEMMA 4. Suppose q,, ¢ satisfy (25), (26), and are part of a basis of the
integer lattice. Male the same assumptions on gy, ¢y Then if (g, ¢s) - (41, &)

- the parallclograms T (N, ¢, ¢.) and B (N, qi, ;) are disjoint.

Proof. Suppose (a, p) lies both in B* (¥, q,, q,) and in E* (N, q1, @)-

Tirst asgare that ¢y, ¢, ¢, @: span the 3-dimensional space. Without
loss of generality we may assume that ¢y, ¢, g; are linearly independent.
Hense the determinant

T Gz s Qi e T Bt G
(34) T @y Gos| = |8 %o O+ Bt s
T Qe e 0 G aqg;+ﬁ§l£z+gia

~hog absolute valne at least 1.

On the other hand by (25), (26), the entxies in the first two columns
have absolute values less than N (y ). The entries in the third column
on the right hand side of (34) have absclute values less than 6N* by
the inequalities (29), (30) with y.5, vy replaced by zero, Hence we have

< BN (p+ Of 6N F = 6(y-+8)' 5,

which contradiets (17). :
Next, assuwme that ql,qg,ql, % ’11e in a 2-dimengional subspace.
We may agsume that ¢, s q,. Since ql,qz are part of a basis,

(35) : Q‘1 = U+,
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where w,% are integers. Bince q{ 7% ¢y, we have (u,v) # (L, 0). Sinee
(a, 8) lies in B*(N,qi, ¢,), the point

& = 90+ 00+ €9
lies in 7. By (35) we have

r
o, = w4 va,

icm

where a; () and a,<(y. We have a;—ua, <€}, va,e €y, whence va, = 0,

a,—ua, = 0 by (19b). In fact since @,¢C) and ua, <0}, wo have u —
by {19a). Since va, = 0 implies v == 0, we have reached a contradiction.
LEMMA B. Suppose N is large. Then o point (o, £) lies in O(L) parallelo-
grams B(N, q,, @} with q,, q. part of a bosis and satisfying (25), (26).
Proof. Since E(N,q,,q:) has diameter O(N %) by Lerna 2, it
will suffice to show that at most O(1) parallelograms (N, q,, q,) have
their centers in any given dise of radiug ¥~*. Since B(¥, ¢,, ¢.) is obtained
from E¥(N, q,, ¢;) by a translation by a vector of length O(N —H), it will
be enough to show that there are O(1) parallelograms F*(N, q,, q,) with
9, 4. satistying our conditions and with their center in any given disc
of radins N Since B*(¥, qy, ¢,) has area u(E* (N, g4, ¢u)) > N~F and
diameter 0(N~*) by Lemma 2, we can inscribe in E* (¥ @1, ¢s) a small
dise .D(N, q,,q,) of radius ¢ N~ These small dises are disjoint by
Lemma 4. Hence at most 0(1) of them can lie in a dise of rading ¥—3.

8. End of the proof of Theorem 3. Let S (V) be the set in G-dimensional

space consisting of all pointy (q,, q,) with real components satistying (25), -

(26) and (32). Observe that §(N) = NS(1). The get S(L) has volume
V(s (1)) > #2. Hence if 2(¥) is the number of integer points (g, q,) in
8(N) with ¢,,q, part of a basgis, then .

(36) Z(N)> No*
by Theorem 4.

. By Lemma 3, the set @ n Z() contains at least 2(N) parallelograms
E(N R ql,_qz), which may however not be disjoint. But by Lemma 5, any
given point (q, f) is covered by O(1) of these parallelograms. Since

(N, 41, ¢o} has area u(E)> N6 by Lemma 2, we find that @ n Z(N)

has area u(Q N Z(N)) > 72
- This proves the proposition of § 5, hence Theorem 3.

9. Proof of Theorem 2. For simplicity we shall agsume that » =2,
and we shall write a, § instead of a,, a,. Suppose that for some particular
4, f no improvement of Dirichlet’s theorem in the form (a) iz valid. Then
for any u < 1, there are infinitely many integers N for which the ine-
qualities (2a) are insoluble in integers @y, By, Y, not all zero, Hence there
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ig an increaging sequence of integers N, (» = 1,2,...) with the property

-that

oy gyl < (1—27)N2, max(loy, o]} < (1—27") N,
has no solution in integers @, .,y # 0, 0, 0. This implies that
(37} max (N, @], N2 |z, Niawy+ g+ 1) 2 1—27

for all integers @y, @4, ¥ ¥ 0,.0, 0. Thus every lattice point (y,, ., ys) # 0
of the lattice A(a, f; N,) satisfies

(38) cmax (lyq, |y, ) = 1—27".

Hence by a well known principle of the geometry of numbers (see,
e.g. Mahler [5] or see [1], § V. 4}, the sequence of Iattices 4, = A(e, §; N,)
has 2 convergent subgsequence., For convenience we ghall suppose that
the sequence {A,} itrelf ig convergent to a lattice s,. This lattice A, has

determinant 1. ivery lattice poinb (y,, v4, ys) 7 0 of A, has
(39) max (ygl, yely lysl) = 1.

By a theorem of Hajés (for an account, with references, see §11 in

-[4]), the lattice 4, i3 of a rather special type. The lattice 4, must have

a basis of the type
(40)
or of a type obtained from (40) by a permutation of the coordinates.
The lattice AY = A¥(a, §; ¥,) with basis vectors
Iy =(¥,,0,0),
h, = (0, ¥,,0),
h, =(—aN,, —8N,, N7}

(1,0,0), (¢;1,0), (¢;7,1)

ig polar to the lattice 4,. The sequence of lattices {47} is convergent to
a lattice A2 which is polar to 4,. Hence 4% again has a basis of the type
(40) or obtained from (40) by a permutation of the eoordinates. This
implies that every point (yy, ys, va) 7 0 of A7 satisfies (39).

Continuity arguments imply the existence of a function f(v) which
tends o 1 58 ¥ — oo, such that every point (y;, ys, ) # 0 of A7 _satisfies

max |y, valy lval) 2 f(#).

Hence for every integer point (my, @, ¥) # (0, 0,0) one ha:s'

max (|- o\ N,y (0o By N, Wl N%) = ().
Put differently, the inequalities

max(|ay~ |, |fy—zal) < fOINTY, W< fO)N
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1, this shows that form (b) of Dirichlet’s theorem cannot be improvegd
for (a, A).

Hence if form (a) cannot be improved, then form (b} cannot be

improved. The fmplication in the opposite direction may be shown in
an entirely analogous manner.
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An effective p-adic analogue of a theorem of Thue III
The diophantine equation 2* = 2°+k

by

J. Coarny (Camhbridge)

I. Introduction. The purpose of the present note is to apply the
work of [5], [6] to the equation ¥ == a*+k, where k is any non-zero
integer. Let p,,..., P, be s 0 prime numbers, and let ¥ be the largest
integer, comprised solely of powers of p;, ..., p,, which divides k. We
write P for the maximum of p,, ..., p,; if no primes arve specified, we
take P = 2. Then our principal result is as follows:

TugoreM 1. Al sclutions of the squation y> = 23k in integers @, ¥,
with (@, ¥, Py ... D) = 1, satisfy

max (|#], 191} < oxp {21701 Ut g p10¥e sty

4

Tt will be observed that when s = 0, that is when no primes py, ..., Ps
are specified, Theorem 1 reduces to & slightly weaker form of the resulf
in Baker’s paper [1]. On the other hand, if & i3 comprised solely of powers
of Py, ..., P, 80 that [k/f| = 1, then Theorem 1 implies that all golutions
of the equation y* = #°4-% in integers =, ¥, with (,94,p,...2J~1,
satisty
(1) max(ja], i) < exp {0 Py,

The interest of this result lies in the fact that the number on the right
does not depend on the exponents to which p,, ..., p, divide k. In partic-
ular, it can be used to give the following explicit lower bound for the
greatest prime factor of o —y?.
TrrroweM 2, If m, o are integers, with (@, y) = 1, then the greatest prime
factor of w*-—y* cwceeds
10-*{loglog X )1,

where X = max(ln], |y}

Tn order to deduee Theorem 2 from (1), we let B be either 1 or the
greatest prime factor of #8—y?, according as |7 —y?| =1 or g3 — 2 > 1,
and we let p,, ..., p, be the primes not exceeding P.



