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1, this shows that form (b) of Dirichlet’s theorem cannot be improvegd
for (a, A).

Hence if form (a) cannot be improved, then form (b} cannot be

improved. The fmplication in the opposite direction may be shown in
an entirely analogous manner.

1]
[2]
[3]
[4]
(5]
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An effective p-adic analogue of a theorem of Thue III
The diophantine equation 2* = 2°+k

by

J. Coarny (Camhbridge)

I. Introduction. The purpose of the present note is to apply the
work of [5], [6] to the equation ¥ == a*+k, where k is any non-zero
integer. Let p,,..., P, be s 0 prime numbers, and let ¥ be the largest
integer, comprised solely of powers of p;, ..., p,, which divides k. We
write P for the maximum of p,, ..., p,; if no primes arve specified, we
take P = 2. Then our principal result is as follows:

TugoreM 1. Al sclutions of the squation y> = 23k in integers @, ¥,
with (@, ¥, Py ... D) = 1, satisfy

max (|#], 191} < oxp {21701 Ut g p10¥e sty

4

Tt will be observed that when s = 0, that is when no primes py, ..., Ps
are specified, Theorem 1 reduces to & slightly weaker form of the resulf
in Baker’s paper [1]. On the other hand, if & i3 comprised solely of powers
of Py, ..., P, 80 that [k/f| = 1, then Theorem 1 implies that all golutions
of the equation y* = #°4-% in integers =, ¥, with (,94,p,...2J~1,
satisty
(1) max(ja], i) < exp {0 Py,

The interest of this result lies in the fact that the number on the right
does not depend on the exponents to which p,, ..., p, divide k. In partic-
ular, it can be used to give the following explicit lower bound for the
greatest prime factor of o —y?.
TrrroweM 2, If m, o are integers, with (@, y) = 1, then the greatest prime
factor of w*-—y* cwceeds
10-*{loglog X )1,

where X = max(ln], |y}

Tn order to deduee Theorem 2 from (1), we let B be either 1 or the
greatest prime factor of #8—y?, according as |7 —y?| =1 or g3 — 2 > 1,
and we let p,, ..., p, be the primes not exceeding P.
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Noting that s—i—i < 2P and P <29, we conclude from (1) that
X = max(|z], ly]) < expexp {10”$"},

- +which it equivalent to the assertion of Theorem 2.
Theoremn 1 ean be expressed in a number of different ways. For
example, an equivalent formulation is that

w8l [ oy, > 200 PP (g Xy
i1
for all integers z, v, with (@, 4, P ... py) == 1 and a®—y? 0.

Theoren: 1 hag an application fo the theory of elliptic curvey. Let B
be a curve of genus 1, with rational coefficients, and with a rational
point, We say that & has a good reduction at a priwe p ift ¥ iy bivationally
equivalent to a curve defined by a cubic equation f(x,y) =0 with
rational coefficients which are integral at p, and which iy such that the
reduction f of f modulo p defines a non-gingular cubic over the field;with p
elements. As before, let § = {py, ..., p,} be a set of primes, whiel we
assume, for simplicity, contains 2 and 3. Thén, since 2 and 3 belong
to 8, it is easily seen that & has a good reduction at all primes not in §
it and only if ity equation can be put in the form

(2) Y = 4a®— gy~ gy,

where g,, g, ave integers which are not both divisible by the sixth power
of any prime in 8, and where the discriminant

(3) ' A = g}—27¢;

of (2) is composed solely of powers of p,, ..., p, (¢f. [4], p. 211). Thus,
if F has a good reduction at the primes nof in 8, i follows from Theorem 1,
on rewriting (3) as 3°4 = (3¢g,)*— (3%g,)?, that

max (|g,), |gsl) < exp {2070 prdiy

The application of Theorem 1 to (3) is valid, since we shall in fach
establish Theorem 1. under the weaker hypothesis that » and y are nob
both divisible by the ninth power of any of p,, ..., p,. We have therefore
obtained in prineiple (*) an effective procedure for determining all elliptic
curves having a good reduction ab the primes not in 8. This moans that
we can determine all elliptic curves with a given conductor {cf. [8])
2 fact which may be of interest in connexion with the verification of
& conjecture of Weil [9] about these curves.

{*) By refining our methods, it may be poﬂsﬂale te malke this bound practically
computable (¢f. [2]). . :
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The derivation of Theorem 1 from Theorem 1 of [6] iz baged on the
treatment of the equation y? = #*+-% given in {1], and is due originally
to Mordell. However, we have found it necessary to generalize the classical
reduction theory of binary cubie forms used in [1] s0 ag to include & finite
set of p-adic valuations as well as the ordinary absolnte value, and § IT
is devotied to a proof of this generalization. Tt should also be noted that
the results of this paper were first proven in a non-effective form by
Mahler [7]. In fact, Mahler’s- general theorem, valid for any curve of
genus 1, could be proven effectively by combining the work of [5], [6]
with [3], but the resnlts obtained would be much weaker than those
egtablished lwere.

II. The p-adic reduction of cubic forms. Let § = {p,,..., p,} be an
arbitrary set of g 0 prime numbers. The purpose of this section is to
generalize the classical reduction theory of binary cubic forms (2) (ef. [1],
p- 196) to include the valuations | |,,...,] lp, 88 well as the ordinary
abgolute value. _

We first consider the p-adic reduction of binary guadratic forms.
The result obtained will then be used to study cubic forms. By an S-integer,
we shall mean a rational number whose denominator is composed, solely
of powers of py,...,ps. Let Q(X, ¥) = AX*4+BXY-CY* he a binary
quadratic form, whose coefficients 4, B, ¢ are S-integers, and whose
digeriminant D = ¢A(—B* is a rational integer divisible by 4 (%).

LummA L. By a substiiution of the form X == ¢y X'+ q¥', ¥ =X +uY,
where v, g, 1, 4 ave S-inlegers with ru—gt = 1, Q(X, Y) can be transformed
into o quadratio form Q' (X', ¥') = A'X* L B' X' ¥ +0'¥" with

max (|A'|,, |B'l,, [C'l,)<p for oll p in 8.

Proof (4. By omitting certain primes from § if necessary, we can
agsume that, for each p in §, the numerators of 4, B, ¢ are not all divi-
gible by p. We contend that, for each p in S, there exish integers v, ¢,,
with no common factor, such that

(4) W (Tzn t;n)‘r) = me(iAlm !Blzn Iolp)-

For, if 4 denotes the least common multiple of the denominators of
4, B, ¢, then by sssumption not all of 44, 4B, AC are divisible by p.
The assertion is obvious if A4 and AC are hoth divisible by p (take

Pt e e

(®) The arguments of [1] are plainly valid for an arbifzary binary cnhic form.

(¥} Hore, and in subgequent axguments, a slightly weaker result is valid if D
is not divisible by 4. :

#) T am indebted to Profogsor J. W.S. Cnssels for the yroof of this lemma.
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¥y = 1,1, = 1), and it is also obvious if either A4 or AC is not divisible
by p (take #, and #, to be 0 and 1 appropriately). By the Chinese remainder
theorem, there exist integers r, ¢ such that

{h) eyl < b, =l <1 for all p in §.
Tt follosrs from (4} and (5) that
(6) Q (#, 1)],, = max(|4],, |Bl,, [(l,)  for all p in 8.

Since 7, and t, have no common factor, the greatest common factor of »
and ¢ is net divisible by any prime in 3, and so we can clearly suppose
that this greatest common factor iz 1. IHence there exist integers g, u
such that ru—gt = 1. It is then plain from (6) that, by means ol the
substitution X = X'+ q¥', ¥ = X' -+2Y', we can ensure that

14}, = max (|41, |Bl,, |0],) for all p in &.

Now assume that 2 does not belong to 85 it will be clear thad o slightly
simpler form of the subsequent arguwment is valid if this is not so. We
agsert that by means of a substitution X = X'+{AY', ¥ = ¥’, where &
iy an integer, we can ensure that (%)

(N [Bl,<1lfp for all p in §.

For, if A’ denotes the least common wmultiple of the denominators of A
and B, then, since [4[, = |B], for all p in §, there exiyl integers j, & such
that jA'p,...p,~kA'A = A'B; it is therefore plain that the above
agsertion is valid with % = %, since the substitution changes £ into b4 4- B,
But now, since D = 44C—B? iy an integer divisible by 4, we con-
clude from (7) that [AC[,<1 for all p in §. Thus, by a substitution
X=ph...phX, ¥ =p; ... p; Y, we can arrange that

max (|4, [¢,)<<p for all p in §.

This inequality, together with (7), completes the procf of Lemma L.
We next establish an analogue of Lemina 1 for binary cubic forms.

Let F(X,Y)=aX+ 30X ¥+ 3¢XY*4-dY* be a binary ecubic form,

whose coetficients a, b, ¢, d are S-integers, and whose discriminant (%)

- (8) D == 30°¢ — & * — dac® — 45 d -+ Gabod

is a rational integer divisible by 4.

) Note that by taking powers of py,...,ps, we can in fact wmake |B|, arbi-
trarily smadl. - '

(*) Wote that this definition of the discrimpinant differs from the usual one by
a factor of 27. : .
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ToMyaA 2. By @ substitution of the form X = X'+ qY, ¥ = X' +u¥,
where 7, ¢, 1, 1 are S-integers with ru—gt =1, F(X, ¥) can be transformed
inte w cubic form

,F”{_X’, :Y’) _.-:; aﬂx!5+ SbeIZ 1":_1'_3,01131 1~»r2+d; 1;-,.3
such thot
max(|a’l,, 167, 16'],, d,) < p° |DYRE for all poin 8 (7).

Proof. Liet Q(X, ¥) be the quadratic covariant of ¥ (X, ¥) defined
by
V| #¥ NV FF @F
.." Y e cmmnmern e | e .:‘72 > '2-
WL X) 1( f)xu.)f) A a.w} AL+ BIY-OF
It is readily verified that

A o= B ey B = I)amad, = c‘l_bd, D = 440~ B,

Thus, as A, B, ¢ are clearly S-integers and D is an integer divisible by 4,

- we cah, asgume that -

(9) wax (14, |Bl,, [€),) <p  for all p in 8

for Lemma 2 shows that this can he achieved by a transformation of
the specified ¥ypo. '

Lot A4 be the leayt common multiple of the denominators of a, 38, 3¢, d.
By omitting certain primes from § it necessary, we can suppose that,
for each p in &, not all of da, 34D, 34e, Ad are divisible by p. In the
following, we shall assune that both 2 and 3 belong to 85 a slightly simpler
form of the subsequent argument is valid if this is not so.

We agsert that, by weans of a transformation of the specified type,
we can ensure that

(10) max{|Al,, |Bl, |0,) <p* for all p in 8,

- and

(1) p0fal, = max(laly, (Dl lebs @), 1Bl <p™"  for all p in S,

with » any given posttive integer. To prove this, we first observe. that,
for cach p in &, there exist integers 7, t,, with no common factor, such
that

(12) 1];‘7(',\"1” I"‘n).hf o 3'1“1‘X(|%n'133|2‘n IBﬁ‘I” ]dli’)

This ix obviotws if either Aa or Ad is not divisible by p (take r, and £, to be 0
and 1 approprintely), and it is also obvious if both da, Ad, and one of
34b, 3¢ i divisible by p (take r, = 1,4, = 1). I p #2 and neither

) 172
@) I p 2%, s hownd can bo replaced by p*Dlp .i .
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of the previous two cases holds, so that Ada, Ad are divisible by p but
34b, 34¢ are not, the assertion iy still obvious (take », = 1 and chooge [
so that p does not divide ¢, and 34b+1,34ch. If p = 2, we can always
ensure-that one of the previous two eases holds by means of a substi-
tution. X = 2X", ¥ = 27'Y’; but then the inequality (9) when p — 2
must be replaced by (10}, Next, applying (12), a similar argument to
that given in the proof of Lemma 1 shows that, by means of a substitution
X =rX'+-q¥, ¥ = t&X'+-uY', wherer, g, {, ware integers with ry— gt =1,
we can arrange thab

(13)

!a'lp = 1?(121;X(|a;[p, lelm |36,w [dh.,) for all P in §.

Further, the covariant property of ¢ (X, ¥) and the fact that & tu
are integers imply that (9) when P #2, and (10) when p = 2, remain
valid. Having established (13), we asgert that by means of a substitution
X o= X'4+40Y', ¥ = ¥', where b is an integer, we can ensure that the

second inequality in (11} holds. For, if A° denotes the least common

multiple of the denominators of @ and 35, then since |a|, 3= 30|, for ali p
in 8, there exist integers j, & such that

JA' P Lo — kA g == 347D,

the assertion is then plainly valid with b = &, gince the substitution
changes 3b into ha+3b. If p == 3, all the previous inequalities hold after
this lagt substitution has been made, and if p = 3 it is easily seen that
(10) holds in place of (9) and the first inequality in (11) holds in place
of (13). This completes the proof of (10) and (11).

 Wededuce from the identity 4 = »*— ac¢ and (10), (L1} that lac], < p°,
whenee by (11)
(14)

lel, <p* for all p in §.

This fact, together with the second inequality in (11), shows that |be], < p°,
and s0. we conclude from the identity B = be—ad and (L), (11) that

(15) dl, <p*  for all'p in .

In the remainder of the proof, we need only congider those primes
in § for which

(18) max (lely, |@l,) < 27 DL,

sinee, for those primes in & ot satisfying this ivequality, we conclude
from the identitiex A4 = I*—ac, B = be—ad and {(10), (11) that |a|,
gyﬁD]; Y%, whence the assertion of Lemma 2 is valid for such primes.
Further, we need only consider the primes in § gatisfying

(17) ICl, < 2™ Dly; -

icm

An effective p-adic enalogue of a theorem of Thue I1I 431
for the identity Bb— de¢ = Ca and (10), (11), (16) show that la|, < p°|D[;¥*
for thoge primes not satisfying (17), and so the assertion of Lemma 2
holds for these primes. _ .

Tt is clear from (10) and (17) that, for those primes p still requiring
consideration, we have |4.401, < |D|,, whence we deduce from the identity
440 —B* = D that :

(18) |B, = D>,

"

In particular, it follows from this last equation and (11) and (16) that
|B], > |belys but then the identity B = be-— ad implies that

(19) |B, =

Now let # he the product of powers of py,

lad),.
vy Pg Buch that
(20) Pl A, < p

for all those primes p in & still being considered. Then, as via = ad/(d/v?),
we conclude from (18), (19), (20) that

pHDEE < ot al, < p LD

(21)
Further, we have e/v = v?ac/(av?), and so it follows from (21) and the
inequality acl, < p® that -
(22)

lofol, < p* D15
But now the substitution X = vX'+0¥', ¥ =v~'Y’ is of the rqui:red;
type, and transforms a, b, ¢, 4 into

via, wa--2bo-cfv, - via-- 3bv-3efv+ e,

regpectively. By virtue of (11), (20), {21}, (22), it is clea.}‘ that the cubic
form, obtained after this substitution, satisfies all the agsertmns of‘Lemma 2.

We can now give our generalization of the classical rec}uctwn the?ry
of binary cubic forms. As before, let F(X, ¥) = aX*+3bX .Y—l—&thY’-&—
+d¥Y" be o binary cubic form, whoge coefficients a, b, ¢, ci!_ are S-integers,
and whore diseriminant D, given by (8), is an integer dwmlble by 4.‘ ’

PrenoREN 3. By @ substitution of the form X = rX'+ ng, ¥ =X +-ul,
where v, q, 1, w ave S-indegers with ru—gb = +1, P(X,Y) can be trons-
Jormed dnto o euble form

FX, YY) e o X030 XY -3¢ X Y4 a v

v a-- bo,

with

~12

18X (@, 1By 1€']s W]} < 2 (DM for all p in 8,

max (la'], '], &'}, [@]) < 37 {p1 ... peF 1D
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Proof. Lemma 2 shows that, by a substitution of the type specified
in the theorem, we can ensure that the first set of equalities is valid,
Agsuning this is so, let A be the least common multiple of the denomi-
nators of a, b, ¢, d; evidently
(23) A< H AP < (D pF 1D
The cubic form AF(X, ¥) has integer coefficients and digeriminant 4*D,
Hence (cf. [1], p. 196), by means of a substitution A7 = rX'4-4¥",
Y = X' +u¥’, where 7, ¢, t, u are inbegers with sy gt = -1, AP(X, ¥)
can be transformed into a cubie form with the maximum of the absolute
values of its coefficients at most |3° 4D\ Dividing this cubie form
by 4, and noting (23), we have clearly proven Theorem 3.

II. Proof of Theorem 1. Let x, ¥ be integers, which are not both
divisible by the ninth power of any of py, ..., Pe, satisiying the equafion
yt = 78+ k. We first modify this equation. Recall that f is the largest
integer, comprised solely of powers of p,, ..., p,, which divides k. Suppose
that ¥ == p®t%__ p®%%, where d;, e (L<i<s) are non-negative

_integers such that 0 << d, < 6. T}ms, if we put

o = mf(p¥r... P2y, oy =gyoin .0k, B o= Rfiplt ... i),
we have

(24) Yt = sk
We denote by F(X, ¥) the binary cubic form
| X8 XY 9y Y.

By virtue of (24), the diseriminant D of F{X, ) is equal to — 4k, and
the coefficients of F(X, ¥) are S-integers. We can therefore apply the
reduction theory given in § II. We conclude (ef. the proof of Theorem 3)

that, by means of a substitution X = vX'+¢¥", ¥ = tX'+uY¥Y’, where

7, 4, 1, % are S-integers with ru— gt =

41, F(A, ¥) i transformed into
. & cubie form :

X YY) = aX4- XY X Y0 X7

with the property that, if A denotes the least co%nnon multiple of the
denominators of e, £, ¥, 8, then

(25) A< PE[DI®,  max{{dal, 48], |4y], |40]) < 3HEPDPE,
The argnment now divides into

two cases, according as J'(A7, Y) is
rireducible or not. :

icm
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Suppose first that F' (X, ¥') is irredueible. On equating the coefficient
of X in the eguation ‘

(26) AF'(%X——QY; ~tX+¢¥Y) = L AF{X, ¥),
we obtain
(27) Aoy — Afut - Ayui2— 452 = + 4,

Since F' (X', ¥') is irreducible, we can now apply Theorem 1 of [6] to
(27). We tale the primes specified in Theorem 1 to be the prime factors
of the leagt eommon multiple d of the denominators of « and #, and we
take x == 6(s4-1)+ 2. We deduce from Theorem 1 an upper bound for
max (|du|, |dt]), whenece, substituting this bound back into (27), we obtain
an upper bound for the exponents to which p,...,», divide d. Noting
that

< 81-102(s4-1)2, 2 < poi+Y D2, A<LP® u)lm,
we conclude that
(28)  max(ul, i) < M,

max (july,, ) < M~ (L<i<s),

where :
M = exp {2107(s+1)4’ plet+n? i Dilaﬁ{s+1)2}_

Now, on differentiating the idemtity
FrX' 4-qY X' +uY) =F (XY
with respect to X’ and ¥’, and substituting X' = u, ¥' = —1{, we obtain
37 == Saut—Spul-Hpt®, 3¢ = — 350—Dyut-| fur,

respectively. It then follows from (25) and (28) that
(20)  max(pl, lg) < M, max{rl,, lgh) < M (1<i<a).
(26), we have

430 = B(8ir*— ang?) - 2qr(fu— y1)+ ftgt— yur?,

=2y == ag®e- frof+yrig— ord.
Thus, by virtue of (25), (28), and (29),

Further, equating the coefficients of X ¥* and ¥° in

max (o], [y']) < M",  max(|a'ly, ¥']p) < H°  1<i<9).

p¥e), o' = y/(pi ... p}%s), and @ and y are not
.3 Py, this last inequality

But, as a' = a/(pi..
hoth divigible by the nlnth power of any 0£ D1,
implies that

maix (||, ly) < MHETD,

Noting that |D| = 4|k’ <P5(”+1)|k/f|, Theorem 1 follows ]mmed,lately

Atta Arithmetica XVI, 4 28
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Now assume that 7' (X7, ¥') is reduecible. The estimate (28) remaing
valid in this case, bub it does not seem possible to prove it by an elementary
argument, as is done in the analogous situation in 1]. However, it can
be established by modifying the work of § V of [5] and § IV of [6] so that
it is applicable to redncible cubie forms with three distinct linear factors (%).
In the mext paragraph, we shall indicate the significant changes that
must be made in the arguments of §V of [5], but we shall leave the
detailed verification that (27) implies (28) to the reader. Note that
(X', ¥') does indeed have three distinet linear factors, since ifs discri-
minant D = — 4%’ is not 0. It ig also clear that, once we have established
{28), the conclusion of Thecrem 1 follows by the same reasoning as in
the preceding paragraph.

In the notation of § V of [5], we must 1here1'ore consider an equation
of the form

S (= @) (&' — 0" (& — oY) =m0,

where w,, as, 05 are distinet, and the field K = @ (., oz, o) has degree
n < 2. Here o',y are S-integers, and m” i§ an 1nteger satistying \m' |ﬂ, =t
(1<<i<s). Asin §V of [5], we also use 8 = {| g, -
the set of valuations of K extending the valuations ! lygy oens | In, OF €
and we let %y, ..., n,_, denote S-units of K satisfying (89 of [B], Further,
we signify by & (1< j< n) the field conjngates of an element § of XK
in £,, and by K¢ the field norm of & Put

Py = {Ij ‘m'\‘r,‘}

We deduce, ag in § V of [51], that there exist integers by, ...
that y; = gy ... gire1 satisfies
llog (g " lyily) | < O -

max|by|, and we suppose that H, = maxIl;. Then, for
4 I

1/ (no)

B = m'_al?/’: 'm;! = Nf,

s Dyp.q SUCGH

(L<i< o).
We let H; =
some pair of indices 4, j, we have

log (¢ 18], < — (O, H,—
It follows from (30) that

Cy)f{no—1).

1881, = Cowy ™,
for some index I 7 ¢. Let k be distinet from 7 and g. From the identity
(aff) — o) B3 — (off — ﬁ"" = (off — oD,

(8} More frenerally, this work can be’ madlﬁed 80 a8 to be valid for any humry
form with at least three distinet linear factors, of. [3].

o | \me} to denote

icm
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we obtain
A e = o,
where
) 40y 00 (D) __ U a0
b]c — b;k‘_bh]ﬂ; o = _(H‘FL aﬁq )yl_ - ((Lz c‘,‘hl)ﬁ /h

{a (9),_a(f))?,( ( P a(?))ﬁ(?) 0"

i Vi
Since now [, < 21, all the subsequent arguments of § V of [5] and § IV

of [6] are valid without essential change, and (28) follows. This completes
the proof of Theorem 1.
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A congruence for the second factor
of the class number of a cyclotomic field (Corrigendum)

by

L. Carrrrz (Durham, N. C.)

L@t h denote the clags number of the cyclotomic field Q(Z), wher-
£= "™ p > 3; also let Ry, hy denote the fivst and second factors, rese
pectively, of the class number. It is proved in [1] that

B = L hy (modp),
where

G = (=11 2™t2G 10 (modp).

Tt has been pointed out by T. Metsinkyli [2] that @, s incorrectly defined
in [11. The error oceurs in (2.9); it is easily seen that the left member
should be multiplied by ¢“. Consequently the left members ol (2.13),
2.14) and the formula at the top of p. 31 should all be multiplied by 7.
It follows that .

Go= 19" (1=0,1,...,m—2; 0 =1,2,...,m—1),
go that G, is the difference product of the quadratic residues #1 of p.

The last paragraph of § 3 should be omitted.
On p. 28, line 8, h, should, be replaced by 7.

References

[1] L. Carlitz, 4 congrusnce for the second faclor of the class number of a cyclotomde
field, Acta Arith. 14 (1968}, pp. 27-34.

r2] T. Metsdnkyld, Congruences snodulo 2 for olass number factors in eyclotomio
fields, Annales Academiae Seientarimmn Fennicae Series A, I. Mathematica 453
(1989), pp. t-11. '



