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On the divisor-sum problem for binary cubic forms
by
G. GrEAVES (Reading)

1. Introduction. Let the numbers
(1.1) 10, < U< Sy S er

be some particular sequence of positive integers. Following the work
of Dirichlet on the sequence a, = n, one enquires whether or not ong
has, as Z — oo,

(1.2) : D d(a,)~D,N(Z)logZ,
‘ <2 .

for some constant b;, where ¥ (Z) iz the number of a, not exceeding Z
and d(n) is the number of positive divisors of n. Several such problems
have heen considered in the past; we mention the case @, = |f(n)|, where
f(n) iz a polynomial of degree not exceeding 2. A result of the type (1.2)
is then obtainable by a well-known elementary method; for a more ad-
vanced techmique, and for further references to the literature, we
mention the paper [3] of Hooley. His results give, for the polynomial
fln) = a4 a (o = — &%, a formula

(| f(n}i) = b 2"2logZ + b, 2" + 0 (Z**10g2 Z).

(m)i<Z

kis method depends on a consideration of the exponential sum

(1 .:.’;) 2 2 G’Awigufl
P AT Lequa]
Flag)sad (mod §)
and ig applicable when f(n) is any irreducible quadratic. However, the
problem of obtaining corresponding resulty when the degree of f(n)

exceeds 2 appears to e very havd. The best known result in this. direction .

ig that of Hrdos (2], who establishes, for each irreducible polynomial
fm), the inequalities ‘

b2logZ < 3 a{f(m) < bZlogZ.

lenaZ
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‘We ghall here tarn our attention to the problem when the sequence
(a,) is given not by a polynomial in one variable but by the numbers
representable as a, = |f(#, s)|, where f(r, s) is a binary form and the a,
are counted according to m111t1p1101ty of replescn’r.mtlon 1101 the general
sequence (a,) the sum in (1.2) iz given by

(1.4) Sdmy=3 ¥ 1= 3+ 3 ~ Y

ey ety Ity g2 ozt meglid
o1 . —y . .
=2 3 ¥ 1- 3 2 1,
Vg2 apeRE Lol MY g b 2
Leles thy 520 (MO ) i ()(mml i)

whenee it appears we should consider

Y 1= ¥ 1,
fir )< pdsl | e
J{r.s)=0{modl) Fle,b)= O(mot
for 1 <1< 2'?. In the case when f{r,s) is a definite form, of degree,
say, an elementary lattice-point method leads to an. asymptotic estirate

b ZM 1B 0 (2P (1)

for the inner sum on the right, but this becomes imprecise when I 2'".
This elementary approach will thus fail when » 2= 3, the more so ghould
the form f(r, ¢) be indefinite. Nevertheless it will in fact turn out to he
possible to obbain a result of the required type in the case » = 3. The
method. depends on a. congideration of the exponential sum

8lg, h; 1) = 2 exp(2mi{gr+hs)/l),

<r,a=i
K, a)so(lnodl)

which may be compared with (1.3), Hlere, however, we shall obtain an
estimate for 8(g, h; 1) for each I, and ultimate success depends on the
fact that the resulting estimate for

2 18(g, b D)

leglall

is relatively more powerful than that obtainable for the sum (1.3). However,

the fact that we are working with a binary form rather than with a poly-

nomial in one variable introduces complications in other directions.
Throughout flz, y) denotes a fixed binary cubic form

f( ?"/) = a‘l)ma"',r"' a:m“y+ o Y 24 agy“
irreducible over the integers, ha,vin.g non-zero discriminant

D = ajoi—4a,ad—4ad a,— 270k ol - 18ay oy aattg.
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We define 4 = a,0,D. We assume that D < 0, so that the curve f(z, 4) = 1
bas just one real agymptote, omitting consideration of the case D > 0
save in the statement of the final regult. We do not consider the related
problem ariging when f(z,y) fails to be irreducible over the integers.
For brevity of notation where no confusion results, we frequently
omit the argument of f(z, y) or of f(r, 5); », s denote the integer variables
corresponding to the real &, y. Thus (1.5) below reappears ag

=X a(lfl).

=2

Other abbreviations used include the notation &% = ¢(x). Certain Timit-
ing operations are to be interpreted sbccording to the instructions

oo. [ o0 oo =]

=lm 5, X =23 ¥,

y=—00 oo =G g,h:—m o= 00 Nl —
with possibly some additional restrictions on the values assumed by g, &.
The Landaun symbol O implies constants that depend at most on the
coefficients in f and on e which as usual denctes, on each appearance,
an arbitrary positive real number, to be thought of as being small. Z de- -
notes a continnous positive real variable to be understood as tending

to oc; # i a subsidiary variable on the same footing as Z.
Our actmal result is an asymiptotic formulas for

(1.5) | I - alifer, ).

f(r8)|<Z

The respult appears at the end of Section 7. We do not claim that the
estimate O(Z°M**) for the error term in it is anything like the best
possible; in fact we believe that an appreciably better estimate for it
should be practicable by suitable improvements in the analysis we use.
Here we concern ourselves merely with obtaining an estimate 0(Z*4-?)
for some & > 0. Accordingly we make no attempt at further precision,
when estimating quantities that only confribute factors of Z° to the
final error fierm.

The corresponding problem for binary guadratic forms has nof,
pechaps, been considered from quite the present point of view in Lhe
literature. For thoe definite quadratic z®-- Yy, hOWGVGl, the problem iy
gimply that of asymptotically estimating Dld{n)r{n), where r(n) is the
nwnber of representations of n as #2--s% and this is very closely ralated
to the problems of estimating 3'd?(n) and 3'#*(n) that were considered
gome time ago by Wilson [¢]. His methods take advantage of the muléi:
plicative properties of quadratic forms and of the resulting properties
of the appropriate Diriehlet seriey.
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One source of difficulty in our problem is that as the form f(w, ¥)
iy indefinite the function |f(#, )| does not have countinuous derivatives
on the asymptote of the curve |f(w,y)| = 1. Another is that the region.
|f(e, )| < Z is not bounded. For these reasons mogt of the work will
involve, instead of [f{x, ¥)|, a related fuonetion m(x, v), with the defi-
nition of which we commenece the argument.

I am greatly indebted to Professor Hooley for much valuable agsiy-
tance and encouragement during the preparation of this paper, the
substance of which formed part of my doctoral thesis (Bristol, 1967).
My thanks are also due to the Science Research Council for financial

support.

2. Preliminary definitions and lemmas. Since-we ave supposing that
the curve f(z, ¥) = 1 hag only one real agymptote, we can choose a real
non-gingular linear transformation

(3.11) 5= autfo, y=putio (ad 8y
- guch that the form f(w, y) transforms to
(2.12) W, v) = flaw-po, yu-+ 0v) = v(u?-e?),

30 that the real agymptote is now the line v = 0. Let 2 = A(Z) be a real
mumber, to be specified later, which depends on Z and satisfies

(2.13) 3< i< P, A oo ag Z — co.
Define

8 1/2 3..'.. ;12 32
2.14 )/ = |—— LSS ISRy )).} [
(214 ) (27(1+Aﬂ)) (’“’ T ’”)

The line-pair |u| = A|v| divides the (u,v)-plane into four sectors. We
define a function = (w, v), differing from |k (%, v)| only in the two smaller
sectors that contain the asymptote v = 0, by

|| < Ajol,

(2.15) ol h(w, v} if
. iy V) =
'9) | > Aol

| k(w,w) i

The funetion m(z, ) will be that obtained by transforming back to the
(z, y)-plane by (2.11), so that it satisfies

(2.16) ' m(au -+ pv, yu-+ ov) = niu, v),

which defines m(z, y), since ad == fy. Let %{u, v) meanwhile transform
into g(w, y), say, so that g(», y) is given by

@ _ g(aw-+po, yu+ 8v) = k(u, v).

icm
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Make the further substitution

wh o= wt- 20, gt = (14-1%)07

g0 that
h(u,v) = ?7(1/)g+?72)/1/5m_2, '
and
7 o 8 L 2y 3 9\8fa 2.2 213/2 1/"""“_5
(0, 0) = 7L 4% (b an ) = G o ) VL2
Thus
4,
2.91)  TE(u,v)— R LAY P R
( ) o® (w4 v) (%, v) SRR 37'} }‘27 W
= ___;1__.__ (m®— 12'02)2(81024- (94 Az),vz)
27 (L4 4% ?

whence it appears, since k(u, @) = 0, that
(2.22) {2, 0)| < F{ow, o),

with equality only when || = Alv|. The region |k{u, v}] <2 can conge-
quently, for any #, be digsected into the three dizjoint regions

Fi(e) = {u, v: [h(n, v){ <2, |0l < Avl},

(2.31) Foley = {u, v: b{u,v) <2, |u] > i},

o) = {u,v: H(u, )| <2< k(w,0), |uf > A},

Application of the transformation (2.11) gives a corresponding dissection
of the region |f(z, )] < # into three disjoint regions #,(z). The inequality
(2.22) and (2.16) give |k (u, v)] < n(w, v), with equality only when |u| < 4 |v].
Henee |f(@, y)| < m(w, ¥), and the #,(z) ave given by

A.(3) = {w, y: \fl@, y)| = m{w,y) <2},
(2.32) Ao (@) = {2, 4 |[(2, )] < m(z,y) <2},

H(2) = {w, y: |fa, p)] <z < mw, )}
Further, denote by L the line-pair

(2.33) L o= {o,y: |do—fy| = Ay~ ayl},

_into which |u| == i|v| transforms under (2.11).
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The reader may find a geometrical interpretation of these defi-
nitions helpful, The curve k(w, ¥) = & is an ellipse, which, as appears
from (2.21), touches the cubies |h{y, »)| = 2 at their intersections with
the line-pair |u| = ||, which lie, for large 4, cloge to the asympliote v = 0
of the cubics. The configuration, in the (@, y)-plane, is illustrated in the
figure. ‘

R

Subdivigion of #,(2) and #,(z) into the regions #/ (2), cte., is per-
formed as the figure suggests. Aswign the points of &7y (2} to &) () or &, (2)
according ai v 2= 0 or v < 0, and those of .97, (2) to 577 (2) or &5 (2) according
as % >0 or % < 0. The regions % (2), ete., of the («, y)-plane are then
given by applying (2.11), so that for example
(2.34) #f () = {w,y: (2, 9)e # (2), (yir— ay) (fy-—ad) i 0}.

It appears that the level-eurves of the function (o, %) have avery-
where conbinuously turning tangents; the analybic stalement of this
- property, together with other iutormation on the function m{w, y) that

is requived, is eontained in the following lemmas.

Lrwma 1. (i) The function m(m, y) defined in (2.16) and iis first partiul
S m o Om K . . i .
derivatives o By ewist  everywhere amd ave continuous  functions
of z,y.

(ii) The higher derivatives of m(m, y) ewist ecxcept perhaps on the lines I
given by (2.33). In the region miz, y) < 2 they salisfy the imegualities

icm
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’ % 2 ‘
dm’ d'm - 0(2‘&]3321:});‘ B_ﬁ_’t'_, ) rm’ 0(/14\[32,1)3);
0’ oy d* 8f.y

(2.4)
P*m Fm
o ez (H(AZ)
oz 1 oy 9
(i) It suffices, on applying the transformation (2,11}, to establigh
the corresponding properties for n{w,v). But, for exaraple,
(12 30 xigno it (| < A,
1/2 1;5 %_“ Z’Q 1/2 f
[ —— 3 _2’2 (2 e e rvz ‘| N >A 7
(sic5g) o ao (P50 > 21,
where signe = o/|o| if » % 0. It suffices to consider the possibility of
a discontinuity aecross the line segment 0 < u = Ay, where, however,

9 Yz
[om) o eles

3+ 4%
2

11/2
@z.) = (3472)0° = (u3+30%)signo.

on . . an
Hence 5o 18 everywhere continuous; so, similarly, are T and =,
v : %

(ii) Tt suffices, on using (2.11), to extablish the corresponding ine-
qualities for all the pactial derivatives of n(w, v) that are of the appro-
priate orders. The inequalibty = (u, v) < 2 Impliey

(a) when |u]| < A]v|, that |o(u?--2?)| < 2, so that

(2.61) Clul < AP e = 0y, ol < 2P,
and '
) . 8 12 31 A2 3{?
nr T IR o) o«
(b) when |u| > Alp|, that (27(;1_4“,12)) ( -} 5 v) 2, 80
that, since A > 3,
G40 MR ) .
(2“3) U A == 0( TER I . .‘_I:?JM“.Q,Z) . (‘)(Al“zl].))'
Trom. (2.5) woe have
in
e (B
bo { )s

and it can be similarly shown that

.

()u = () (AL/‘J .\‘4’“2‘,3) = () (12/3 z‘)./.'s) .
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For the higher derivatives we have for example that

611}] it |u1</’t|'v|,
\ . I'ﬂ'z gll:!
1+ﬂ?' {3+1)(“+ 2 ”) ’
3 222 2 AT
‘“(”";Ta)_( )(z+-_+.__ ) } it ul > Al

== () Zd.]izlfa)
by (2.6), and

Buigne i |ul << Ay,

= Ve sy 94 3.4 48 4R
-83% B (_ __%___) {_3_ ( ?ﬂi_ v)}ﬁ)w (2/”) ('&1'12 ,_{__ ‘% } ﬂ. fuﬁ) —

R A “ i
(3 3422 A
S ] P } i ful > A

= 0(1),

Similar results hold for the five other relevant derivatives, and the result
of the lemma follows.

Levyma 2. With the region #y(2) as defined in (2.32), we have

(2.71) [[ dndy = O 3)
Hg(2) )

(2,72) 31 =0,
(7,84 (2)

the sum being over the integer points of %,(Z).
‘ Use of (2.11) gives

dody = |lad—
W{(Z) zdy = |a ﬁﬂj[fc&udu

In. the region %,(z) the equations (2.81), (2 12) and (2.14) give, for some

constant ¢y that o] <z2/u? and |u| = ¢, (A2)Y", Hence
0 #fub
(2.73) dndy = O At = () (M M
! gé{z) y (GI(A!)”S(ZH f d'n) O (7 A,

Proceed to (2. 72). Let us denote by #,(z) that subsel of #,(2) in
which {y| < &%, and by #(z) that in which |y| > #* Then #,(z) has
aren O(°/11%) by (2.71). Also, a gimple argument shows that iy peri-
meter is O(z”i"). Hence, taking 2 = Z, - ‘

(@.74) 3 1= 02 i) 4+ 0z
(7, 8)eRy(Z) .

s O(ZIIS/ATL[S),

icm
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since ‘we speeified A < Z'2 in (2.12). 1t is shown in Chapter 1 of [4] ﬁha.t
1= 0(Z"),

0 fr, 8y 2
o} 2518

and the same method gives
1 = O(Z").

(i, )5 (2)
With (2.73), this vields (2 12).

For the subsequent development of fhe argumment we require one
further lemrma, 2 version of the Poissont sum-formula, in which we use
the following terminology. Call a region 7 of an (z, y)-plane simple if
it is enclosed by a simple closed Jordan curve, traced by (1), ¥(1)), say,
guch that x(f) and (1) have a finite number of turning peints, It then
follows that the boundary of a simple region is met by any line parallel
to an axis, the y-axis, say, in a finite number of points. The cage of Lemma 3
in which 4 is the circle #%-1- 4% < a and 0{x,¥) = a—a*—y? iy established
in [B5]; we adapt the procedure used therein to our purposes.

Lpma 3. Suppose that o function 0(z, ¥) is continvous in a simple
region I including its boundary, on which 0{z, y) = 0. Suppose also that 7

con be divided into a finite number of simple sub-regions 7, such that in
b2 o2

the imterior of each T ; the functions —— and

—_— e CORLINUOUS
Ox? ay?

and bounded, Then

3 0(r,s) = 2 ff (g han) B (z, y) dody .
(r&ed gh=—~0a F
Here, the infinite summation and the notation e(e) have the signi-
ficance described in the introduction.
‘We have first

o b
(2.81) D fley= 3 [elfydy,
eangTh f=z—-00

cevlainly valid if f{a) = f(b) = 0 and f(y) is confinnous and of bounded
vartation in ey < 0. A proof is indicated in [3). For each o define

O (x) = 2 0(x, s},
(0, 'f)t!f
the sammation being over the indicated integers s, A finite number of

applications of (2.81) gives

(2.82) O = > |

[ A U)E'Ef

e(hy)0{w, y)dy.
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Sinee #(w, ) vanizhes on the boundary of 77, integration by parls gives

=L 0 e
- x, y)e(hy)dy.
._fmh (T iy

[ ethy)o(w, y)dy

(@,

il

Congider the contribution to the integral on the righl fromn one of
the sub-regions 7. The range of infegration eonsists of a finite number
of intervals (¥, ¥op); OVer any one of which

Yo g1

a0
o(hyy) = {m, y)dy
f ay
1 { il vaiy ML 040
e OURY) oo (YY) | elhy) - - {w, ¥ «,m}.
onih gy » 'fi':!f,' dyr 7 Yy
%0 a9 .
But o and —- are bounded in 77, 80 we oblain
By oy !
(2.83) | T elhy)0(a, ) dy| < eafh?,
(ir, pye?”

for some constant ¢, depending only on " and. the function 0.

The region . iy conbained within sowe rectangle A - wa. Xy,
Y, £y ¥, and we may extend the definition of tha continoouy and
piecewise smooth function 0 (x, ¥) over it by defining 0w, ¥) = 0 outside. 7,
Then &(X,) = G(X,) == 0. Also we can show that @(x) is continuous
and of bounded variation in X <o < X,. For we have, for any dissection
X, =g <oy < ... <a, =X, of (X;, X,},

310 —0m ) = 3 | S w0 ., 9

1<i<n Led=in Vs Py

< O 10y, 8)—0(wy s 8,

Yyeiea Yy laison

which is bounded, in virtue of the conditions on ¢(#, y). Furthermore,

& (w)— ()] = 1 S 100, )00y 8],
J 'rllb;?_ﬂl s ]"2
which iy '.‘3]1121.;11 for small |g—a'|, Dy tho continnity of 0(w, ).
- Application of the summation formuola (2.81) to @ (») gives

o Xy

= 3 [ elgn)@(»
Xlgi'g;\; [T ‘\l

oo xz )

=2 Jio 3 G(QW-I—fay)O(w,y)dy;

fi=r-on Xl =00 (i, p)ed”
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by (2.82). We can, using (2.83), invert the order of h-summation and
a-integration, cbtaining '
S 0trye) = X [[elgnt-hy)b(z, y)dndy,
(r, 8 s 00 T
ag reqguired.
3, Preliminary decomposition of ¥),. We are now in & good position

to commence the investigation of the sum Xy defined in (1.5). With the
regions #,(Z) as defined by (2.32) we have

Iy = by aifn+ X alfh,

(1, 8)edty (Z)w Re (2) (r, &yads (%)

the .symbol f being, as explained in the introduction, an abbreviation
for f(r,s). Use of Lemma 2 and the estiroate

(3.11) d(n) = O0(n%)
gives
(5-12) Sy 3 AR O@ TR,

(ru)esh ) (Z)dy (Z)

Let the sequence (a,) of (1.1) now be that of numbers a, 1Lprbhentfmble
s
&y = Lf(’rﬁ S)l: (7.1 'S') E:%I(Z) (O 2% (7)

the number ¢ appearing exactly ¢ times in ( ,,) if it is thus representable
just ¢ times. By (2.32), the region %, (2) W # 2(2) s given by m(w, ¥) < 2,
and in it we have |f{z, ¥)| < m(,y). Hence the a, all satisfy an<Z
and (1.4) becomes

(3.13) 3 a{|f)
: &, a)emu)u% %)
(r,8)#(0,0)

=92 > 1= 3 A 0@ = 2X,— N 02,
15l msz Ltz Tl
Fei0 (modl) 0 (mod 1)

say, where the inner suing are now over the latitice points (v, §) ~— mclutlmg
(0, 0), whence the error term — that sabisfy the indic mto(l conditions.
Sinee we stipulated A< 2Y in (2.13) we néw have fvom (3.12)
(3.14) 3| e By My O (ZHME RN
The swns Y, and X, are both expressible in texny of the faunetion
{8.21) AlLyzym)y = Y 3 1

Lotede e ml®

F00 (mad I}

by the equations

( 22 )jB o A(ZU'-':/_{, 0), ‘)“3 - A(Z“l",Z"'“‘)‘, l)
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For any increasing function ®(z) denote by Dy, (2) ity second integral
(3.81) Py (#) fdzlf D {z,) dz,.
Inversion of the order of integration and the sumunation involved in
the definition of A (L, #, ) gives, in this notation,

(3.32) Ag(Lyz,0) = 3
Ll st
Fei 0 (00l 1)

1 a2
Fla—ml )",

Similarly, if we define

(3.33) J() = [[ dudy,
-

then

(3.34) ' Iy (2) ff (e—m)2dady.

Denote by (a, b) a typical root of the congruence

(3.41) fla, b) == 0 (mod I).

When + = a,s =2 b (mod ) make the transformation
(3.42) ro=a--IR, s =b+1§,
and define

Moy = My (B B) =

(w18, b-4-18).
Then (3.32) becomes '

(8.51) ALy zy0) = ) 2 D jle—M, 10
iisl lsebst My et
fla,b) 0 (mod?) *

Recall that the line-pair L given by (2.33) divides the region m < #
into the four regions #;' (), ete.; defined as indicated in (2.34). A straight-
forward argument shows that these arve simple, in the semse described
in connection with Lemma 3. As was pointed out in Lemma 1, the function
(%, ¥} can be differentiated any number of times in each of these regions,
Thus, on using (3.42), we see that we may apply Lemma 3 fo the inner
" sum in (3.81), to obtain :

(3.52) AL, %, a)
= 3 3 ¥ I ple—M, 0"k (an]—hl’)d}&fdy
ISl b g he=—00 My bazl“
Trzmsformmo back to the (», y)-plane by (3.42) gives
A(2)(LJ 2, a)

= 323 3 ] 2wy (Hemtiil =0 day.

=, 1 a2
il t, b gh=—o0 Ml

On the divisor-aum problem for binesy cubio forms 13

The tegion of integration is independent of a, b, so this gives

(3.53) A(g)(L, 2, ():) — ]““f z~2w2n. ]Z g(g’ h, Z)I(g, h; I, zzu),
jEAE= {fy emi e 020

( ga+ hb )
2 . 6 s ama e ’
bl !

=i,
fla, b)mo (maod 1)

where

(3.6) S(g,h; l) =

S(g, ks 1) is its complex conjugate, and

- hy
3.7) g, 1,4 = | f (ugwr——)(lmdy.

MELE

From the above expression for A,(L,2, a) an asymptotic formula
for it could, using what follows, be derived. The leading term. in this
formula would be that in g == h = 0, in which 8(g, k; 1) reduces to = (i),
the number of roots of (3.41), a.nd I(g, b5 1, 2) to Jyle ) a8 given in (3.34).
Accordingly we recast {3.03) a

(3.8) A(z)(L %, )

) 1. o
== :(w J oy (") + 5T Slg, by DI(g, by 1, 2%
ks Bt

1l 13 LT EN]

= (L, 7, a)+ 2 (L, 2, 0),

say, where the summation over g,k is to be interpreted ag indicated in
the introduction. What will actually be derived is an agymptotic formula
for the second z-derivative 4 (L, 2, a) of 4 (L, 2, ). To this end we need
agsymptotic expressions not for Ji(2) but for J(z), and for the resulting
gums over . We also need upper bounds for S(g, h;1) and I(g, 2; 1, 2)
when ¢%---h* > 0. These topies form the subject matter of the next three
gections.

4. The integrals I(g,h;7, 2) and J(z). Fixst eonsider {2}, a8 defined
in (3.33). We have :

J(@) = [f dedy+0( [f dudy) = [[ dody--0@*P [,

|f]=m Hy(e) Wi :
by Lemma 2. The lagh integral was evaluated in Chapter 1 of [4], and
we obtain (bearing in mind that in [4] the symbol D hag o dilferent
Imeaning)

(4.11) () = g O (8 [RF),
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where
Vs I*()

(412) (53 :‘:.. véT[)“/‘ﬁ - -m—(.:

When g2+ %2 >0 we shall establish
(4.2) I{g, b3 1y 2) = O (125 (g 1257,

Suppose, for example, that ¢ £ 0. ’.Dhen'

1 . b | g by A
g, ki l, 2) = . WJ’ W;fi (#-—m) - o 0(( = ) dudy
()2, ) dm\*) g |- T
= ’; jf{ . (r ) }(- ( g I- K ) dedy,
dntg? v ()m e !

the two integrationg by p&rts being permitted by the results of Lemwow L.
Now congider separately the contribution from each of the wub-regions
&} (2), etc., defined ag indicatied in (2.34). Over any one of these, denoted
by %, say, a further partial integration shows that the contribufion to
Lig, b3l 2) is

13 {(z__m) .ﬂ".’ﬁf’i"’__(_“’_?’i)q}e({f”t!;ﬁy),mm

da* dw
r)s 0m % q'r~+ah,r;
8mlig? ff{ '—%E —8- oz ‘()m?}e( i )d iy

the first integral being one round the boundary of #. A simple argument
based on (2.6) shows that

Jaa=oran,

while (4.1) gives
[fdedy = 0.
E

Estimates for the integrandy in (4.3) sre provided by Lemma 1, and we
find
I(g, i1, 2) = )( PELt ).

We supposed ¢ + 0; a gimilar inequaliby holds if & .4 0, and ( 2) followy.
We algo reqmre the trivial estimate

(4.4) ) I(g, bl 2) = O
this follows from (4.11).

On the divisorsum probiem for bingry cubis forms 15

5. The sum 3 () *". Asymptotic formulae will be required
1l
for this sum when a = 0 or o = 1. These expressions will he derived

vin an appropriate consideration of the Divichlet series

N

(5.1) CT(s)y = 3 (U,

7

which, for some s,, converges absolutely when s> s,. The trivial esti-
mate 7(1) < I* shows we can take s, = 2; it will however appear that
8, = 1 i begt possible.

First, we require the following lemmas concerning the values agsnmed
by =(l). Define _
(5.2) g(w) = flx, 1),
so that g(z) is & polynomial in irreducible over the rationals, having
diseriminant D and leading coefficient a,. Denote by g(I) the number
of roots of the congruence :

g(r) == 0(mod 1).
LeMMA 4. For any prime power p* we have
e(p") = O(1).

There is a proof in [7].

For the number «(I) of roots of Lhe corresponding  homogeneous
congruence the following result holds.

LeEMMA 5. With o(l) as defined above, we have

() if p s prime and pfa oy,

T(p} = (p—1L)e(p}+1;
(ii) for any prime p,
. -,5*( !,). — 0(194:»/3)'

(i) Since pta,e, the roots r, s of f(r, §) == 0 (mod p) satisly either
poe=g o= (mod p) or (r,p) = (8 p) = 1. thm {# p) == 1 the substi-
tution # = ws (mod p) shows that, given s, there are ¢(p) solutions for

7 {tod 30)

{ii) For any r, ¢ define A, 4, 1empomr11v abandoning the netation of

(2.13), by

Y=, 2= (5,0,
Congider first those voofw for which A, g2 »/3. Since A 0/3 s equiv-
alent to A ~[—»/3], the number of such roots is

- (5.81) ‘ PHLED) o (PR,
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Of the remaining roots, it suffices to consider thoge for which p < »/3,
# < A On making the substitution r = prry, 8 = pfey, we find they are
given by the solutions for 7,85, 4, # of

f@'ry, phs) =0 (mod g"), (ry,p) = (8, p) =1,

.32 ' . -
(5.32) L <™ I<a <p™", 0K u< w3, psd A

These solutions satisfy
Flp**ry,y 81) = 0 (mod p™*").

#

The substitution r, = es, (mod p"~**) shows that for given sy, 1, 4 the
number of r, satisfying (5.32) is at most O{(p* *--1) N}, where NV i1 the
number of roots of the congruence ‘

(3.33)  g(p" o)
‘ - _’p‘w'"“)afuma‘]“f)z(l—“)“lwz“{“j‘?i_“dg(-IJ—[— ag == 0 (mod pvn-ﬂn)'

We now show that N is bounded, independently of p, 4, u and ».
Define & by p’|la,. Then N = 0 unless min{i— g, v~3p} < 8. I v—3pu = §
then p"~ < ay, and ¥ < ay = 0(1). I A—pu< 8 then the coofficients
in {5.33) are bounded, and so, by & finite numbe¥ of applications of Lemma 5,
we again have N = O(1), -

Summation over the values of §,, 4 and u indicated in (5.32) gives,
uging (5.31),

v =0{ X 2 p

vl pAsly

Olp" 2 »* 5 o7y X p""21)+0 (p"")

Mrf3 iz penfl

E (L)) O (™)

= 0(p""),

ag required. :

Next, we turn our attention to ¢(p). With g{«x) as defined in (5.2),
let K (9) be the field obtained by adjoining a root of g{f) = 0 to the
rationaly, For all gave a finite number of p, sofficient information on
¢{p) is obtained by means of the following result, due to Dedckind.

Lemma 6. Suppose ptD, so that in K 0) the principal ideal (p) fac-
tomses as o product '

() =paPse Py |
of distinet prime ideals p;, where L < r < 3. Then p(p) is equal {o the number
of p; whose norm N (p;) satisfies Nip) = p '
Tor a proof, gee {1], for exarple,
We introduce the Dedekind (-funection of the field K(0),

0

(6.4) L(s) = 3 tm)/n’,

=l

e

icm
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where
=31
Na=n

the summation being over the ideals a of K(8). We use the following
estimate for the number of ¢ satisfying Na < 2:
LEMMA 6'. As 2 — oo,
3 t(n) = hye+ 055,
nEw
where hy == 0.

There is @ proof, by an elementa.ry method, in [8)]. Altermatively,
the more powerful analytic method described in [6] can be used. Bither
method in fact gives a result stronger than the above. This, however,
is 2ll that we require.

The constant h, is the residue at s = 1 of £(s).

With the aid of these lemmag we can first obtain a useful expresgion
for the Dirichlet series T'(s) defined in (5.1). For s > g, we have, since
(1) is a multiplicative function of I,

7y =[] T;?:)
» sl
o s 41'/5\) ( ) 1 oo 0 4ofd
= [T SO T v 2+ 25 3 A,
w4 =] vt : wml .

by Lemma 6, where 2 == aw,D. Hence

0 ) i —a(p) '
(551 Ts) mn{wz ;fis )}H{(lw%) }Rl(s),

n|a ntd

where, as follows after & little caleula.tion,

(5.52) Ry{s) mni m 4-2 0w™) }

wid Pz

The Eunotmu &(s) of (b.4) is expressible as an REuler product
= [T - @

When ptD there are, by Lemma &, exaetly o(p) prime ideals p with
Np =p, 80

_ LT e O o
= [Ja—we [T ohe S5+ 25

(s
pld wtd
Acta Arithmetica XVIL1 . / 7; ﬁ 2
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Thus (3.51) gives

o0 O(iov,':-l) e
— 14+ Y5 1— (Np)~*}.B,(5) By(s)
T(s) c(s)ﬂ{+% e H{ p)} Ba(s) Befs),
where o o)
> — R e ol L
By (s) 1];1{ g }
menes ?) o) | 0™
_; SN 20 S0
(5.61)  T(s) = Z(s) ﬂ {l—i Z: > H Lt 5 Z: e
= {(s)}.R(s),
gay.
We also express E(s) as a series
(5.62) R(s) = gl r{n)/n°
‘When s, > 5/6 (and s> s,) we have
S’g_(ﬂlj) = O (p~ =1,
= p‘*"

and Zw,“z‘”u;lfa’ converges, o that the infinite product (and hence the
series) for R(s) converge abgolutely, to a non-zero limit. To particular

(5.63) R(L) #0.
Let F(L) be the “coefficient-sum?”

FL) =

1t L

of the series 7'(s). By (5.1), (h.4) and (5.6) we have
M i FACS

10
e

1wl 1<ml
by Lemma 6'. Fence ‘
F(L) = hyR(1) L—ho L Z e —I—O(LS’“" Z E:r'('m)|/m5f°"")

m-di AT

= hR(1)L+40 (L“"”'"" 5;1 ir(m)|/m5/6+n)

==l

= hyR(1) L+ O(LF) = ¢, T+ o(L),
gay. Note that we have, from (5.63) and Lemma 6,

(5.71) ¢, = hyB(1) % 0.

icm

S UV

P S
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The results we require are now easily obtained by partia,l summation.
We have

(1) FH)—F(—1) F(1) F(|L))
B5.72 LA il el Sl
( ) JsEZSL B 1@%;‘5 i 1<i<L Hi+1) L+1
5 1 v(l)
= ¢ — 0 Lﬁl[ﬁ-{-z
41%) l+1\5(+)+( )
00 ) -_ .
= olog L+ ¢+ 2 gDy FOET
= ¢ylog L4+ O(L 1549,
gay. Also ‘
() F(l) - F(|L])
5. — 1
(5.73) 1@2{; = A g 4 00

= i¢ L”S-E-O(LI"'“)
‘We remark that it ig posszble to identify the constants ¢ and ¢, as

(5.8) & =G(l), ¢ =6(1),

where the funection G(s), continuous for ¢ = s, > 5/6, is defined by
G(s) = (s— 1) Z(s) B(s). '
This identification is, however, of no particular importance in the sequel.

6. The exponential sums S{g, %; 7). In a sense the preceding work
hag been mainly analytic; the principal number-theoretic content of the
argnment is in the derivation of upper bounds for the sums S(g, h; 1)
given in (3.6). These appear in Lemma 9; first we obtain an estimate
for a related sum S%(g, h; 1), subject to a special restriction on g, &
and 1.

We make the convention that the “greatest common divisors” (0, 1),
(g,0,8), (0, Ay %) and (0,0,1) are to be defined by reading ! for 0. The
results of this section then remain valid, where applicable, even when
gh =0.

Levmwva 7. Define

gt -+ hs )

S = Vg, h1) = l

lsraglirg, =1 (
¥, s)=0(mod1)

Then, if (g, by 1) =1,

801 = O{(f(—hy 9,1}
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Tf 1 = 1,0, and (I, 1,) = 1 then a familiar method gives
8O = 80 (1) 8 (L)
Henee

(6.11) 80Oy = [18%(p),

bt

and it suffices to establish the result in the case I = p“.
‘We have in fact

(6.12) SO = 5 eltlp)pld),

1ty

where (t) is the number of ineongruent solufions of

(6.13) flr,8) =0, (ry8,p) =1.
Let (¢, p*) = w. Then we shall ghow

g}r-}— hs =t (mod p“},

(6.14) p(t) = 9 (w).

For (f, p¥) = (w, p") and so there exists a « such that
wh = w (mod p*y, (&, p) = 1.

If », s satisfy (6,13) then +' = wnr, &' = us safisfy

(r'y 8, p) =1,
< p(1), and (6.14) follows.

gr' - he' == w (mod p*),

1o, 8 =

and 50 () < p(w). Similarly p(w)
Bgnation (6.12) now giveﬁ

(6.15) 8@ (p )j p w)

‘Il’lji

> et
té‘p

(f‘:P )=

= Splw)u(pfw) = p(p)— ("),

wp?

by well-known properties of the Mobius function wlw).

Since {g, k, [) = 1 we have for primes p dividing ! that (g, h, p) = 1.
For such primes p we shall prove that u(p®) and (p*") ave both
O{(f(h, g), p*)}. We may suppose that (g, p) =1. It then follows from
(6. 13) that for w == p* or w = p*' we have, exeept when @ == w ==1,
that y(w) is the number of roots of

(6.16) flw—hs, gs) = 0 (mod p*),  (s,p) =
Thus »(p*) is, for all ¢, the number of roots of.

| £f(—h,g) =0 (modpY), (5p) =1,
I, g), whence

and go is zero unless p*[f(—
' Ry g), 2}

(6.17) p(p%) = O{(f(—

icm

merae "
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When o> 2, p(p® ) is, from (6.16), the number of Toots of
SH—=h, ) +p" 78 fi(—h, g) =0 (mod p7), (s,p) =1,
and. so ‘ "
(6.18) w(@* ") = O{(fi—1, 9, p°)}.

When o =1 we can show from (6.13) that w(p°?) is the number
of roots of

F(l—hs, gs) =0 (mod p),

which does not exceed 3 unless p|f(—h,g), and so (6.18) still holds.

The result of the lemma now follows from (6.11), (6.15), (6.17) and
(6.18).

Luvma 8. If (kl, 4} = 1, with A = a,a,D (as in the introduetion),
and if Z'(k, 1) = 2(k, 1; #', &) is the number of solutions r,s of 1 <7, s < &l
(ry8, k) =1;r =78 __s (mod 1), f(r, 2) == 0 (mod &), wheref(r 8 =10
(mod b), {#", 8", 1) = 1 then

iy & (k, t) is independeni of the choice of 1',s" subject to the above
conditions,

@y 2k, 1) = O(%3).

Furthermore, if pll for all primes p dividing % then

(i) Xk, 1) = Ok).

As aid 8Y(g, h;1), Z(k, 1) possesses a multiplicative property. Put

k=[]p*, 1=]]p
» B

go that for each p one at most of the numbers » = »(p) and 4 = A(p)
may vanish. Define r;,, s;, (mod p*) by the relations

!
¥ _HZ 7«=+/I Ty

it
s"EZW 5, (mod1).

»
Then
(6.21) Ik, Gy o) = []Z(p*, 0% 1p, 83)-
n
If », 5 satisfy fin, s ) == 0 (mod p"}; (v, 8, p) _1 where y > 1, then
all the roota of _
flry ) =0{mod p*); {r,8,p) =1; ro=r, 8 =s(moedp)

are given, on setting r, = r+up®, s, = s+vp”’, by those of

(6.22) .y, fr, )+ 70 0 (o ),
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since ¢ > 1. Here p{a,D, since a,D|4, so for some polynomials A, B

Afry )f(r, )4 Blr, $)f.(r, 5) = ay D",
since @, is the leading coefficient and Ds® the discriminant of f(r, #), as
a polynonml in . Hence if p|f(r, s) and p|f,(r, 8) we have pls. Therefore,
singe p is also prime to a0,
(_f,,(’)‘, 8), Jolts 3)7?) =

Thus (6.22) has p roots. _ A
Consider first the primes p dividing !, for which 2 ;- L.
gives

(rys,p) =1,
The above

L(p*, p") =
{independently of 7,,4,), by an induction on . If p4l we have

1 = 0{p"™),
1, g p™, (rap) =1
Flr.g)=0 (nod 9*)

Z(p*, p} =

again independent of 1, s,.

The results of the lemma now follow on uging (6.21).

Next we obtain, for- some moduli !, an estimate for the sums
8W(g, k3 1) independent of the hypothesis (g, b, 1) = 1 of Lemma 7,

Lemma 9. Suppose (I, 4) =1. Set (g, b 1) =n, 9 =gy, b =75l
1 = gl,. Then '

S(l)(g, hyl) = {'.»1 (f(-——h; s G1)s )}

For

r-t-hys
Sgmy= 3 e(ﬁ4 =

legr, gl {r,8,l)=1
fr8y=0(modi)

A ¥ Y. 2
Sl Z““"“}' 1~) Z(ny Uiz, 81)

G (
1'&?‘1,51421,[7"1,81,11):54I 13
Flrga8y) =0 (mod 1y)

= E("?:r Zl) Su](giy hn_ll)

= 0 [9* |89 (g, ka3 LI}

X1, 1) being independent of #,,s, by Lemma 7. Lemwma 6 now yields
the stated result.

Now we are in a position to obtain an estimate for the unrestricted
sum S(g, h; ). Set 1 = k&', where (%, 4) = 1 and p|k’ implies p]. Then
(%, ') =1 and we have

(6.31) ' Sig, 1Y) = 80 = SSE).
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For §(k') we use a fairly trivial estimate. A procedure similar to that
uged to derive (6.15) gives

8k =u%f () (K /w O X p(w)],

wlfke’

where y,(w) is the number of roots of
flry8) =0, gr+hs =w (mod ¥,

in. which the second congruence, considered alone, has at most %' (g, by ')
roots. Set

(6.32) gk E) =8, W =K
then i
(6.39) S(F) = O 8'd(k)} = 0(6* K,

For 8(k) consider first the case where % is a power p* of a prime p
{not dividing 4). We have

8tk =
o lsir,sxki(r, 8, k)=p®
f(r &)= O(mod k)

()

Oonsider first the subsum over values of a satisfying a = »/3, for which
the congrnence condition is vacuous. Denoting by @, the least such o
and getting & = pk, the sum is

SOy = y B(Q'"”F hs)

£y
1r,6<kr=a=0(mod p 0} k

' gr,+ hs R
S e B I o RO
1y, 8y<hy L 1<ny <k [5 1

where 8, = (g, h, k,) and yp{n;) is the number of roots r,, s; of
gri+ hsy = &y (mod Ky},
that is to say y(n,) = 6,k,, independently of n,. Thus

{0 it &<k
(6.41) SO (%) = _ v
oo 8 =k.
For the remainder of S{k) we have, Séttiug Pt = A,
’ h !
S(l)— 8O (k) = (é’i”j_i.)
a<ay 1< agkm (.8 kid)=1 k/“i

F’ 87 =0 (mod ok, 43))

a< ap

B AY kool K
22( kAﬁ“@hqu
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by the procedure used in the proof of Lemma 9. Iart (iii) of Lomma 8
applies here to show (using the result of Lemma 9)

(k, &%)

| (6.42) S(k)— 8O (k) = 0{2 i &, (f(—hl, g'l), 7{:2)},

A{]c_
wherein
(6-43) 6_-1 = (gs hr ]5/(751 A‘J))J i = 6‘19“ I = 6.»1.}"’1: kz = 75/(7‘71 Aﬂ)é_-i-

Here, the term in A =1 majorises the estimato (6.41) for 8 (%), 8o thiy
provides an upper estimate for S(k) as well as for S (k)— 8" (k).

Read the definitions (6.43) as applying for all k, A4 (A|k). Then the
right side of (6.42), having been shown ta express S(k) for & = p”, dooy
go for all % prime to 4, by thé multiplicative properties of the functions
involved. . .

Observe that since 8,4k, 6|8 and (%, k') =1 we can by the defi-
nition (6.32) of &' substitute

g =703, h=203d,k
and obtain
‘ : k, 4% 8
(6.5) S(k) =0 { S AL (a9, 7«)}
Fitd

In the sequel, the only references involving S(g, ;1) will be to the
result of the following lemma, to the effect that the estimate for 8(g, h; 1)
implied by the above is in a certain “average” sense, not much. larger
than 0O(1).

LemMa 10. Define

Q(G:-L).= |8 (g, b3 D).

1€l D g2 - RB S
Then o
Q(G, L) = O(L*re@-t").

The above regulty (6.3), (6.5) give, using the sarme notation,
¢, I)
=o{rr ¥ » ¥

L=ki'SL ) (88 )2 (ot + RO

(8" 80K (T, A% A7 ([ (—hay g2) on))

Set % = dky, 80 (k, 4NA™ = (4% F) = & say, and let ky = ky/£6,.
Then ' .

¢@, L =0y 3 ¥y bX (88.4)* %y 84)

<L A= ot .
= Agﬁoﬁfod 5 R1AE gL (80,407 (0] 1)<E:

iom
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where d; = (f(—hs, g3), hs). Set b, = ;. Then the conditions of sum-
mation imply .
8y < LJ8 Ty AEB 1 Toy, 1521 < A{f(—hq, ga)} = O(G").
3

Insertion of the inequality bounding & followed by summation over
possible values of d; gives
Q@0 =0y ¥

T 5k A gy <L
A2=0mod &

88, A7 k! > 1},

2 )
PG (58 4

in which the inner sum is O{G/(s'6,)%. So after summation over g,,

by, 8', 6,4 and &, we find

Q& Iy = ofprgt 3 5 3 A7
wy<n ST Azg‘i}(’riodi‘)

But
A7 = 3 AP 31 =019,

<0 A%=0(mod & " A<D 2
=L fid

and if p,, ps, ..., P, are the distinet primes dividing 4 then
> 1 =0 pX 1} == O(L%).

ki<n pipg ..ot <L

The result of the lemma follows.

7. Completion of the proof. We hegin by obtaining from the results
of Sections 4 and 6 an upper bound, in the relevant cases a = 0,1, for
the sum X (L, 2, o) defined in (3.8). Let

. (7.1) G(Z) e lz—zajaz—z,'s#/s,

where 4 is the parameter of (2.13); Then by (4.2) and (4.4) we have
(1.2)  Z(L,2,0) =08 3 3 esgg by )

1<I<L g 1 R2<E(D
towst X2
l<i<h g2 a2
= 0 {3, (a)}+ 0 {1221 2, (a)},

PR (g - 1) |8 (g, bs ‘7’)[),

say. Here the summation over g, b in X, (¢) should be interpreted in the
first place in accordance with the conventions of the infroduction. However,
the definition (3.6) of S(g, k; 1) gives the trivial estimate

I8y, ISP,

and so the double series in (7.2) converges absolutely, and can accor-

" dingly be rearranged in any manner.
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For Xi(a) we have
' Zela) =0 Y a9,

JL
where
2 M= 2 > I8(ys kbl = Q(G(D), L) = O({Z&(L)}),
Ll Lleld pag?+h2 G L)

by Lemma 10. Henece, by partial summation,
0{ 2 E—-:!-]-r:-l-'.&ufiigl—[-e(E)} =0 (Lz---'.’,,’.'i x},’a’l)l & 0 (L‘lvl‘h‘z -2/3 ,14'/3'*"‘),

laflst L

(7.8) Zi(e)=

by (7.1).
Next, define

(7.4) b=

(LB

[8(g, 1; D {g* 4 1),

The condition g2-+h2 = G(I) of summation can, from (7.1), be re-expregged
a8

L (@R (g7 RO} = Gl(g* L BY),

G“I(Ic) being the funetion inverse to G{l). Hence, by the absolute conver-
gence of the series involved, we have ‘ : ,

D b= 3 (FrHE Y 1(g,h,m~2w*““

15IKE 2 h 1= fwl
PLEN ] bt L A2 .
where
2 =0 % ¥ 1S(g, b3 1Y) = o(sl+'mm{L G (8,
JEAT S oty ISISL .
ru—-l(s)

by Lemma 10. A partial summation now gives

Z‘ bz == O( —3i2-i-a{G—1 11-| s)_1 0( Ll-]—as_n/z.i_.,)

15T L BRG() 8> G(L)

— O(LH s{g(L)}—l,‘2+n) = O(Luﬂﬂs 143+ |-sl—2/8)‘
Hence, from (7.2) and (7.4), |

2 blllw—-uls < LL—-u{S E bl — O.(Llniun5,1/3‘\.51”2,’3)’
1alag L 11T,

gince 0 < « < 1. This, with (7.2) and (7.3), gives
(7.5) 5Ly 2, q) = O(LMegttepite),

We do not examine the asymptotic behaviour of Z,(L, 2, ) as such,
but first recover the behaviour of A(ZL,#, ¢) in terms of it. The differenc-
ing argament involved is based on the following well-known result,
the proof of which is straightforward.
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LeMMA 11. For any increasing function O(z) denote by AS}L@{ 2) the
second difference

@ (2-1-9h)— 20 {2+ F)+ D (7).
Then, when b >0,
Aa .’1@(2)( ) h’ @(g) gi)a,{p(z] (z)}

Doy (7) being the second z-integral of @(2) defined in (3.31).

Snppose henceforth that 0 < k < 2, and first take @(2) = J (2%, as
defined by (3.33), so that @y (2) =17*J, (el*). This gives, for some
0< <1,

A Tk} = BET {(5-+200)1% = R EP 2014 0(hf2) 4 0 )),
by the formula (4.11) for J(z2). Thus, from (3.8) and (7.5),
A8 (A (L

) a)_;

PR Tl Y = M {14 0 (hf2)+ O (A By O (Lo ptforeg2 ),

1€1<L

A second applieation of Lemma 11 gives

A(L,2,a) = ¢, ( Z’ -;7(2—}5){14- O (hj2)+ O (A1 | O (L2 Aot Te [ ph),

l=lsh

We wish to apply this résult in the cases I =2, s =%, a =0
and L =Z%, 2 =2"* ¢ =1 occurring in (3.22). In either case the
results (5.7) show firstly that the natural choice of &, viz.

I —1/3 -
b= Llfsl‘”gzm( Z ——l:i(”‘zfs) ,
1KLL
does in fact satisfy 0 < h << 2, for large enough Z, provided that
(1.6) A< g0
for some 4§ > 0. Furthermore we find, with this &,
A(Z'", Z,0) = 65" (}e,JogZ+ )+ O{B(Z, 1},
A(ZP,Z,1) = 60,2 O(B(Z, 1)},
where
E(Z, z) = Z‘l’,’lﬂ-]—s_!_ A—l[SZwSIOgZ._‘_le]18+sﬂ4[9+e’
%0 that on specifying 2 = Z“"*, which satisfies the requirements of (2.13)
and (7.6}, we obtain

H(Z, }) = 0(Z+7),
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With (3.14) and (3.22) this yields the caze D < 0 of our principal
result,

TuEorEM. Let f(x,y) be a binary cubic form, drreducible over the inte-
gers. Then there exist constants Oy, Oy, depending on f, such that, as Z — oo,
Zo= 3 aliftr,s)) = 0,4 logZ+ G2+ 07,

1@ 8) <2
for any fived &> 0.
TFrom (4.12), it appears that ¢; and C, are in fact given by

Vi gy, Y8 G,
DI TG

l‘ﬁ i’: s ﬁ@) Gy
where ¢, and ¢ ave ag defined in (5.7}, or as given by the alternative
expressions (5.8). Since ¢, 3 0, we have U, # 0, so the smwm X iy in faol
asymptotic to O ZlogZ.

The proof for the ease I} > 0 is similar in principle, the principal
differences relating to the definition of the appropriate function m.
Furthermore the above expressions for ¢, and ¢, should be multiplied
by a factor 1/5, as should the expression for ¢ in (4.12). We suppress all
other details.

O = (26, —ey),
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Structure of maximal sum-free sets in C,
by
H.P. YAP (Singapore)

1. Inmizroduction and definitions. Let @ be an additive group with
non-empty subsets § and T. Let 84T = {s+1; se8, 1T} respectively,
8 Dbe the set complement of § in & and |8| be the cardinal of 8. We abbre-
viate {f}, where fe &, to f. If §-+8 and S have no element in common,
then we say that § is o sum-free set in & or that S iz sum-free in G I¢ 8
is & sum-free set in G and if for every sum-free set T in G, |8| == |, then §
is said to be a maximal sum-free set in . We denote by A(@) the cardinal
of a maximal sum-free set in ¢. We say that S is in arithmetic progression
with the difference d if § = {s,5s+4d, ..., s+ nd} for some s, de @ and
some integer n > 0. o

Let ¢, be the additive group of residnes mod the prime p. In [5],
we proved that A(Cp) = k+11if p = 3k+2 and A(C,) =k if p = 3%k} 1.
(We note that most of the results in [5] were generalized and improved
by Diananda and Yap, see [1].) In [4], we proved that (i) if § is a maximal
sum-free set in C,, p = 3k+2, then — 8§ = {—s; se8} = §; (ii) there
are a.ltogethm (p~-1}/2 distinet maximal sum-free sets 9;, g =12,

, (p—1)/2, in ¢, given by

8; = {js; 58y}, . i=1,2,...,{p-—1)/2,

where 8, = {1+43i; i =0,1,...
ety in €, are isomorphie.

In this note, we shall study the struetnral p101)er131es of maximal
sum-frec sets in ¢, p = 3541,

, kb and (iii) any two maximal sum-free

2. Main theorems. We shall make uge of the following lemmag and
theorems.

LemmA 1. Bet A = {at+id; ¢ =G 1, ..., 7} be a seb of residues modulo
mowith (4, m) =1 and 1<r<m—3. If A =btid; i=0,1,...,7}
then @' = 4 d (mod m) ([37). '

LevMMA 2. Let A = {a+id; £ = 1,2, ..., 7} be a set of residues modulo m
with (d, m) =1 and ngsg(m—l-l)/.?. Then A can be written in only



