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With (3.14) and (3.22) this yields the caze D < 0 of our principal
result,

TuEorEM. Let f(x,y) be a binary cubic form, drreducible over the inte-
gers. Then there exist constants Oy, Oy, depending on f, such that, as Z — oo,
Zo= 3 aliftr,s)) = 0,4 logZ+ G2+ 07,

1@ 8) <2
for any fived &> 0.
TFrom (4.12), it appears that ¢; and C, are in fact given by

Vi gy, Y8 G,
DI TG

l‘ﬁ i’: s ﬁ@) Gy
where ¢, and ¢ ave ag defined in (5.7}, or as given by the alternative
expressions (5.8). Since ¢, 3 0, we have U, # 0, so the smwm X iy in faol
asymptotic to O ZlogZ.

The proof for the ease I} > 0 is similar in principle, the principal
differences relating to the definition of the appropriate function m.
Furthermore the above expressions for ¢, and ¢, should be multiplied
by a factor 1/5, as should the expression for ¢ in (4.12). We suppress all
other details.

O = (26, —ey),
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Structure of maximal sum-free sets in C,
by
H.P. YAP (Singapore)

1. Inmizroduction and definitions. Let @ be an additive group with
non-empty subsets § and T. Let 84T = {s+1; se8, 1T} respectively,
8 Dbe the set complement of § in & and |8| be the cardinal of 8. We abbre-
viate {f}, where fe &, to f. If §-+8 and S have no element in common,
then we say that § is o sum-free set in & or that S iz sum-free in G I¢ 8
is & sum-free set in G and if for every sum-free set T in G, |8| == |, then §
is said to be a maximal sum-free set in . We denote by A(@) the cardinal
of a maximal sum-free set in ¢. We say that S is in arithmetic progression
with the difference d if § = {s,5s+4d, ..., s+ nd} for some s, de @ and
some integer n > 0. o

Let ¢, be the additive group of residnes mod the prime p. In [5],
we proved that A(Cp) = k+11if p = 3k+2 and A(C,) =k if p = 3%k} 1.
(We note that most of the results in [5] were generalized and improved
by Diananda and Yap, see [1].) In [4], we proved that (i) if § is a maximal
sum-free set in C,, p = 3k+2, then — 8§ = {—s; se8} = §; (ii) there
are a.ltogethm (p~-1}/2 distinet maximal sum-free sets 9;, g =12,

, (p—1)/2, in ¢, given by

8; = {js; 58y}, . i=1,2,...,{p-—1)/2,

where 8, = {1+43i; i =0,1,...
ety in €, are isomorphie.

In this note, we shall study the struetnral p101)er131es of maximal
sum-frec sets in ¢, p = 3541,

, kb and (iii) any two maximal sum-free

2. Main theorems. We shall make uge of the following lemmag and
theorems.

LemmA 1. Bet A = {at+id; ¢ =G 1, ..., 7} be a seb of residues modulo
mowith (4, m) =1 and 1<r<m—3. If A =btid; i=0,1,...,7}
then @' = 4 d (mod m) ([37). '

LevMMA 2. Let A = {a+id; £ = 1,2, ..., 7} be a set of residues modulo m
with (d, m) =1 and ngsg(m—l-l)/.?. Then A can be written in only
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two ways in arithmetic progression form, namely, either
A ={atid;i=1,2,...,7

or
A = l{ay(r+1)d)+i(—d); £ =1,2,..., 7}

Proof. By Lemma L, if A = {b-id'; ¢ = 1,2, ..., 7}, then d' == £ d

{mod. m). _
Now, suppose 4 = {b-Hid; i = 1,2, ..., 7} b #a,letbtd = ad-jd,

1< §<r. Then

a+d == b-hd (mod m), he{2,3,...,7}

from whieh it follows that

(h-t-j—2)d = 0 (mod m), 1<h,j=iv

which is imposgible.
Similarly, from A = {(e-(r-F1}d)Hi(—d); 1 =1, ..., r}, We can
prove that if A = {p+i(—4); i =1,2,...,7}, then b = a+(r+1)d.
The proof of Lemrg 2 is complete.
TuporEM 1 (Cauchy-Davenport). If A and B are non-empty subsets

of & group G of prime order p, then
A+B =G or |A4B|= |A|+|B|-1.

THEOREM % {Vogper). Let G be the additive group of residues module a
prime p. Let A, B be non-empty subsets of & and C == A+ B. Then either
0] = |A|4-|B| or one of the follmwing holds: (i) ¢ = @ (ii) |U] =p—1
and T =f—A, where f = C; (iii) A and B are in arithmetic progression
with the same difference; (iv) |4| =1 or |Bj =1, -

Tn thig note, the following two theorems will be proved.

THROREM 3. Let p = 3k--1 be a prime and § be o muvimal sum-free
set in G =0, If —8 +# 8, then

(A) 8= {atid; i =1,2,...,k
‘where (1, y) = (@, d) is a nonzero solution of
(B) O (k— 1)y == 0 (mod p). |

Conversely, if (@, ¥) = (&, d) 15 & noneero solution of (B), then S, given
by (A), is @ mawimal sum-free set in G such that —8 5 8, The number of
mazimal sum-free sets S of G such that — 8 8 is p—1L.

Moreover, if 8, given by (A) is o mamimal sum-free set in G, then

8= —8 U8 = [—(a+kd), — (o4 (k—1)d), a+d, ..., a-+Td}.

icm
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t8 such that _
8 n (§8—-8) =@ and S'u (§—8) =@.

.TI-IEOREM 4. Let p = 3k+1 be a prime and 8 be a mazimal sum-free
set in @ = 0. If —8 = 8, then either

8U(F+-8) =64
or
(0) 8§ ={a+tid; i=1,2,...,k,
wheve (x, y) = (a, d) 43 a nonzero solution of
(D} - 224 (k+1)y = 0 (mod p).

Conversely, if (o, ¥) = (a, d) is & nonzero solution of (D), then 8, given by (C),

8 a mozimal sum-free set in G and — 8 = 8. There are (p—1)/2 distinet

mawimal sum-free sets 8 in @ such that (i) § is in erithmetic progression
and (i) —8 = 8.

3. Proof of Theorem 3. If § is a maximal sum-free set in & guch that
—8 8, let 8 = —8 U Then we have (§*+8) n§ =@ and thus
by the Canchy-Davenport theorem and the fact that |8] =k, we have

(1) 2+l =p—(8 2 |8+ 8] > |8+ 8] —1 = |8+ k—1

from which it follows that k < |8 < k+-2.

Since k is even, and |8%| iy always even, hence |8* = k-2

Now, from (1), we have |§*+ 8| = |8+ 18] —1 and thus by Vosper’s
theorem, we know that & and §* ave in arithmetic progression with the
same difference @ (7 0). Thus CT

(A) 8= f{atid; i=1,2,..., k.

Case 1. If —(a+d)e8, then there exists je{2, 3, veey k} 3uch that
{a+d)+(a+jd) = 0 (mod p), i.e.

w18

(2) 2a+(1+5)d = 0 (mod p).
It j is odd, then a+((1+47)/2)de§ and
2o+ ((1+)/2)) = 0 (mod p),

which is impossible. Hence § iz even.
Thus 1“:01“ each se8' = {a-+d, a+2d,...,a+3d}, it is clear that
~—8e8" If j < k—2, then there exists i guch that 1 < i< k— § for which

——(a—}—(j—I—vl)d)s;S’ and thus there exists r such that 1<r < k—j for
which

(@ (G+9)8)+ (64 (+)d) = 0 (mod p)
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and from (2) it follows that (j-+i+r—1)d = 0 (mod p) where j4-i-t-7—
—1 < 2k--1, which is impossible. Hence j = k—2 and therefore

{(3) ‘ w(a—l—(k—l)d), —(a+kd) ¢S,

Trom the above discussion, it follows that (2, y) = {a, d) is a non-
zero solution of
(B) %%+ (k— 1)y = 0 (mod p).

We now prove that the converse is also true.

Suppose (a, 4) i8 a nonzero solution of (B), i.e.
{4) Sa-- (h—1)d == 0 (mod p).

We shall prove that 8, given by (A}, I a maximal sum-freo
set in G In fact, if (§+8) N8 @, then for some il = {1,2, ..., b}
jed = {%,3, ..., 2k},

(5} a+id == 20+ jd (mod p).
From (4) and (5), we have

(6) %(j—i)~k+1 =0 (mod p), del, jed.
Now,

max |(&(j—8)—h-+1); del, jed| = 3b—1 < p,
min |(2(j—8)—k4+1); diel, jet} = —3k+5 > —p

and 2(f—i)—k+1 #0,iel, jeJ becaunse i is even.

Hence (5) cannot be true. This shows that 8, given by (A), is sum-free
in @ and thus is a maximal sum-ree seb in G.

Oase 2. Tf —(a-d)¢8, then — (@ 2d)¢S. Otherwise if - (4~ 2d) <8,
then there exists je{3, 4; ..., k} such that (a-+2d)-+- (a--jd) == 0 (mod )
from which it follows, by arguments similar to the previous ones, that
j=k—1 and thus a+kd = —(a--d)e§ which eontradicts the hypo-
thesis. In this case, by similar arguments, we can show that it

8 ={a-tid; i =1,2,.., %}

is sum-free in @ then (#,y) = (8, d) is & nonzero solution of

(N I (- 8) == 0 (mod p)

and conversely, if (#,y) = (e, d) is & nonzere solution of (7), then §,
given by § = {a+id; i =1,3,..., k} iz a maximal sum-ree set in ¢
guch that —§ # 8. '

Cﬂ?‘l
g
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Let
I ={8; 8 ={atid; i=1,2,.., 1}
where (x, ¥) = (a,d) is a nonzero solution of (B), and
I, = {8; 8 ={a+id; i = 1,2,.., k}}

where (%, ¥) = (a, 4) is a nonzero golution of {7).
We now prove that 2, — 2.

Suppose 8, = {a+4d,; i =1,2, ..., k}eX, then

(8) 20,4+ (k—1)d, = 0 (mod p).
Put

(9) dy = —dy,  ay= 24, —a,.
Then

(10) 203+ (k+8)dy = 2(2d,— a,) -+ (h+3)(—dy)

== —2a,— (k—1)d; = 0 (mod p).

From (9), we have

(11) = —d;, @ = — (a4 2d).

Wyt (R—1)dy = — {8y 2dy) + (h— 1) ( — dy)
= —a,—(k+2—4)d,

= @y (141)d; (mod p)  (by (10))

and
By = {a;+(k—i)dy; i =0,1, ..., E—1}
={ay+(+1)dy; ¢ =0,1,..., k—1}
| = {tytidy; 4= 1,2, ..., k}eZ,.
Hence X, < Z,.
iimﬂa.rly, we ean prove that 2, < X, and thus X, = X
ot '

8= {a.—j—vld; P=1,2,.., kY 8 = {aytidy; i = 1,2,..., k.
We shall now prove that if (a,, d,) ‘
_ oy %) #(a,d), then §, = 8. I{ §, = §
then by Lemma 1, d, = £ d (mod p). If dy = —4, thnen becauséJ bot];
gv, ¥) = (&, dy) and (s, y).: (¢, d) are solutions of (B), #, = —a. Thus
y Lemma 2, —a = @ = ¢+ (k+1)d from which it follows that 2e--

Actg Arithmetica XVII1
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+(k+1)d = 0 (mod p) which contradicts the fact that 2a-f- (k- 1)d
= 0 (mod p). Hence d, = d and thus &, = ¢. This shows thal I {ay, d,)
# (a, d), then 8y # 8. Hence |X| == p—1.
Next, from (3), we have

(12) L8 =8 U = (ot (- 1)8), —(a-FEd).

From |8+ 8] = |§-F18]—1, we kmow by mpp]:yim_l;: Vosper's
theorem, that & and § are in arithmetic progrossion with the satne -
difference @’. Again, by Lemma 1, d' == o d (mod p).

~We now write 8% in the arithmetic progression fori, with ditforence d.
‘We have either
(@ ki) d = — {a4-rd) (mod p) (== Jo1ov )
or

(@-+d)—d == —((Hn rd) (mod p) . {r o= k=1 or k).

But, because of 2a+-(k—1)d == 0 (mod p), the firgt case v noft troe and
the second ease is frue only when r = k— L. Ilence wo write 8% in the
arithmetic progression form, ag Lollows:. '

(13) 8 = —8 U8 = {—~(a4kd), — (a-- (k—L1)d), a4-d, ..., a--kd},

Finally, from (84-8%) n 8 =@, it follows that S° n (8- 8y w0
and since |§— 8| = 2|8]—1 = 2k—1, therefore |§*|-{- |8~ 8] = (k4-2)+
b Ph—1 = 8k--1 = p. Thus 8* U (8~—8) =0

The proof of Theorem 3 in complete.

Remarks. The results that §* A (§—8) = @ and 8* U (§—8) = @

are useful in constructing certain classes of point-symmetric  graphs
satisfying some critical conditions (see [61).

4. Proof of Theorem 4. Let S be a maximal sum-free get in &, 11
—8 = §, then |S+ 8] is odd. Thus, from 2k+1:= |§-4 8] = 3k—1, it
follows that either |84-8| == 2%k<-1 and thus 8§ U (84 8) = ¢ or \S - 81
= 2k—1 = 2[8|—1 and thus by Vosper’s theorem.

(C) ' = {a--dd; ¢ == 1,2, ..., k}.
Tn the later case, we can prove that (w, y) == (m, a4y I8 a RONZETO solution of
(D) _ 204 (k-+1)y =

and c¢onversely, if {®, y) = (g, d) is & nonzero golution of (D), tibem S,

given by (0), is a maximal sam-free et in @. ‘
The proof that there are (p—1)/2 distinet ma:umal ST~ I‘rec sotn S

in @ such that (i) § it in arithmetic progression and (i) — 8 = §is omitted.
The following example shows that the firgt cage in Thoorem 4 exigty.

- Exampre. S = {;{:1 3, 7} iy a maximal m1m~'E1@e get in 0,
B U (8+8) = 0.

0 (mod p)
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The structure of maximal sum-free sets 8 in €, p = 3k+1, such

that (i) 8 is not in a,rlthmetlc progression and (ii) — 8 = 81y still unknown
to the author.
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