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A refinement of a theorem of Gerst
on power residues

by

A. SCHINZEL (Warsaw)

Let » be a positive integer, o rational, P(n, a) the set of primes p
such that the congruence #* = amodp Is soluble. Under the assumption

that a, b are non-zero integers 1. Gerst in the preceding paper [2] gave

necessary and sufficient condition for the equality P(n,a) = P{n,b)
understood in the gense that the set P(n, a) =P (n, b) has Dirichlet density
zero. The following theorem gives a necessary and sufficient condition
that P(n, a)>P(n, b) has density zero (the natural density exists).

THEOREM 1. Let a, b non-zero rationals. P(n, a)\P(n, b} has density
zero if and only if there cxists an integer t such that either

(i) ba' = d™ for some rational d,

or

(i) n = 0mod8, bal = 23" for some rational d,

or

(iii) » = 4mod8, a = —¢2, ba' = —2"d" for some rational ¢, d.

The deduction of Gerst theorem from the above result iy mechanical
and is left to the reader. It is only of interest that if we asswue P(n, a)
= P(n, b} the case (iii) disappears. The proof of Theorem 1 is based on
a result of Elliott [1] and the theory of eyelotomy. It -wonid be preferable
to have a proof which would generalize to algebraic number fields.

As an application we prove

TrROREM 2. Let a, b non-zero rationals. If the congruence o” = bmodp

is soluble for almost all primes p then b = o with integer %.

This is a generalization of a theorem of the writer [4] concerning
the case @, b integers, ¢ > 0. The proof given in [4] extends fo the general
case but the paper abounds in misprints which make it diffieult to under-
stand. The case a integer, b rational has been treated but not completely
disposed of by G. Jaeschke and B. Trost 3] '
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TuMMa 1. The densily of primes p —= Lmodm such that each con-
gruence ™ == a;(modp) (a; % 0, 1< £ <0 1) is soluble equals

R Zm: %L’ 1
o () m’ = =

Hi
all (ti' & .r?t(!(fm)

dlm, @y, ..., 6,) =

Proof. This is a special case of Theorem 1 of Blliot 1.
LEMMA 3. The density of primes p sueh that (p—1,0) =& and cach
congrucnce ¥ = a;(modp), (a; % 0,1 =4 =v) 48 soluble equals
S uya(kt, o, ..., al).
t’ﬂ’
I’roof Let for a given a, k|n and ’M[ 7 L f, ®) be the namber
of primes p<<a such that (p—1,n) = nfu and each congruence z*

=g, {modp) (1 :r) is ‘soluble. Then for wHY vi—:—

Iob Zf ’ll’ ﬂ’ = af( . N/nk 1LJ'UL"”.,

|y

) ""‘") +o(l).

Ii follows by the Mobins inversion formula that for any w

N 0

logx -

nt
¢ = é (B d | — ”‘"'“F
f(’!rm) (t) (% 5

151

ajf‘”“’“) +o(1)

and in particular

loga =
_ggif(w ) TM d(kt; at,y ..., af)-o0(1).

" B

.'.. .
However, under the condition {p—1, #) ==k solubility of o
= ay{modp) is equivalent to solubility of 4™ := a,(miodp) and the proof iy
complete.
Luvya 3. Let d be o rational imteger, h(d) ils squore- fmz Teernel.

VaeQ(t,) if and ondy if T(d)|m and either m 5 Omodd, k(d) = Lmod 4
or = 4dmod§, k{d) == 1mod2 or m == 0mod4. \

Proof. This is an equivalent formulation of Lemma § of {2}.

Lpyma 4. A number € is rational of the form »™ with y e Q (£, if and
ondy if either m =1mod2, 0 = ™, ¢ce) or m = 0mod2, ¢ = ¢"*, 0@,
VeeQ(l,) or m = : 4mod 8, € = mz’“” ™2 aeQ, Vee@(s,).

Proof. In order to prove the necessity of the condition set ¢ = (%,
where 5 = -1, ¢, is a positive integer, not a power. If 7 =1, Lhen
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|C4™ | €@ (Z,,) and since all the subfields of @ (%) are normal, CY™ has only
real values and wm/(f, m) < 2.

If m =1mod2, m|t and we take ¢ = /™, if m = 0mod 2 we take
e =01 I 5= —1, L, |00 eQ(L,). If m = 1mod?2, |CV™Q(s,) and
as before m{t, ¢ = —C™. It m = 0mod?2, |(Y™¢Q({,), since otherwise
Lome@ (L) It follows that mtt. On the other hand, |09 eQ(L,,), thus
t = m/2modm. Therefore, we have V G:qf (. I/aeQ(g,,,_). By Lemma 3
either m = 2mod4, k{(;) =3mod4 or m = 4mod8, k() = 0mod?2. In
the former case V——GleQ(_Cm) and we take ¢ = — (3™, in the latter case
V0, /2Q(2,) and we take ¢ = L0,

In order to show the sufficiency of the condition we take y = c,
Y = Ve or Y = (1—;—"&)1/5 in the firat, second or third case, respectively.

LemMA 5. Let ¢, (d) be the least positive exponent such that d° = ™
with ye QL) If @ = nal, where n = 11, @, is @ positive integer, not a power
and ¢ = 1mod2 then

oo (my)
. E.m(a;) - (?n’ M) gm(.a’)’
: " 21 .
Proof (due to I. Gerst) (). Let m; = WJ’ i = .20 Then it is

clear that
en(@) = My O 2.

Indeed, if m is odd it follows from Lemrma 4 immediately that ¢,(a) = my,
if m is even 7%’ = ™2 or—(2¢)"” requires ¢ to he a multiple of m, and
@™ = (a3 with 1/@ €Q(7,,). Using the characterization of the ratio-
nals »™ with y eQ(£,,) given in Lemma 4 we find easily

(@) #hy if (1) or (2) or (3) or (4),
e, (a) = T
' 2m,  otherwise,

where (1}, (2), (3), {4) are the following conditions

(1) m == 1 mod 2,
(2) g =1, Vi@,
{3) _ - =2 mod 4, 1 =-—1, I/W:ELE;EQ(C,,I),

(4) m=41mod8, 7" = -1, Vaah eQ(L,,).

() The writer’s original proof was rather involved.
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Now if o is replaced by o (£ 0dd), 1is replaced by I, %, e, and the pa-
ity of m, and I, are unchanged. Therefore the conditions (1)-(4} remain
the same and we get

8’171. (‘a’t) ('m‘ﬁ ‘?’E) (.'m'r Z)

e @) (m,2W)  (m,U)’

g.e.d.

Proot of Theorem 1. 1f iz clearly sufficient to prove the theorem
for @, b integers. Assume that F(n,a)\DP(n,b) has density zero. Tt
follows from Lemmaia 1 and 2. that for each &|#=

k \ Jok &
QAU B s P A G S i“[:’ 1
A e QUL T
I3 uﬂ'f:?i{l; ’J’LEQ(CM) L M"J‘tb"zt::?{;t’ 3126{,”;“)

(learly, the inner swi on the left hand side equals

and the inner (double) sum on the right hand side equaly
(kt)?
rérrct(at)fm (50{9—5’!) N _
where f,,(d,, d;} is the least positive exponent e wuch that for suitable
integer v: d)dy =™ with y<Q(£,,). Thus we get for each %|n

- : w1 L
) 2 p(kt)  ep(a) (l frcr.(“'q’s)) =9

1
U

Applying (5) with & = », we get

f,.,,(d'_:, b) =1,
that i3 for suitable »,

#ob =" peQiL).
By Lemma 4 we have eithor
woodd, a'Wh =d*, | ee)
or |
(6) _ 200, @b =M, e
or |

(7) no=4mod8, a0h = —2MG,  geq).
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In the first case (i) holds. Consider the case (6). Clearly if 2% ,
then |
Trela!y B) = 1.
T 24 —q;—t, then

1 if for some »: @’ = 4™, 5 Q (L),

8 @, B =
) Jul ’_ ) 2 otherwise.

Indeed, i a’c*® =¥, y<Q(&y); then ® =¥, 5,6Q(ly), hence
€u(@)|2v. Sinee 241, we have (4, ¢,,(a))|», thus there exist integers u
and v sueh that tu— ey (a)o = v. Hence

’ yaeQ (&)

o = af"_skt(“)"’ — a,tuyﬂ-kt

Similarly, by (6)

| a1

. cict]E — n!/z(c .27.: 2)—];:5 — a:ﬁntbty;kt’ 7y EQ(i-kf)s
thus

(”ﬂf)u'HD b= (72 ?3)M v ¥Yevae @ (L)

and f(¢’, b") = 1. On the other hand, if & ¢"* 4™ for all integers »
and all y e§(Z,,), then also

L3 1
avtbt — a(p—sno)tcktﬁ. (sz 2)k1! ke }ka and fkt'(“‘z’ bt) + 1.

Since .
a'zvntbzt — (cﬂ,’k)kt: fk‘l (_Cbt, bt) = 2,

The formula (8) follows and, if =t/k iz odd, fi(a', ¥) = fyu(a, b). On
substituting into (5) and using Lemma 5 we get for each % such that /%
is odd

pl) (6, 1) (__ 1 )=0
® 2@ P @), D\ Fula; )

g

Let n = 2974, n, odd. We perform the summation over all & such
that »/k i3 odd and we gef

2 Iy st (2%, 1, i) (1__ 1 ) _ 0.
iy, 2%k, 1) *lnl P2 at)  egey g(a) (2%, 2,0) faaiea(y B)
= :
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The left hand side can be written alternabtively as

" EENE

by (1-
"'“1'"‘1 "P(?J w"’l}eﬂaml(a)( ml) Z) f”ml(a’ﬂ t|m1

1 ( 1 1 )
@Y ee(@) (@D fa(e, b))
It follows that foa{a, b) = 1, thus by (8) for suitabie »

901 gt .
"¢ =9,  yeQ(ly).
. . gi=1 T — '
By Lemma 4 we have either a'c¢® = &7 with Ve, (L) or a =9

and o'¢* = —4¢; with VE:;eQ(E,}). Therefore, by Lemma 3 there are the
following possibilities:

=1 ¢ =& a'¢c =d, bavt"™ = J

022 0 = +F, ' = &, bt = @
e>9, 6 = 438, o' = o g , barotm = oni2 e
a=2, 6 =4+ ¢ = —4d', bavt™ = Mg,
In the last case, elesuly vis odd and o = - e?% thus in cach cage (i),

(if} or (iii) holds.
Assume now (7). If W,/k is odd we have like previously
1 if for some »: — &' (2e)"* = ¥, v eQ (),

(e, By = f.(a,b) =
Jule, V) fu(_; ) 9 otherwise

and (9) holds. It follows hence as before that f,(a,d) =1, thus for
fuitable v : :
— &' (26 =d' or —44dt,
In virtue of (7) we obtain

ba'ot"™ = g or < —2mgn,

respectively. .
Consider now & == 2mod4. If ¢ iy even, fyu(a' b)) = 1. I ¢ iz odd

(10) Fuula, BY) == 1 if for some v: —a" = y¥, yeQ (L),
o 2 otherwize.

Indeed, it for some »: — @ = p*, y e Q(Z,,) then ey, (a)|2. Since ¢ is odd
(t el )]w and there exist integers %, such that v == fy— ¢y, (a)v. Hence

a = am-em(a)u — a‘tu,y-—kt

v1€Q (L) -
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Thus by (7)
(at)1t+ug b! — (?,},l)kt(zc)m,z — (y,}llzn,f'zkcn,lzk)ki

and fi{e’, #) =1. On the other hand, if —a” = ¥ for all ¢ integers »
and all yef}(Z,) then also

avtbt — __a(v—vo]t(zg)ﬂ;‘l = g}(vfa-u)f (zrzjzkcnlfik)kf = },kt and fkt(atg bt) o 1,
SBince '

uﬂw-utbﬂz - (2:7{1:071111')!;‘:‘.’ fkt(atr bf) —

Thus (10) holds and for ¢ odd fyla', i) = fiu(e, b). The formula (9)
follows as Dbetore. We perform the summation over all & = 2mod4, kin

and we get
ks Z 2k, %, M) (1 o L ) —0.
@k, 1) G (BT, Dey(a) Jara{a, b

fH—
L

The leff hand side can be written alternatively, as

My
9mab ,Lt(t) _’_J_la'b~
2 T, Do o8V 2 ) = g e, B)
It follows that fi{a, b) = 1 and by (10): —a = * with yeQ(,). Since y
is rational, ¢ = —¢® and the necessify of alternative (i), (i) or (iii) is

proved. The sufficiency of the conditions (i) and (ii) follows immediately
from the fact that P(n, ") and for » = 0 mod 8 also P(n, 22 @) consists
of all primes. As to (iii) note that by the condition & = — ¢?, all but finitely
many primes from P{#n, a} are of the form 4k-+1. For every such prime p
the congruence o* = —4modp is soluble, thus peP(n, —2"*d" and
Pn, a)~F(n, b) iz finite.

r ¥ .
Proof of Theorem 2. Leta = = [[ 7, b = 5 [] pi, where ¢ — 11,
i=1 i=1

7 = +1, p; are distinet primes, o, f; are integers. If the congruence
o = bmodyp is soluble for almost all p then elearly for every positive
integer n P(n, a)F(n, b) has density zero. It follows hence by Theorem 1
with # = 8m that for every positive integer m and suitable integers 1,,, 4,

| bafm = dim,
The last equality implies

nem =1,

(11) Bit+tpa, =0moddm (1<<i<r).

For all 4, j<r we have f;4 'ﬁ]-ai = 0, since otherwise there is a con-
tradietion for m == |f;0;—pf;ey]. o= 0 implies §; =0, otherwise there



' e
168 A, 8chinzol Im“

is & contradiction for m = |B;|. Thus we get for some rational ¢: 8, = gu,
(L<i< ). If oy = 0 (14 <<r) then Theovem 2 holds with £ = {,. Tf for

Henee # = ¢/ and Theorem 2 holds with £ = ¢.
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On the probability that # and f(n) are relatively prime
by
R. R. Hatr, (Nottingham}

Tt is a well-known theorem of Cebyfev that if n and m are randomly
chosen positive integers, then (n,m) =1 with probability 6/=* One
can expect this to remain true if m = f(n) is a function of =, provided
that f(n) cdoes not preserve arithmetic properties of #. Brdds and Lo-
rentz [1] proved that this is go, in the cage f(n) = [f(n)], where f,(x)
i & smooth funetion satisfying certain (weak) conditiouns.

The case f,(n) = an was considered by G. L. Watson [6]. For all o,
the positive integers n for which (n, fin)) =1 have a density, and in
particular, for irrational o this is 6/

Suppose now that f(n) is & multiplicative funection of n. We set

Tiz) = 2 1.
L
(m, Fm=1 )
P. Erdés [2] proved that for f(n} = ¢@(n) or a{n), we have
. - ’
(o) ae

™ Togloglogs

The casef = ¢ is of particular interest since (m, g(n)) = 1 is anecessary '
and sufficient condition that there is only one group of order n.

Tn this paper we consider an additive function, namely the sum
of the distinet prime factors of n. We denote this by ¢(n), and the result
is as follows.

TaroreM. Let T{z) denote the number of inlegers n< % for which
(n, g(n)) = 1. Then

: 8 0 @

e + ( (logloglogx)"* (logloglogloga)*’* ) ’

Thus (eby¥ev’s result holds in this case, ag we might expect, for in
general additive functions are more evenly digtributed over the arithmetic
progressions than multiplicative fanetions; moreover their prime factors,
and other arithmetic properties, bear little relation to those of n itsel,
except when # ig prime. :

T(x) =
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