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is & contradiction for m = |B;|. Thus we get for some rational ¢: 8, = gu,
(L<i< ). If oy = 0 (14 <<r) then Theovem 2 holds with £ = {,. Tf for

Henee # = ¢/ and Theorem 2 holds with £ = ¢.
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On the probability that # and f(n) are relatively prime
by
R. R. Hatr, (Nottingham}

Tt is a well-known theorem of Cebyfev that if n and m are randomly
chosen positive integers, then (n,m) =1 with probability 6/=* One
can expect this to remain true if m = f(n) is a function of =, provided
that f(n) cdoes not preserve arithmetic properties of #. Brdds and Lo-
rentz [1] proved that this is go, in the cage f(n) = [f(n)], where f,(x)
i & smooth funetion satisfying certain (weak) conditiouns.

The case f,(n) = an was considered by G. L. Watson [6]. For all o,
the positive integers n for which (n, fin)) =1 have a density, and in
particular, for irrational o this is 6/

Suppose now that f(n) is & multiplicative funection of n. We set

Tiz) = 2 1.
L
(m, Fm=1 )
P. Erdés [2] proved that for f(n} = ¢@(n) or a{n), we have
. - ’
(o) ae

™ Togloglogs

The casef = ¢ is of particular interest since (m, g(n)) = 1 is anecessary '
and sufficient condition that there is only one group of order n.

Tn this paper we consider an additive function, namely the sum
of the distinet prime factors of n. We denote this by ¢(n), and the result
is as follows.

TaroreM. Let T{z) denote the number of inlegers n< % for which
(n, g(n)) = 1. Then

: 8 0 @

e + ( (logloglogx)"* (logloglogloga)*’* ) ’

Thus (eby¥ev’s result holds in this case, ag we might expect, for in
general additive functions are more evenly digtributed over the arithmetic
progressions than multiplicative fanetions; moreover their prime factors,
and other arithmetic properties, bear little relation to those of n itsel,
except when # ig prime. :

T(x) =

Acta Arithmetics . XVIL2 4
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The first halt of the proof, that iy Lemmas 1-5, is elementary and
deals with the large common factors of » and g(»). The small prime factors
of # and g(n), which lead to our main ferni, ave treated analytically.
Lemma 6 is, of course, quite standard.

I should like to thank Professor Halberstam for his help and
encouragement, and parficularly Professor FErdos for sunggesting this
problem to ne.

Notation. pand & denote primes. Uy, Oy, O, ..., will denote positive
constants, absolute unless written in the form ¢ (s) when they depend
on & They will be understood to be either large enough, or in some cages
small enough, to ensure the validity of formulae in which they oceur.

Levma 1. For p < Va, and all a

b |WW@0WG+E@)

I
glmy=emodn
Proof. Let ¢ = p?% and »(m) denote the number of prime factors
of m which exceed ¥ Set
Hw,a)= 3 |um),
mew .

vy (Hi)m=n
pimy=mamaod g

K@ = 3 |u(m),

':(m:).iw
we(Niy=n
and ﬁ
EMay = 3 Ju(m)].
ity o) =»
Then for » =1,
1 Y 4
H,o<= Y H_ |, 0—d
Y ilaza w
1 2 x _ ' _ |
< - H, |- -,ahl&){ar,(m, oy h—mim—1, p, h)}
Y ot foml ua ’

L1 E :
< Z[ > aim,p, k) {H,,_HI (” : a._;,,) -
=l Liam-te—1 m . :
—-H,M1 m——f, @— h)} -|-$'1:(m, », 71.) ]I,,‘,,q (“[a_,]“‘, [ h)]
g P T ( ) —K
. Py t<'ngwl—l log(m/p) { ' m bt “| 1 —{

o ia‘gx%ﬁ Toms 5]
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by the theorem of Brun-Titchmarsh. Since m > p?, log(m/p) > jlogm.
(‘The parameter { was introduced solely f01 this purpose.) Hence by
Cebyiev’s theorem,

Cy fw ¥ &
(@ 6 < 37[2” {K"-l (E) —Hos (am)} ta@fn (m )]

G, . x 7
T [MZ@K"“ (E) T 1(t+1 )]

Now for » > 1,
1 o] _ 4 1 z
Ku. {’ﬂ) ” t.{_%éx j'—-l(d')) v, ‘(_J : 115 -3 g

where I,_, is to be interpreted as zero when » = 1. Tn this case there
is no contribution to K,(z/@) by numbers divisible by @, a prime exceed-
ing {. Hence for v =1,

o p
mmm&fﬁmwm) @J+Z ( ﬂ

<@
Thus :
o c, n ()@ w] Oy
<2 Sl
Let P, = [] @ Then by Selberg’s upper-bound method as developed

i<z

by Richert and van Lint [5], we have

1Bz 1 C,zlogp
. Hyle, e) < 3 1<———— Il (1—“7)€""”*_'
[IRCUE) ) m%m {<d w logw
(1, Py)=1

Finally,

o 1 logp
) wmnagmmﬂg@( +hw)

msLe P
gliim)=amod p - .
We nbte that the result of Lemma 1 is valueless unless p is quite
small. For larger p we find a similar result more simply.
LuMMa 2. We have, for all p < &,

2 luim)| < Cho

MEET
g{m)=amod p

Proof. Taking ¢ = 1 in the definition of H,(z, a) in the previous

lemma, we have
E—Hv 1(7 a— w)
foli

logz
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Suppose that for ¢ < », and all b, we can ghow

%
H.», B) < P?i' (loglogaw+ 0,1,
then , .
2% 1 .
H,(z, a} < W 2‘5 (logloga+-C,y' ™,

toasw
and so the result follows by induction for a suitably chogen C;. Now
2 '
Hie,0) = } l=uazp,a<— for p<a,

i
d=gmedp 13

and this starts the induction. Henge

§01 Hz, a) < Eaij‘ (loglogw+Cy)"* - Gsrlogn
i < .
=

P = v! P

F ina]ly
Cxlogw

mEE Prm]
glm)=amod p

Luvva 3. For oll  and p < 2™, and all o,
1/4
2 1< Olom(log:p) .
»

me
g(mi=gmodn

Proof. By the previous lemmas, provided p < =,

logp )1/2

3 <1t SHE@o, <

s (m)] < Gy

mse
plm}=amodp

on-applying Lemma 1 if plogp < log?#z, and Lemma 2 otherwise. Thus

1 : N
2 et =2 3 ) [ aa Y )

msle

omy=dmadpn . y(m)zfﬁod” n(m)g;;ﬁimm
i 5 . 18
</ Xy lf»(mwwasww(}?é:@?_)
1 . s P
gm)==amod g ;
17 1 E 1 12
__ ~1/4 1 10
<41ft a0, [ 1,4(__5_11) dit
»
1/2 '
o (oe2)
»

1 op i
= EPM-F 20, o (10;3’) < O, ot (logp )m :
: »

:
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it p < 2*5 Next

) -1
o5 - |2 ()] 1
2, m = 2; 5716 1 l 11—
e 2 w
ML D @l
J(mymemodp g(m)=amod p -

9 tpu(m)] Og/16 (m) )

g C('—) o8
8/ & m
g{ny=amod p

By the Cauchy—Schwarz inequality we deduce

(3 worfaeld)( 3 w32,

M MET Fa
em)=gmodp glmy=amod g

We have
B
Gy L1
.S- 9./'16( ) Gllw”g

2
M m

either by straighﬁforwamd caleulation, or from an identity of Ramanujan [4]?

ms £{2s—a—Db)

Z"‘v aa(m)oy(m) _ L(s)l(s—a)l(s—b)i(s—a--Db)
m=i

Thus provided p < 27, we have

10.%‘19 12
( 2 m~9116)2 < 01250”8( ,
e : P
g{my=amodp

. and finally,

) 1 1/4
Z 1 S; 916 Z o8 < Omw( ng) .

MR mes
g{im)=amod p pln)=amodp
This completes the proof.
LeEMMA 4. For #*F < p <, we have

(mlogm )2

D10y
REL
nlg(n)

Proof. Except in the cage n = 1, p|g(n) imples y(n) = p. S:i.nc.e 7
has at most 2loga prime factors, it must Dbe divisible by a prime
P> p/2loge. Tt follows from the relation

g(n) =P-+ ) @=0modp

ain
sxP

thai
2wlogm

P 3

N

P = —hmodp, 0< h
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icm

ginece

ﬁ\

’

each & being greater than or equal to 2. Thus » has o prime factor, and
hence & divisor, in one of these residue classes modyp, and

E §‘ §‘ 2 1 Crzatlog® .
< s O
ply(n) s nsz kb dln =2 d‘(zml d < p? )
NEL - d=-—hmody ) .

This completes the proof.
CorOLLARY. For p<{ @ we have

logp)l“
1< Oy ( ‘ .
2 10 p

B
nla(n)

d=-hmodp

Lemua 5. For oll &> 0, ‘
O
2 S T ogg T
m“pr}(]nz%m))

Proof. We have

2 1< ¥y ¥

A E<p=a mefp
e, %m ) wly(m)

_ It is Llezu that g(m) < m and 5o when p > ¥z the inner sum on the
right is at most 1. Thus the sum on the left does not exceed

1/4
2 D ltal < Y oy 10%«?: (%)

<o sl T

O

<w&wﬂm‘
Thls completes the proot.

LuyvmMa 6. For all characters ¥ to modulius g we have

6C logg
LogL < 8 oloo )
‘_ [Log L(s, z)| < log(lii= 2y T Caloglog {a(ft/+4))
i the region
o1 Ys =2,
2logfg(e oy’ 11>

For y = %o e have
ILog L(s, )| < Cu(2)logy

o21—0y(e)g™®, i < 2.
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1
=
Proof. We use the following information about L(s, ) which may
bhe found in Prachar [3]. For

s G )
IS togla (30

we have L(s, 7) # 0, except for a possible Siegel zero on the real line,
when. y is (at most) one of the real characters. For |t| = %, we have, in
the gaire region,

For 1< o<1, |ij<2, we have

lLogL( s xo)l <= O (logq+ log

lL(s, 2 = 0(¢"s =M log {gil})
%) provided ¥ = Xo-

, L{s, 2} = 0(gY Thus if

while for o= 4, [t <
(s = max (30, giogB)

|L (s, %)

for all ¢, except in the case x = xp, {1 <2
Carathéodory theorem, first when [t > 2.

Tet s, = s+r have Teal part ¢, > 1, let E>r and let A(RE) denfi;t.e
the maxironm of logiL{s, y)| on the circle lz—&]| =R If R<1, this
circle is within the zero-free Tegion of L(s, 1) it we seb

015

= () (’g0151168(1f1+3)10g {Qf(lﬂ‘i‘z)})
2. We next &pply the Borel—_

B =0T Jog (T 4}
Hence, by the thecrem,
2r 0. BET —lo !
|LogLi(s, )| < R—?‘A(R)+ TR g a1 .
Wre sef
o Os
P77 Tog{g M+ 4}
Then for .
R == = 1*——"“"*_'_‘"91"5'_"*7"’ .
P2 Sleg{g (it +4)
b(’l(,logq ]+ 303+
Log I{s, x}i << —— + 6loglog {g(It|+
1 log(1t|+2)
log {g(t|+-4)}
+TC;;1og .
15
60 logyg

- Cploglog {g (] +4)}.
= Tog (1] +2) + 13.0‘% og {g (it }
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This estimate is equally true for |¢7| < 2 for all 4 exeept o and the
real character (it it exists) for which. L(s, x) has a Siegel zero; denoting
this character by », we find that for |t < 2,0<1,

’ 1
Log s, zll = 0(loga)+ 0 {log —

and

[LogL(s, x| = 0(10g9)+0( 1 ')7
= gl

where S denotes the Siegel zero of L(s, #1). By Siegel's theorem, 1--p
> 20,(e)g™% and s0 i o> 1—0Ch(e)g™,

|L{s, x| = O(logq) dor [¢< 2.

This completes the proof. :

Lenma 7. For any ¢>1, let f,(n) = glng)—g(q). Then for all @
and all g satisfiying

40, Valogg < < loglog e,
we have
@ Cgo

(logz)®

J bt q

fq(n) =omod ¢

=z

Proof. For any ¢> 1 we note that f(n) fq(%) = g(ng)—glg) i
additive. Set

o 82'mf(n)t Zmpﬂ 1
Fq(s,t):g = ( ) (1—1— )
n=1 :Lz !;1 Pl
Plainly, '
1 %
= D R (5, 1) = N

=1 Pl
fq('n.) =amoil ¢
and so

\mo

* 1 4
1l =-—- g Rinaliy ;
nZg pr 221; f B (s, Uq)ds,
fa(m)=amod g ¢-iw

where the * denotes that i @ is an integer, the l&st term in the sum on
the left is halved, Thus

= Z 2mq
J’q(n)=amod ¢ n<m I~

a-1 ctden g

— 9 K
R e ORI

¢~ioo
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Hence '
L X L—afg|< max | W(a; Ug|+1
L l=si<y
fg(-n)Eamodq
where
¢-Hioo g
w ”q ‘_“—**“2@7" —‘?—Fq(s,qu)ds

—i00

It is plain that F,(s, ijg) = Fys, L/g,) where (L, g =1 and
I,/g: = ljg. In fact our estimate of W is wealkest when g, is large, and
50 we may agsume that (I, ¢) = 1, withont loss of generality. Now

.F,I(S,f/) = F(S,t)n(w) :F(_Sst)j‘q(syﬂ

jll
gay, where

62iﬁpi
Fs,1) = H(1+ psﬂl)-

. k)
TFrom this we see that

2 il jg

F(s, g) =H(1+_ e

n

gz icpliq )

)11 1+ e

where the second factor is regl;la'r and bounded independently of g for
Bs > 1+ e Beiting

P Gimatla
es,yo=J] [I -(1+ ; )
(aa;;-lsl p=gmod g P
we find that
il inplig
- Pls,Hg) ( e-”““) ( il _.._)
—— = l nl 1+ I3 & | oam :
Gz, Ug) Q t 7° U (p°—1}{(p° + &)
Now _
Log6(s, lja) = 2 @i N pTt Ha(s, Yg)
e=amod.q
{a Q) 1 .
- - 3 St gﬂ-fmwzl({i?« +Hy(s, Yo)
X 3

- ‘Tj';x ()7, Z‘{ (1~—§Q)}+Ha(s Hq)
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where H,(s, ljg) and H,y(s, l/g) ave regular and bounded, independently
of g for Rs = ;-5 We wrife

|Hy{s,ljq)| < Hyy, Rsz= 3§
Ag usual,

2

Tx — E E(b) GBinlﬁ[{[

e
g0 that
o < Vq.
TTus .
#{g) '
Log@(s, lg) = LogL(s, vy) 4~ v, LogLis, ¢)-- H 1
o B g oL W(g)gux gLs, 5) - Hy(s, /)

We conelude that (s, llg) and hence F,I(a Ha) is regular. within
the zero-free region common to all the I-functions to moduluy g, with
the exception, when g iy squarefree, of a branch point or algebraical
singularity at ¢ = 1. In fact we shall only be interested in the squarefree
case. We set .

¢ =1-+1{logw

and move the contour of integration to I, U I, as shown in the figure.

Joor

-::.J(.'

a4y L Ss=1

B=possible Siegel zero

1#—'—7
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Iy is a lacet around s =1, while on I}, we have o = ¢ for j{| > T. For
[t| << T seb
=1 Cy:
Mg, )

where _
M(g,t) = max {g"*, log{g(jt{+4)}}

“and

i . {C
Uy = min (“}:_5: 019(%)) .
The contour is completed by hovizomtal lines at [ = T, Seb

Wiz, lig) = Wilz, lg)+We(z, l/g)

where _
1 Fid
W, 1fg) = 7;;] s, 1g) s
and
Zz, lg) = [ Wily T P Bs, g)ds
! 6f ! 21,—: '{

We estimate the integral over Iy first. Note that for £>0,

|Fy(s, Ha) G (s, Ug)l < Omle)d
aniformly in g, for Rs = § We seb

Zmzl+zg+zs+zﬁ—%;( [+ [+ [+ [
L] Iﬁ

<2 2L < T |H=1T =T
sel’y

F,(s,tq) ds).

For |t| << 2, sl we hzwe by Lemms 6 that
0‘ 1j4

?(q)

< 024'3 9.'10g9.'

[Log@(s, 1jg) < (1ogq+logg )+am( Watogq+ 2.

Hence

Z, < f O (&) ¢ exp (Ca,V glog )

p—0mi @2 gxpy (€, V qlog )

s

on taking e = 1 and absorbing this factor info the expunen’mal. For -

2 [t < T, we have
ILog G(s, 1/g)| < 6C, Vglogg + OV gloglog {g(T+4)}+ Ha;
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| iIcm

thug
T o

| v . ;
2, < [~ Ou(1)gexp (60, qlogg-+ OV gloglog {g(T-+ 4)}+ H,} ds

< ot~ exp 04V glog g+ O Vloglog {g (T4 4)}) .
Plainly ‘
wd . /“' /—

-2 exp(CosVylogg-+ 05V gloglog {g (7 -+ 1))},

Z, <
s

the range of integration not exceeding 1. Finally, by the definition of
£ (3,1/9),
w(e)

T

17, el 1 ' mc
Z<= [ odi<
Ty 1
Wae select
- log?T = $0,,loge;
thus for the range of values of g under consideration, for 2 > a,, ‘we have

. Mg, T) = log{q(T—|—4)}<210gT.
Hence

2w, lg) < Zmexp{O%I/Elogg-[- CyVqlog(2log T)— _q_z_szm} :

2logT
+ mexp {ozsl@og'q_ nggllzgm} + ZwITogm

< wexp{— CyuVloga}.
Therefore for all  and for the given g, we have |
4z, 1g) < “’eXP{—CZT]/w}'
It remaing to estimate the integral on I',, Now
Fyls,1/g) = (s—1)0wD (s, 1)g)

I S .
- Where F is vegular in the neighborhaod of s = 1." If we allow the radius

of the loop around s = 1 to tend 4o z i
’ =] : zero together with th idt
lacet 'y we obtain in the limit, ; e Wldth e

1 g ¥r@ivia) 9 e

— 1 T(s—l)““("’)"”(“)lﬁ”; (s, 1/ ds

Wiz, Ug) = pY
T

‘where

Oy

~Ee
7
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In the ecase ¢ == 2, F,(s,1/g) has a zero at ¢ =1 and the contour
of integration is simply I'y confinued across the real line. Next,

Fz (s,1]q) = (s___l)y(q}ﬂr(a} H {L(s, x)}txx(lliw{q){:(S)}ﬂ(a).'cﬂ(tr)ﬁ(g)

Z#ZG
)3

Qinee (s—1)Z(s) is bounded on I', we have

where 6(s) is bounded by

o [] (1+

»lg

1
1

(s, Ug) < exp{CyValoga},
on Iy. Thus :
1—t7
W, (23 /)| < wexp Oy Valogg} | uH@iee
1

_ wesp{0uV/qlogg} f(l—- ﬁ(.@)

—ulogwd,u’

(1ng)l—#(4)l¢(a} o(q)
Oz
= '@Eg'?*;)ﬁe@ {Cx }/Elog q}.

Thng if 403,,1/§10gg < loglogx,

Oy
(logz)'*
It will be seen that the condifion on g is much mote striet than thab
involved with W,, to achieve a wealker vesult. For this reason no inmprove-
ment iy obtained by taking the contour of integration further to the
left, and it is obviously comvenient to keep it to the right of the possible

Siegel zero; a8 we have done.
‘With this resfrietion on g, we have

[Walz; Vgl <

LA dy ‘ % y ilg 205,®
J Wito- - = 2@ ot f (43 Y0) ™y < agap

Now y o _ x inynilig
Wyt = Y

Ny

and so
(W5 U — W (@5 L < 19— el

Suppose that .
RW (z;1)q) = Mz,

where without loss of generality we take M = 0. Then for y
| RW(y, Yq) > $Ma.

= o— $ M,
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Thus

2—3 M

- dy ’ A
rif Wit & — [ v gL e

0

Bub the left-hand side does not exceed 405, (log @), Hence

The same argument applies to the imaginary part, and we dedice that

O

W st < o

178 "

Thiz completes the proof of the lemma.
Proof of the theorem. Let

K(n,w) =[] ».
P
Dl(m.pin)

Tlz)y = ) 1+46 X 1

n=m nEm
K{n,w)=1 0% = o, P (1, 01))

Then,

with 6] < 1. Thug
Ta—6¢ 5 1=3 3 pl=Sulg ¥ 1

= R K (#, w f L
mwwﬁnuﬁ,g(m) s ake) QIH- r:ln’"rzlr;n(n)
=ulg X 1= Z# @ X 1,
gl|ir ML/ g MLl
p(mg)=0mod g fq(m)a—g(q)mnﬁq
Where I = g ». Provided loglog( w/ﬁ)\wm, logIT, we have, by
e :

Lemmas 5 and 7, that

= 0+ g} o g+
an g(logxz)'® @'’ (log )™ + logw)

{1y s .
— - 1 —_— — {
mpg ( 10_2) i 0((19gm)“8 [l (1+ )) + Q(;}‘if‘i(ioé; C;')"Eﬁi')‘

Pt

Now
I] p < exp{Oy0),

=
and go the condifion on J7 is satiglied it we wet
o = Oy logloglogz.

We substitute this into the expression for 7'(x) mbo%e, and this completes
the proof,

I3
[2]

(31
[41

(51
(6]
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