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A metric inequality associated with valuated fields
by
P. E. Brankspy (Cambridge)

1. Introduction. Suppese that F ig a field with a valuation || ||,
mapping F into R, the real numbers. Let o and 2 be two points in the
cartesian product F" = Fx...xF, with coordinates (&y,...,2,) and
(B1, ..., B,) respectively. We ean define a function from F"xF* to R
as follows: ’

d{a, B} = min maxije;— S,
oely, 1=j<n
whers 8, i8 the symmetric group on » objects. If is clear that if we write
00 = (gyy -y Gopy), then for any ¢, v in 8, we have d(ca, 78) = d(a, B).

Tt follows that d(e, ) salisfies the iriangle inequality since we may
suppese, by taking a snitable permufation of the coordinates if necessary,
thait

d(a, r) = maxflo;—ypll,

I<i<sn
and
dir, 8) = max|y;— B,
: 1<i<n
Hence )
d(e, 8) < lnaXHa,-—ﬁf!I < max o — ;|4 max|jy;—f4ll = d(w,r)-d(r, B).
1=f<n l<i<sin isi<n

Thus d(e, ) is a pseundo-metric on F".
We define the real quantities
Vi(e, p) =M == maxmax {jlo], 15},

L<jgn

R, 8) =R = I;I lioy— Prlt -

In this paper we seek lower bounds on d{e, 8) in terms of M and R. TE ||
is & non-archimedean valuation, then it readily follows that if I > 0,
then

ERIM

S!anl )
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We will be concerned with the corresponding inequality for the archimedean
256,
- It is well known that a field F with an archimedean valuation can
be imbedded in the complex numbers € by a map f: F — €, which has
the property that there exists a fixed real number o (6 < ¢<{1) such
that
lle = 1f(a)t®

for all ¢ in ¥, and where | | is the ordinary absolute value (see O'Meara
3} §12).

We have the following result. -

THEOREM. If | | is an archimedean veluation on the field ¥, and «
and B are not both O, then for some real p (0 < p K1) depending upon the
field F, we have

min {R¥", M)
1 Ao, B) 2 ———e e
( ) } (.a'! {) = (1.04%)QEU{”'HI
If F is contained in the field of complex numbers and || || is the ovdinery

absolute value, then we have g =1 in (1), _
' COROLLARY. If o and § are non-conjugate algebraic integers of degree n,
with conjugates ay, ..., o, and fy, ..., 8, respectively, then (with the obvious
notation) d{a, §) is o diserete metric for amy set of non-conjugate algebraic
integers of degree n, and
1

B> o

The corollary follows directly from the theorem, for we note that
when « and 2 are non-conjugate we have R = 1 by a well known result on
symmefric polynomials of conjugates of algebraic integers, and M =1
by a theorem of Kronecker [2]. There is no significance in the value 1. 04,
and it conld probably be replaced by some function g{n) ~1 ag # - oo
That no better result than thiz can be found is seen by considering the
roots of " = m and ¥ = m-+1, for which we have

-1

lim lex R0
o Dllll {mlm mtn}
We remark at this stage that in the cage when max {|lall, I8} =M,
and min{llegl, 8]} =m for all j =1,..., a, the proof that follows will
yield the theorem with 1,04 in (1) replaced by 1. It may also be worthwhile

to note that we aetua]]y prove the following result. lf in the above
notation, d(e, ,a) max [Ia3 B, then

11’1]11_ {gRl[w.’ wln}
(1.04nyemn—t

=1,

[] Moj— 5111”“’ >
l=fsn
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I am indebted to Mr. J. 8. Dennis for suggesting the problem to me,
and for stimulating discussions on the work. I would also like to thank
Professor J. W. 8. Cassels who read the manuscript and made many
useful suggestions. Thiy work was carried oub under the financial support
of an 1851 Overseas Scholarship. )

2. We need only prove the theorem for the case when F consiats
of complex nuwmbers, and {} [ is the ordinary absolute value. The more
general result follows from the result in valuation.theory already men-
tioned in the previons section.

DerinITION. We shall say that the real valued function e(n} > 0 has
the property P if, for all sets of complex numbers 21, ..., 2,, Wy, ..., w,, With

Bl <1, g < 1, 2 — wjl =

¢(n)
(1< j< n), we have the inequality
H{ 2—wgl < {e{n)}™
. i#h

We have the lemma:

Leama 1. If e{n) has the property P, then
min{®'", Ni*}

(n)wtn 1

Proof. By aremark made in the previous section we may suppose that

aw, @) =

loy—f;] < d{a, B) (1 S ESDY
Now
Riw, ) = [] leg= il < (dlo, M ] 1o,
o i#k '
where 2; = o/, w; = F;/IA.
Supl)ose R > 0; then if
Ly mim {7,
d(‘ﬂ,p’)< C(ﬂ)mn 1 ?
we have
. min{®VU IR 1
12— 2011 < e e(n)’

Now since ¢{n) hag the property I,

g}}tu(ﬂ—l){c(n)}n = m’

a confradiction.

3. In this section we shall prove two lemimas which will later enable
us to show that ¢(n) = 1.04n has the property P. The lemmas are modifi-
cations of Lemunas 1 and 2 in Oasgzels’ paper [1]. First let us remark that
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when n= 2 we have 2" U= y"=4, and e(n) clearly has the reguired
property P. We ghall henceforth assume that » > 2

LEMma 2. A. Let o and § be real wuwmbers, 1 = F(a+-5) and L <{r
<nj(n—1). If az= 0, §= 0, and 2/n < A< 3n/2, then the inequality
(2) e — 1 e —1| < et —1]F
holds for k = 2, a = f. Equelity holds in 2) if a = § = 4.

Suppose that A =(k—L)a—pg)/k, # =1/ and 1Lr<nj(n—1)
Then we have

B.if §fa<agin—b/n, nz3, then (2) holds with k = 2;

O if dfn<<a<<8/n, 029, then (2) holds with & =

D.if 41/t < a<<8fn, 5 < n<L 8, then (2) holds mth i'n =53

E. i Tn<a<8n, n =4, then (2) holds with & = 4.

Proof. The derivative with respect to r of

Te’iu__'l 2(fe—1) 7"61:'8_1 "J

rett—1 ret—1

has the same gign as

71— 2rcos k—1)(cosA—
(eosﬁ—cosl}( 2+ reosa  (k—1)(cosk—cosa)
| +1—2rcosf | £0s  — cos A
for 1< < nf(n—1). By examining the sign of this exprebsmn in each
of the cases A-E of the enunciation of the lemma, we find that we need
only prove the results when r — n/(n—1).

A. This follows directly from Lemma 1 of Cassels [1], since A > 2/n
and 1<{r< nf(n—1) imply cosi< r/(#*+1—17).

B.Put a =2+p, f=1/n =px—2 Thus, as in Cassels (1], the
required mequahty iz equivalent to
")

I-4cospu— !

cosd >0,

and this clearly holds if =2 < A< n—2.5/n.
Now for « > 8/n, we have 3.5/n << 1< /2, and

1+ e,os,u—(zq“

1
" (%_1)) eos A

y 1 1 1 -
= l+eoslcos—~—smlsin~—-(2 —_—
S " + (1) cos A

1 in
>1— (2-—-(}08—-1— 1 —) CO8 A — E&
) b

no w(n—1)

1 \/[. 1/35\® 1/35\% 35
1 —_— = —_]— —
(+ s 1))(1 2(%)+24(n)) = =0

icm
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C. We shall firgt exhibit two inequalifies which will be useful in
‘rhe subsequent parts of the lemma. We put ¢ = a/n and A = bjn, whenee
= (e(F—1)— 1)/R Now

i ! = d  1-cos— > L
J— — — an — —_
. ) n 2nt’
where d = o’ — a*/120°.
Hence, with # = n/(n—1),
ré’—1 1 41—2rcos{l/n)
re®—1| #+1—2rcos(aln)
(r—1)*+2r(1— cos (1/n)) S om—1
C (r—1+2r{L—cos{a/n)) ~ n(d+1)—
Consequently

(3)

ifn 1 2n—1 1/2
P <\
et —1 (n(d—{—l)— ) ’
where d = a*— a*j12n
_ Similarly we have, since a > 4,

pe—1 P #®*L+1—2rcosa a\? (r—1)Pfra* 4+ (1—22[124-..)
fr@“-&‘ T PR 1—9reosi :(”b") (r—1) e+ (1— A 12+...)
(n—1)a2tn
(n—1)bt
Thus
re'™ -1 (n—1)a2+n\? a?+1\?
& re®in 1 ( (n—1)b2+n ) ( b2+l) i _
Suppose now that n> 9 and % = 8. Then (3) and (4) imply that
reft 1 B peP 1 n{et+1)—a?\t 2p—1 |\
ré?m—1 | | rei™ 1 (%(b%l)wbz) (n(d-l—l)—d) '

This last expression is decreaging in both & and n {considering b and d
as functions of 4). Bince we have # =9, a5, b> 425 and d > 24.3,
it iz majorized by

9(26)—25 4( 17 )”2
< 1.
(9(19.06)—18.06) 9(25.3)—24.3

D. Similarly, in this case we have a > 5.85, b > 448, n> 5 and
d > 30, which imply that

in 47,508 53 _1 12 = 3f2 2
[re® —11* jre** —1| < a?+1 ( 2n—1 ) < (39.5) ( 9 ) <1
jre®—1 b1 31n—30 21 125
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E. In this case ¢ > 7, n =4 and d > 36; thus we have

] Irgfu_lISPg il 49 2 '7“)1/2< |
H—'W’-*w 112

This completes all cases of the lemma.

LEMMA 3. Lel 7323 be an integer and 0y, ..., 0, be real numbers such

that
1 -
—— <t — Eisn)
)
Define y by
1 1
5 = ¥g.
(5) P = j;l’ ]
Now if
2.5 2.5
(8) ST
and
1<r< nfin—1)
then,
M : IT [re¥i—1] < jrettr—1p°,

lin
with equality only when 0, = 0, = ... = 0, = 2.

FProof. We shall sketch the proof which i modelled on that of
Lemma 2 in [1]. For a given vy, the left hand side of (7) attains its npper
bound for & in the range [—1/n, 2z=--1/n]. So we shall suppose that
the 6; give this upper bound. If all the 6 are equal in value, then the
result holds, and so we may confine our attention to the case when the
upper bound is attained at unequal values of the- ;. The condition (6)
implies that |cosy| < rj(r2—r41), and so if 0 0, << 2= for all j, then
:the result becomes Lemma 2 of [1]. Also, if for each j either one of the
inequalities |8,{ < 5fn or |2n— 6| << 5/n holds, then clearly (7) follows
from {6).

There remain the following cases.

{a) Suppose that there are f; in botsh of the intervals [—1L/n, ()

-

and (2m, 2n+1/n] M o = max §;; § = min 0, and A = }(a+ ), then -

1< Lef=n
we have
1o

e — 1] ire —1| = [l 1 | lpgllPI 1| < peit e,

by Lemma 24, Consequently we may increase the left hand side of (7
by Ieplaemg each of « and § by A, without changing the value of 1, and
so contradict the assumption thaﬁo an upper bound was already attained

icm
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for this given y. Thus, by replacing 6, by 2= 6; and y by =— y, if necessary,
Wwe may suppose that —1f» < 6 g2—: for a]l j» and 6; < 0 for at Jeast
one j.

{b) By an earlier remark we can suppose that there is some 0;, sy «,
for which 5/n< a< 2x—>5fn. It there is some f among the 0 in the
range [0, 2x] (« # §), then we may again apply Lemma 2A ‘md obtain
a contradiction. If for any #in the interval [—1/n, 0) we have A = 3{a-}-p) .
> n{2--1{2n, then we have as in the proof of Lemma 2B,

9L _1_M)

1+cosp— ( ey cosl > .

Thus we may suppose for any such 8, that A< =/2—1/2n, and it readily

follows that (7) holds in general provided we can prove the result when

all the negative §; take the valne —1/». For the remainder of the proof

we shall suppose that we have m of the 6; equal to a for 5/n < a < 2n—35/n,

and n—m of the 8; equal to —1/n, We take the following subeases.
I 8/n<a< 2r—>5/n, then for 1 = }{e—1/n) we have by

Lemma 2B,

[rete—1] jre™ —1] < |re®—1P,

and so by replacing both an a and —1/# by 4, we again obfain a contra-
dietion. _

(ii) If B/n < u< 8/n, we nofe that the inequality () implies 5 < 2ny
= ma— {wn—m}/n, and so m/n > 6/(a+1), where ¢ = ajn. Thus if n 2 9
we kmust have m = 7, ginee m is an integer. Temina 2C then implies

e — 11" ™ ~1] < {re 1],

with A = (Ta—1/a)/8. We again obtain our contradiction by replacmg
geven o and one —1/n each by A.

(i) I a<<41/7n, then m/n > 7/8, contradicting m/n < (n—1)fn
< 7/8 when %< 8. If a<<T/n, n<< 4, or a< 8fn, n = 3, we obtain simi-
lar contradictions. We deal with the two remaining cases 41/7 << a << 8,
5=n<8 and 7T< a< 8 n =4 as in (i) and (ii) by usmg Lemma@ 2D
and 2K respectively.

4, We are now in & position fo prove the final lemma, which will
imply the theorem as a corollary. _

Lemwma 4. The function c¢{n) = 1.04dn has the property P.

Proof. SBuppose that |zi<1, |w|<1 and iz—w|<1/e(n) for
all j. By the maximum modulus prineiple for subharmonic funefions,
we may suppose that one of 2; or w; (for each f) lies on the unit circle,
while the other lies on the boundary of the region formed. by taking the
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union of the unit disc. with the dise of radius 1 Je{n) about the former
point. Thus we may suppose that all the z; and w; lie within the annulus
1—1fe(n) < Jel <1

Following [1], we define for all 1<t -1

- Py = IT  lg—wl,
§—k=t(moadn)

IT 2= [T lz—wl.

1tsin--1 7k

g0 that

By rotating all the points 2 and w; about the origin, if necessary,
we may suppose that for all j,

argz; = @it Ay Argw; = gy,
where 0 < g < % < ... <, < 20 Since o = 3 it follows that |4, < 'l/fn,
As in [1], for each fixed ¢ and j— % = f(modn) pub
P Pr it >k,
f; = .
—gp2m i j<<B.

Now for any real r >0 and s >0, and veal § and ¢, we have
e — 56| = |re'"— e,

Thus we may suppose for this pafticular t and % that |z < |,]. Hence

for some 7; satisfying

we have _
Pyt ] et a1,

JEEND)

.Put 8 = 1--1/e{n); then it follows for such #; and any 6 thatb

-1 14\

el AN Eatrwrmcd B
_ 86" —1 9e(n)
Thus . .

( 1 - t(8s4 15}

P, | 1— getttita 1.

| LS %WJ1$L* |
Since

” [SBi(afH'f)ml[ = o I] |S"161"(05"+1?')m—1|,
I<ign 1<

We are now in & position to apply Lemma 3, with 6 replaced by 0,4 4;,
for ~1]w< b+ 4 < 2rn-+1/n, and

My = 2 9,-_|— > Ay o= 2mt+ A,
=1 =1

icm
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say, where A< 1. Thus

2.5 < 2.5
A = n
e(n) )

and for e{n)=1.04n we have s71= - The lemma gives

e(n)—1 =< n—1

H lsei(ﬂj+lj)__1i Y s“]s“ e(izﬂ:t-:-/[),fn_lln — [381'(27:!-}-11},’1;._1;7;.

1<i<n
Thus
1 —n{n-1)
2 — ] < 1i— Sﬂi‘gﬂf+d)f’i-1n
e ) L |
1—g* 6'; 4 [n 1 ~n{n—1}
1— ge™m ( 20{%))
1—g" —(n—1}n
< § (1_ 1
11—s 2¢{n)
M 1 w.on
i 1 a
e(n
=3 ¢[n) Tl
( N 20(%))
1 n
I it
< {1.04%2311311 3 08} < {1.04n}*,
as required.
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