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The distribution of polynomials over finite fields
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SrepreNy D. CoEEN (Glasgow)

1. Introduction and notation. Y.et % = GF(g) be the finite field of
order g = p°, where p is a prime and b a positive infteger. Let f(m), g(x)
be given polynomials in k[#]. The purpose of this paper is to give a unified
treatment of several problems concerned with the distribution as a varies
in % of polynomials of the form f(z)— ag(x) whose prime factors have
prescribed degrees and the extent to which this distribution depends on
f and g. As particular cases of our theorems, results contained in [17,
[87, [11] and [18] are completed and extended and a conjecture of Chowla
[4] is established. The resulls are described in detail in §2 alter some
necessary notation has been given.

Tn contragt to much of the previous work cited which uses the termi-
nology of algebraic geometry, the approach adopted here is arithmetical,
employing the ideas of algebraic number theory. Most earlier results have
been proved using the deep theorem of Weil [15] congcerning the Riemann
hypothesis for function fields over a finite field in some form or another.
THere (at one point only) we make an appeal to an arithmetical form of
this theorem.

The following notation iz adopted throughout. Let G be the Galois
group of some polynomial @(y) (= Q(y,1)) of degree n over k(t), where
¢ iy an indeterminate, with splitting field K. Regard G as a subgroup
of §,, the nth symmetric group (i.e. as a group of permutations of the
roots of @ (y)=0). Let &, be the set of elements of & having the same cycle
pattern A. For any oe@, let K, denote the subfield of K fized under o.

Further, let & (= GF(¢), for some f), be the largest algebraic

extension of & in K. Let G¢* = {o<@, K, ~ k' = k} and put G =6 G,

for any oycle pattern A. Note that e <« K, ~ ¥ (1) = k(). Also, if
oeG, let o denote the restriction of ¢ to ¥, '

Tf 2 non-zero polynomial a(y) ‘in k[y] of degree n factorises into
a product of o prime factors of degree d (d =1,...,n), we shall say
that a(y) has cycle pattern 1%, ..., n and identify this cyecle pattern
with the corresponding one of elements in 8.
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Finally, throughout this paper, all constants implied by O-terms
will depend only on » = deg@{y). _ : '

2. Statement of majn resnlts. Let f(w), ¢(z)ck[x]. In most of what
follows we could allow f, ¢ to be almost completely arbitrary. Theorem 1
for exainple, remains valid as stated below under only the trivial Jz'estxrici
tion on f, g that they are both non-zero and not both constant. However
in order to avoid obscuring the discussion with irrelevant technical details’
and without real loss of generality, we shall assume throughout the remain-
der of this paper that f, ¢ satisfy

(;9) =1; n =degf> degyg > 0;
T@)g(a) #f(a") g, (a")

where (f, g) is the greatest commeon factor of f and g.
Indeed, we ghall at all times be considering only monic polynomials,

In all our theorems, we shall take the Q(y) of §1 to be f(y)—1
The principal one is the following: . Fn—tg(y)

THECREM 1, S@fppose that (@), g{®) in k] setisfy (2.1) ond that
f(y)—tg(y) has Galois group @ over k(). Then =, (f 4, q), the number of
ﬁolynmm@s of the form f(#)— ag(x) (aek) with cycle patiern Z.; satisfies
)
CE T e
where the implied constani depends only on f}i.

Note. It will be shown in § 3 (Lemma 1) that |G| = 0.

. Now we may say that, with the notation of Theorem 1 , “in general”
G (=6) = 8, (compare [1] and [17]). Moreover, .if =(d) iz the total

2.1) f» g monic;
for any fi(e), g:(2) i k[a],

.

(2.2) _ 7(f g, 9 = 9+ 0(g""),

nunther of irredueible polynomials of degree din k[z] and 1 =12, ..., 'y,

_then it is easy- to s.how by induection on « that the total number of sguare-
free polynomials in k] with cycle patbern A iz

n

(2.3) n(@y _ Salw) oo
' =1 ( ) nl +00™,

(Where 5,(n) is Cauchy’s expression for th |
‘ _ : * the number of elements of evele
pgttelln A 8,) since w(d) =d'¢*40(¢™). Since the total nmrig)er
;}Hpo ynomials of degree n which are not square-free iy ¢! ([27}), it
tzng:vi??ﬁzl Theorer;l 1 and (2.3) that, in general, as g§—oo, m(f, g, é)/q
8t & proporti f i i i
ot proportion of polynomials of degree » in % [=] with cyele

In describing the remaining [ )
. g results; we assume the notation of Theo-
rém 1. We also define &; = {s<@, ¢ contains an g0 nl

- We als . . yele, i =1,....n
and pub @) =&, ~ G, Thus, # @* = 8, then it ig Well—knov,vn 12113?{,3
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[G11/16°| = pn, Where
(2.4) fyy = 1;51!— 3T .-..+(—~1)"“19—jT
and
|Gl /167 = n7

The next theorem is an immediate corollary of Theorem 1. In par-
ticular, when g{w) = 1 it becomes a more precise form of a theorem of
Birch and Swinnerton-Dyer [11. In their statement, (2.6) below was
established but otherwise the coefficient of ¢ in (2.5) was only proved
to depend solely on the relevant Galols groups.

TiEOREM 2. I# the nolation and under the assumptions of Theorem 1,
r(f, g), the number of distinct values of the rational funclion fliz)g(z) as
x varies in k with g{x) = 0, satisfies

G* 3
CON 0, 0) = i 1+0).
Hencee, “in general”,
(2.6) r{f, 9) = pg+0(@"),

where u, is defined by (2.4).

In [1], it 'was also shown that if g(z) =1,f{z) =2t az (n =2,
a % 0), then ¢* = 8, provided p4 2n(rn—1). Hence a conjecture of
Chowla [4] is established by the case f(z) =a"+u,g(®) = 1, q=7p,
m =1 of the following theorem which is concerned with the digtribution
of irreducible polynomials.

Turorey 3. Let f(z), gix) in bl»] satisfy (2.1) and lel @™ be the Galols
growp of f—tg over GE (g™, t}. Then w(f, §, ¢, m), the number of irreducible
polynomials of the form g"P(flg), where P is any polynomial of degree
m an k[x], satisfies '

a{f, &, q; m)

(e 5
T m(@F| ¢+ 0(q™").

Hence, “in general® {when @™ = §8,),
1 s
al{fyg,q,m = o 9"+ O{qml") .
Theorem 3 follows easily from Theorem 1 and the fact, proved in
[67, §2, that : '
wlfs g, " 1) = S il gy 0, 7) = ma(f, g5 g, m+ O(mg™),
re=1i

(n,8)=1

since clearly =(f, 0, ¢, 7)< ¢ -
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We remark that if K has genus 0, i.e. if ¥ = &' (s}, where f{a)—tg(x)
= 0, then in Theorems 1 and 2 and when % = 1 in Theorem 3, the 0 {g'?)
terms may be replaced by O(1). Indeed, in these circumstances, in his
(laggow thesis [B], the author has explicitly evaluated =(f, g, ¢, m) for
mosb of the simplest f, ¢ possible. Some of these results have been puh-
lished in [6]- :

Next we eonsider the connection befween permutation funetions and
exceptional funetions f/g, previously defined for g(z) = 1. A permutation
polynomial f(z) in k[2] is one whose value set in k is precisely %, i.e. one
for which #(f, 1) = ¢g. More generally, ‘we shall say that fig ix a permuie-
tion function over & if r(f, g) = ¢. This means that g{x) iz irreducible in
F(X)—F(X)

Y-—-X
hag no absclutely irreducible factors in k[X, Y]. More freneralh we shall
say that flg is ewceplional over &k if

9(X)f(¥)—f( X}y (F)
¥r—Xx

has no absolutely irreducible factors in E[X, ¥].

Our methods are applied to yield natural proofs of Theorems 4 and
5 below. As a special case of Theorem. 4, we could suppose that f/g is
an injection mapping on ity domain of definition with s(n) = and
4 =0 in (2.8) below, and, in particular (when g{z) is irreducible), that
fig is a permutation function so that s(n) = 0. In this last case, the result
(with g(#) = 1) is due to Hayes {8]. When g(2) =1, = p and 6 =0
in (2.8), the theorem has alse been proved by Williams, [18], Theorem 2

THROREM 4. Suppose that s(n) is a now-negative function of n =1,
2,3,... and that & satisfies 0 <X 6 << 1. Then for each n there exists a con-
stcmt 6, = 0,(8, 8) such that, if g > ¢, and if f(m), glz) in klz] (dn add’mﬁaon

to (2.1)) sabisfy
(2.8) Ir(fs ) <s(n)g
then flg is an ewceptional ftmctwn '

Under the restrietion that p >n and when g(x) =~ 1, Theorem b,
the converse to Theorem 4, has been proved by Mao(}luer [11].

) TArOREM 5. If flg 45 an exceptional function over k, then it is « Perm-
tation function. :

E[z]. An exceptional polynomial f(x) in %[#]is one for which

(2.7) Gl X, ¥) =

Theorems 4 and 5 possess an immediate corollary whieh establishes
& conjecture of Williams [18] in a stronger form In the conjecture, g(z) =1,
g =pand § =0 in (2.8).

CorOLLARY. If f and ¢ aré as in Theorem 4 and q> 6, {ms (Zefwed
there), then g{») iz drreducible and flg.is a permutation funcmon over k.
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As an extension of the concept of an exceptional function, we shall
say that fly is Fexceptional if (2.7) factorvizes in F[X, T} into a product
containing no ahsolutely hredueible factors except precisely /—1 linear
factors (i.e. factors whose degree in X and in T is 1). Thua f/g is exceptional
if it ix l-exceptional. We shall finally indicate how the proofs of Theo-
rems 4 and 5 may be moditied to yield a proof of Theorem 6 below.

THEOREM 6. (1 Y If fly is ?e:ceph«ma? over L, then
? n*

3.9 S Pevoral
(2.9) (f, S T e A
(ii}) Swuppose that s(n) and & are as in Theorvem 4. Then for each n there
evists o constant d, = d4,{3,8) swch that, if ¢ > d,, and if f(J gy in
Lla] sotisfy
|

. (2.10) ' " (, ¢ )--} < s(n)g’

|
then flg is n-exceptional over k and hence (2.9) with 1 = n holds.

For g(x) =1, ¢ = p, part (i) 1epresents an 11111)1ovement of Willinms
[18], Theorem 1, who proved (2.9) with O(1) instead of #*fl. We shall
show, in fact, 1;1&17 it flg is l-exceptional over &k and f(z)— ag (@) has no
repeated roots, then, if f(x)—ag(x) has a roob in F, it has precisely I roots
in k. For g(x) = 1, ¢ = p, part (ii) was proved by Mordell [13] by showing
that essentially the only pessible form for f(w) was #". However, i g(r)
is non-constant, the author has shown in [5] that other f/g are possible.
Along with Theorem +, part (i} of Theorem 6 forms a partial converse
to part (i). It seems fa,nlv clear that the converse ig falee If T # 1, u.

3. Preliminary results. Tn this section we return to the general situ-
ation deseribed in § 1. We assume that all algebraic extensions considered
are separable. Because of (2.1), this is sufficient for owr purposes.

Luaya 1. In the notation of § 1,

] i ()
G* — s
L ¥

@1,

where o iy Buler's funelion.

Proof. In the sequel, if F is o subiield of o field F, Gy will denote
the Galois group of E over F. Thus Ggpy, is the (T.ﬂDl\ group of Q)
over k'{1). Since &'(1) is & normal extension of k(f), by the fundamental

theorem of Galois theory we have that Gy 15 2 normal subgronp of ¢ and

(3.1) GG = Gremmn = T

the Iast gronp being evelie of order f and with generator = where 7(w) == al
{(wek’). The isomorphisin hetween the fivst and third groups, of (3.1) is

’

that which tukes oGy, on to o'

Acta Arithemitea XVIL3 ) 3
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From the ahove, it is clear that |Geypl =16 and that ¢ is
the ngion of those cosets of Ggy In ¢ which are mapped on to 7', where
(i,f) = 1. There being »(f) such eosets, the proof is complete.

We remark also that if (i,f) = 1, then oe@* <« oG

In the notation of §1, K is a era.lms extengion of k{f) of degree =3 Sl
If we neglect infinite divisors, K, %(¢) (and all intermediate fields) possess
a theory of divisors which in k(t) gorrerponds to ordinary factorization
in %[f]. We assmme this divigibility theory in what fellows.

Let § be a prime in some subfield K* of K and let P (1) be the prime di-
vigsor in k[¢] divisible by 3. We shall say that T has degree g(P3)
= greng (D) I g(PB) = frpp (B)deg P (1), where here frr () is the degree
of the extension of the residue class field of T'in K* over that of P(#) in 70(6}
and deg P (t) is the degree of P(#) as a polynomial in &{#]. Thus gesy (P)=
i and only if Pli—a for some ¢ in & and i— « splits completely in K"‘

Lemwa 2. In the above motation, if K* ~ & = GF(¢"), where f, > 1,
then '

Irr e (PB) > 1.
Prooi. Suppose, by way of contradiction, that Ixompn (PB) =1L and

therefore that P|i—a (aeck). Then the prime in k'(f) divisible by P is
alzo t—a. Now

I (B = So o (B) = Ty (B) Fi iy (8 a:)

=z feamplt—a) =f1>1,
a contradiction and the lemma is proved.

'_Before gtating the next lemma, we introduce some more notation.
If #is a subfield of a field & and P and 9P are primes in F and F respectively,

th E[F E(FY .
en | 7 and T ] will denote the Artin symbol and the Frobening

automorphism respectively. In addition, if ge@ (a -group), N(o) will
denote the normaliser of ¢ in. & The next lemma is based on MaeCloer's
work in the algebraic number field case, [12].

_ Lemwa 3. In the usual nommow,, let t—a be unramified in . K. Then
we have

(3.2) ' ' (K/k(t) ) g

—o

K[k

- Moreover, if oe@ has order h amd is S%Gh that oge (

), then there
are evuctly | N (a Nk first degree primes P in K, dwzdmg t—a and such H? ot

. (K/K) @
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Proof. We use here results contained, for example, in [16], § 4-10
or [3]; pp. 163-165. '

d P{eK)|t—a be such

' K k{t
We finst prove (3.3). Let ge( 1:/ {))

it []Lﬂu
hat |-
P

clags field of P and so, by the definition of the Frobenius automor-
phism if aek’ then a(a) = . It follows that T ~ &' = k and that (3.2)

holds.
Tt therefore only remains to prove the latter assertion. We shail
nse I to denote the subgroup of & generated by o. (Thus |H| = h.) Let

B(eh)|t—a be such thab [K/’ ] =
(¢ 1w

of {—a has the form B for some Te@. Moreover

10
s

Further, the dec OMposition group of P is precisely H, L.e. 1 =P <« eH.
Hence there are exactly [N (o): ] distinet primes Pli—a such that

[*5 ]

such B regarded as an element of K, is 2 prime divisor P with g e {PY
KK, .
=1 and, of course, satisfying (-%) = {o}. The proof is complete.
The crucial appeal o the Riemann hypothesis for funection fields
is made in the next lemma.
LeMMA 4. In the usual notation, let k() = K* = X be a tower of fields
such that K is a. eyclic extension of K of degree h whose Galois group 8
generated by o where ¢ (@) is actnally in G*. Then m,(d), where d|h, the

*
) has order d,

] = o.Then %' may be congidered as a subfield of the residue

g. Then any prime divisor (in K)

] — Y5y and ler = o = TeN (o)

= ¢. Buf, sinee X, is the decomposition field of such & P, each

number of first degree primes P of E* for which (
satisfies :
i . .
L4 iU =1,

3.3y m{d) = o Tk

0, atherwise.

g+ 00",

(\*ote that necesgarily flhin!. See also addendum.)
Proof. For all Ik, let K be the fixed field under . Thus
K} = K* and K; = K. Also GE]K (= Galois group of K over K;) is

the group generabed bv oM and [K,il K*] = hy. Then ([161, p. 182),
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. . s it s - - . x
a prime P in K (unramified in A7) splits completely in Ky

KT .
= T 56’1;;1‘:“‘ ’

13

i.e. = ij'fff? sh d
O e L ffor some &),

_ - () -
e, < the order of (—J—/ﬁﬁ) divides k/h,.

Hence M (%,), the number of first degree primes in K} (excluding infinite
ones ahd those ramified in &) is '

(3.4) Dl lmds) = 3 (hjd)m,ls).
8.(hily) el

Now if KF ~ ' contains k strictly (Le. i : :

' ' £ o v (i.e. if (&,f) > 1}, then M (h) = ¢ |
;enl-%l‘& 2. On the other hand, if Ky ~ % z % (i.e, it (2, ) ('-j)U 1'1110}3

- 3 T R ‘ ) ‘ . ! oy J

mllzb%minn' I‘lypothems (s‘ee, e.g. [7], p. 3006) asserls that Jii"(;‘e,:), ihe

wher o *fn".st degree prime divisors (ineluding infinite and rarified
ones) in Ky satisties ) T
(3.5) : 13 (hy) — (g +1)] << 2gg

= O(qlm)a

where g is the genms of K .

('Omj?]i«ci 'the mun/bersi of Ia‘.miﬁed primes and of infinite primes under
onsideration are < nl* = 0(1), if follows from (3.4) and (3.6) that

s
D b (s) = l”% )y (hf) =1,
eMettal 10, otherwise

and. t-heréfore

(3.7) Z(ﬁjd)%(s) - lQ-I-O(_qmp (f, hjd) =1,
o~ 0, otherwise,

We now wse induction on 4 i
W / . 3 to establish (3.:
](_,-}.lg yields (3.3} in this ease sinee f, a8
10lds for ! i '
hem; (();_;;uaii(f( 3(37 }Iit ﬁ( i;,) t(]llzéf)) ?)111’ then (f, (bfs)) > 1 for all &!d and
,- . it vield 7 = : f
{(f: (hjd)) = 1. Then (3.7) becomi: d 7. (d} = 0. Supposs fherctore that

h

)- First, putting d == 1 in
k) = f. Assume therefore that (3.3)

(h./d)ﬂ:n (5‘) — g_%u O{QLH) ,

3ld :
iR any=1

)
=3
w

The distribuiion of polynominls over findle fields

i.e, by (3.3)

) Ja 7 h'( [ eld ) )
5-8 T £lS — 1t d o ———— f=-d O 1!“ .
_ (3.8) } g (s)4 - |7 (d) 7 q) = q+0{g")

d

d{f) o

s|d

(fyhife) =1

Butt,
; - ,
PEICES WIS
s sidy i
{(f.(hlm)=1

where . = k'R’!, the prime factors of 2’ being those of f and (R, f) =1
so that d = k' dy, (dg, f) = 1. Hence
Sotrs) =q) Y ots) =g d.

sldy s|de

! ; foeld)y _
i T T
since flh. Consequently, (3.8) and the following remarks imply that (3.3)
holds for all d. This completes the proof. .
Note that if the genus of K is 0, then if follows from {(3.5) that we
may replace the O (¢**) of (3.3) by O{1). We remark also that in our appli-
cation we require only the value of 70, (h). ‘

Now

4. Proof of Theorem 1. In this section, we assume the mnotations
and conventions of Theoremw 1 and specialize the results. of §3 to ‘this
case. Thus K is a splitting field of the irreducible polynomial fiy)—tg(¥)
of degree n over k(t) with Galois group &. If x is any root of thig polyno-
mial, we have a tower of fields k(1) € k()= K where {k(x): k)] =n
and K is a Galois extension of k(f) with [K: k(1< n!. In k(x), the divi-
sibility theory of § 3 has the following properties. The units are generated
by k and the (< n) prime factors of g(x) (the valuations corresponding
to which lie over the infinite valuation of %(5)). The integers (respectively,
primes) are associates of polynomials (respectively, irreducible polyno-

mials prime to g(z)) in k[x]. We agree to identify asgociate elements
of E{x].

It is clear that =,(f, g, g) is simply the number of first degree poly-
nomials in k[t] which have cycle patiern A regarded as elements of iz}
The number of ramified t— a is clearly 0(1) and so as far as the estimate
of Theorem 1 is concerned can be neglected. The connection hetween
cycle patterns of polynomials and of automorphisms is established in
the next lemma. '

LEvia 5. In the above notation fy)— ag{y) (with no repeaied vools)
has cyele pattern A if and only if
(£40) < g,

f—a
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Efk{t
Proof. Let o‘e(——_/ Q) It is sufficient to show that if ¢ hax eycle

—a
pattern 4 then so does f(y)— ag(y). Accordingly, suppose that o consisty
. 7
of 1 eycles of length 2, (¢ =1,...,1), where }h; = mn, s0 that
i1

H
fp—1

_ -1
G = (I, CBry oeuy 67 2) Ay, 0wy, ., 0T,

where &,,..., % are certain roots of fly)—tg(y) in K. '
Now the residue clags field of {—e is (isomorphic 10) F = G {g)

Also, it P iy a prime of K dividing t— ¢ and such that [vﬂl’,’y )] = ¢
. 513 s

the_n theresidue class field fy of P is a finite extension of %. For any element
Uin K, let U’ denote its image in XKy. Thus ¢ = a. . J
We have
7 -l

f(?))*ty(y)':nn (y—o'a).

i=1l j=0

Passing to the residue class field Ky, we have by the deﬁnii}ion of [K/ k (t..)_]

_ P
7 -l

() f—gy) = [ ] w9,

whe lqhi [ (
re ;" = (i =1,...,1). From the fact that f(
Y)— ag(y) has no
repeatfad roots and the well-lkmown form of irreducible polzrnomimls i
kly], it follows from (4.1) that L o
.Tli'-ll
Piy) = [[ y~a)
j=0 :
is an irreducible polynomial of degree A, i
_ ! g 1T Ely] « gik: (Y |
g #j. This completes the proof. y o ond that Py = Bilo),

Proof of Theorem 1. Ta
h . what follows we omit
ariging from ramified primes. By Lemma b, we havle he 0 verms

(4.2) -
w9, ) = 2 1= Z 1, by (3.2)
R (ng})gf?z (Kjk(t)) oot
. t—a /74
aek
| 21(5);1\?(0)1 2
UEGJ- (KlKa —

P
g(P)=1"
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by Lemma 3, where 7 is the order of o and I(o) I8 the number of elements
in the conjugacy class containing ¢. Since [N (o)} = {G/1(r), we have
from (4.2) that

k
st =5 S
(43) i 0:0) = 1

ac(%; (*Kgia):l
a(P=1
holds. Now if (i, h) =1 then o has the same cycle pattern as ¢ and,
by the remark folowing Lemma 1 is in @ if and only if o* is. We deduce
fromy this and (4.3) that : \

h
(shd) ?Fz(fr 7,9 =W2{3 2 !

 EELET RN
g(P)=1

B )
= gy 2 =

o}
h e
= . IGA‘ + O (Quz
TR A S
by Lemma 4. Simplifying (4.4) and applying Lemma 1 in tura yields

_ I e iy _ 162] o
i (f, 9, 4) TG q+{?(q ) = E(,}*t,rH«O(q ).

'Tlhe pro'of of Theorem 1 is complete. _
Note that when K = &'(z), it follows from the concluding remark

of §3, that the O(g**) term in (2.2) may be replaced by O(1):
5. Permutation functions and exceptional functions. We assume
‘throughout this section the notation and conventions of §2 and § 4.

Bquivalent criteria for fjy to be exceptional are described in the next
Jemma. We remark that if follows from (5.3) below that & is never empty.

LeMMA 6. The following three statements are egitivalent:
(i) flg is exceptional over k.

(i) ARl eutomorphisms in GF contain exactly one 1-cyole.

(iii) ¢F = 67.

Proof. It is sufficient to prove (i) < (i) and (i) < (ii). Recall that
ceG* if and only if
' o'(a} = a < aek.

(i) = (ii). Suppose that ceG7 but that o fixes different ro0ts @y 2y
of fly)—tyly) in K. Let '

(5.1) G‘f.’u(m: y) = Gicw: ¥) ... Gz(m; )
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he the prime decomposition of &, (x, ) (defined by (2.7)) in k[, ],
where y—ay G, {z, ¥), say, in K [y]. Then sinee f/g iy exceptional &, {w, y)
=H, (@, %) ... H{z,y) in k' (&, ¥), where r > 2 and y—u,|H, (2, ¥), say.
Xow, since gl{r) = 2, ¢, regarded as an automorphism of A [y], fixes
61 (x, y). Hence o (W (r, ¥)) Gy (x, 9)in &' [@, y). Also o (H,{w, y)) 5 H (2, y)
since otherwise H,{x,¥)ek(r,y) which contradicts the fact that » > 1,
Hence o{H(z, y)} = Ha(e, ), say. Therefore y— or, | Hy(w,y), 1.6. 4—m,
(Ho(x, 1), Whl(:h is impossible by separability. Hence (i) must lLold.
(_11} (i), Suppose that (i) holds buat that flg is not exeeptional
Tet ge6F and let 2 be the unique root of f(y)—tg(y) fixed by o. Theu
(2, y) may be expressed in the form (5.1) in k(x,¥), where G {r, y)
{say) is even Irreduncible in %'(z, y). Lef 2, be a root of Gi{»n, y} = 0.
Then so also is oxy and (by (i) owy 5% @,. Since & (2, ¥) Is irreduncible
in E'{r, y), there exists a }L (#)-automorphism g in & such that pe, = ox,
Hence

(5.2) o tony = and  pTlox = .

However, since o’ iy the identity automorphism on %', (¢7*¢) = ¢' and
s0 o e (in @) actually belongs to 6. Thus (5.2) contradiets (ii) and
consequently f/g must be exceptional.

(ii) < (iii). Let #,,..., 2, be the roots of f(y)—iy(y) in K. Also,
in this proof, let

Gy ={oel: olm) =}, 1=1,..., 0,
©and put .
GZ‘) = G(?] I G*.

ThEI?: sinee [k{x;): k(#)] = », we have, by the fundamental theorem of
Galois theory, G, = |@|/n. Also, since obviously k(z,) ~ &' = k, it follows
from Lemma 1 that

<. ' &
(5.3) 165, = el G, = _f(.,il g = |_T|
b I %
Now evidently
G =y

Hence
G < Y G = 1|
i= 1

{(by (5.3)), with equality if and enlv if the G(,, are pairwise disjoint, i.e. if
and only if (i) holds. This completes the proof,
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Indeed a very similar argument to that used to prove the equivalence
of (1) and (il) ahove yields the fact that the following statements, (i)
and (i), are also equivalent. (Recall that G £ q.)

(Y flg 48 T-excepfonal.

(1) Whenever o and v are (not neecesserily distinet) automorphisnis
of &7 with one L-cycle in common, they possess precisely 1 L-cycles in common.

We turn now to the proofs of Theorems 4 and 5.

Proof of Theorem 4. Suppose that f, ¢ ave such that (2.8) holds.

Tet n, (7 = 1,..., n) be the number of polynomials of the form f(y)— ag (¥}
(nek) possessing exactly ¢ distinet roots in k. Then clearly :
ki I
(5.4) ‘S{ iy — g = degg < =,
==
while (2.8) is equivalent to -

(6.5} ] yn mgi #{n)g

Subtracting (3.5) from (’) 4), we obtain

(5.8) 271 Z (t—1)my; < s{n)g’ L.

{=32

Suppose now that j“ jg is mot exceptional over k. Then by Lemma
6. (ii), and since G == ¢, there axists o whose cyele pattern A eontaing
more than one 1-cycle. Hence |G%) = 1. Moreover, since the number of
F(y)— agly) with repeated roots is < »*, then. it follows from (5.6) that

mf g D= gnqﬂ,
where g, = s(-n)—f—an. Hence, if ¢, is the constant implied by (2.2}, we
have ' :
oa g N
(5.7) \G‘* 1 —-;- g—m{f 9, q)% +m.(f,g, q)
\ynq”"+e ¢ < (g, e,
where 1 ¢ = max ({;, )< 1. We deduce from (5.7) that

o

q :‘< 671{57 8)7

where ey
l ¢, = [”‘I(.g-?f\l— t’-")] fa-e .

This proves the theorem. .
Proof of Theorem 5. The only new difficulty encountered here
is the consideration of f(z)— eg(®) when f—a iy mnuﬁgd in K. If B iy
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a prime in K dividing such a f—a then, although there is no unique
Frobenius automerphism corresponding to 3B, there do exist ¢ in ¢ with

. the defining property of the Frobenius automorphisim, [16], p. 179. The
first part of Lemma 3 is easily modified to show that such a ¢ is in G
Moreover, the proof of Lemma 3 indicates that, in this case, to each T-cycle
in ¢ there corresponds a (not necessarily distinet) linear factor of fly)-—-
—ug(y) (even though the I-cycles may nobt account for all the linear
factors of F(y)— ag(y)).

Suppose now that f/g is exceptional. Then by Lemmna 6, 6% = ¢,
Hence by Lemma 5 and the above remarks, each polynomial F(y)— ay(y)
possesses at least one linear factor (and exactly ome if f{y)-—ag(y)
has distinet roots). Hence for all « in %, there exists # in % such that 7(6)
= ag{#) and ¢(§) # 0, since (f,¢) = 1. Hence g is irreducible in &[z]
and f(8)/g(6) = «. Thus f/g is a permutation funetion (and so f{y) — ag{y)
has exaetly one linear factor for all ). This completes the proof.

Proot of Theorem 6 (skebeh). (i). The proof is similar to that of
Theorem 5. If f/g is l-exceptional then, by the remarks following Lemma 6
and by Lemma 5, all polynomials f(y)— aeg(y) with & linear factor and
no repeated roots have precisely 7 digtinet roots in % Thers ave thus at
most »* such polynonials with I’ roots in % where 1 << ' # 1. After some
calculation using these facts and the fact that to each # in k, not a root
of g, corresponds some o with f(8) = ag(9), we obtain the inequalities
{2.9). See also addendum. '

(ii). This part of the proof is similar to that of Theorem 4. Tt
1(}-:' =1,...,n) i a8 in that proof, then (5.4) holds and (2.10) is equivalent
o

n

i .
T L s
2 L. J < s{mig’.

i=1

(5.8)

From (5.4) and (3.8) we deduce that
. ) n—1 -1 .
(3.9) D<M (i) < ms ()
i=1 i=1 '
- (With (5.9) compare (5.6).) Assuming now that flg is not m-exceptional
v\ze can. show,‘as in Theorem_%., but using (i)’ (following Lemnma ) s—und’
(5.9), that ¢ is bounded. This completes the proof.

6. Examples. In general, it is a difficult task to find the Galois group
?f f—'tg or even to factorize &, (X, ¥) (defined by (2.7)). Nevertheless
in this section, we select certain f, g which can be used o lustrate ourj
results. In all of the examples we assume the notation of § 2. |
In (a) and (b) below; we have n = & and leb n, (i = 0,1, 2, 4) be
the mmmber of f(z)— ag(®) (ack) which are irreducible in ,k[J:z:], é;pa;rt.

iom
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from 4 linear factors. In addition, let #, be the number of such polyno-
mials which have cyecle pattern 2° in k[z]. For convenience, if the roots
of f—1y in K are named in order as @y, ..., &,, then an element in & is
to be considered as a permutation of these subseripts 1, ..., 4. We shall
neglect error terms. '

(a) This example demonstrates what can happen if & #£G We
consider siinultaneously the cases f/g = #* and (in brackets, where different)
flg = (w*—1)/2% It ¢ is a root of f—ig in I and ¢* = —1, then H = ks, 4)
and all the roots arve z, i¢, —&, —ix (#, —&, 47, —iv "'}

I ¢ = 1 (mod 4), then ick, G = & and

(6.1)

G = {(1234), (1432), (13)(24), (1)} ({(12)(34), (14)(23), (13)(24), (L))

Hence by Theorem 1,
(6.2) g =3,0,0,%4, 1 (0,0,0,4,3), i=0,...,4+

On the other hand, if ¢ = —1 (mod 4), then i¢k so that, although
all the automorphisms in (6.1) are in &, they are not in G* since they
fix i. In fact, we now have G* = of, where & is given by (6.1) and
o = (12)(34) ((1324)}, which. takes ¢ on to —i. Hence

G = {(13), (24), (12)(34), (14)(23)} ({(1423), (1324), {12), 3H)})

and so
(6.3) Tifg=10,0,%,%,0 (4,0,%,0,0), 4 =90,...,4.

We now focus our comparizon on the distribution of irreducibles. Thus,
it follows from (6.2) and (6.3) that ¢ =1 (mod 4), then n, % 0 (= 0),
while if ¢ = —1 (mod 4), then n, = 0 (70}, even though &, == @ in this
case for flg = o

- (b) Here we take ¢ odd, g = 2 constant, f = any quartic polynomial
and derive and complete the work of MeCann and Williams [10] who
estimated 7, 7, 7. 1t is clear that without loss of generality, we may
take. f(#) = o*-+ax?-be. We have discussed the case a =5 =10 an:l
omit this case from now on. Otherwise it is fairly evident that G =0,
We consider two cases.

(i} b # 0. Here since

Gy (X, T) = (T4 X)( P+ X a( T X)+b

is easily seen to be abschutely irreducible in &{X, Y], then 3]{'K': k(t)]_
while, of course, 4|[K: k(#)]. Hence i = [K: k(1] =12. Now, s_mce_the
discriminant of f{y)—1, being a cubic polynomial in f, is certainly not.
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a square in k(f), then & 5= 4,, the alternating subgroup of §, {see [14],
P 251). Hence G = 8;,. We therefore have

'”ik{*“ia%:%%: 1115 i=0,...,4
{if) b = 0. Here
G (X, X)) = (T+ X)X +a).
Hence, if « is one voot of fy)—1, then the four roots are &, —x, 8, — 0,
where 02+at+-a = 0. Moreover, [X: k(#)] = 8 and it is easy to wverify
that & iz the guaternion group

{(X), (12), (13), (13)(24), (12)(34), (14}(23), {1423), (1324)}

generated by (12), (34) and (13)(24). It follows thab u;/g =3,0,1,2, 1.

{c). Finally, we obtaln a class of permutation functlons in which
g(x) is non-constant. In fact, put flg = &”/(@**+1) (p odd). Then

' P2
Gl X, Y) = (TP L (T X = [] (¥X— &Y — X)),
=0

- whers { is a primitive 2({p--1)th root of wuily. It iy easy to show that
ek if and only if ¢ = p*, where b is even. Hence, if b is odd, then fjg
is exceptional and so a permutation function, by Theorem B. If b is evén,
then f/g is p-exceptional, and so, by Theorem 6, |r(f, gy— 2" Lp.
Indeed, in this case, »(f, g) = p"" exactly.

Addendun:. To the hypotheses of Lemma 4 we must also add the assumption
t_hat the number ef ramified first degree primes in K in < w!® (or indeed any speei-
fie function of »). This holds in the situation of Theorem 1, since there (by .|1.6]
p. 178} the number of ramified primes in B{f) < degree in ¢ of the diseriminant 0%
Ay —igly) < (n—degg) (n—1). This l&ttor fact iz also wsed to establish the inequality
(2.9} in t]le PlOOf of Theorem 6.
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