icm

ACTA ARITHMETICA
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L-functions of elliptic curves
with complex multiplication, 1

hy

R. M. Davererl {London)*

§ 1. Introduction. Lot ¥ be an elliptie cur‘#e

{1.1) ' y? = gt —ax—b

~where ¢ and b are rational constants. Birch and Swinnerton-Dyer have

conjectured that the group of rational points on % may be related to
the behaviour of the L-function Lg(s)} of . For the definition of L.(s)
and an aceount of these conjectures, see Cassels [3], §28. We follow
Cagsels in replacing the s of Birch and Swinnerton- Dyel by s—3%, =0
that references to ¢ = 1 in the Bivech-Swinnerton-Dyer notation are

¢ = § in the present notation.

We consider only the case when (1.1) has complex multiplication,
5o it ring § of endomorphisms over € is an order in some complex

quadratic field &k = Q(V —d,), say. Then Dewring [4] has shown that

Ap) |\
(1.2) Zoe) =[] (1— /V(—(I;;)
. »

where p runs through the prime ideals of 8, except the finitely many for
which % has bad reduction mod p. AP is the absolute norm of p, that is -

~ the nuniber of residues mod p, and 1 is a Hecke Grossencharakter defined

on the ideals of S.
The product (1.2) converges when re{s) > 1, buf the function can be

ana:lytleally continued over the whole complex plane. When 8 = Z{1 1],
Birch and Swinnerton-Dyer [1] showed how to construct a number a such
that

(1.3) To(3)xa =1(%), say

* Mowst of thiz worlt was done while the author was a researeh student at the
University of Cambridge.
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is a rational integer. This result was useful, fivst because it is a considerable
help in pumerical computation, and second because it suggested the
mogh reasonable form for the Bireh—Swinnerton-Dyer conjectures,

More gencrally we may associate with % the functions

(1.4) TB(s) = ]1: I (1—:1;%_;)4_

for any integer =, the case # = 1 being (1.2). It is suspected that these
funetions might give further information about rational points on %, but
no detailed conjectures have yet been made.

In this series of papers we find for each odd % a number « (depend-
ing on % and «), such that

LE) xa

is o rational integer. The same proof applies to each of the 13 complex
quadratic rings S with class number one. In this first paper it will be
proved only that certain numbers are algebraic. Rationality and, integrity
will be proved later. .

I'would like to thanl Professor J. W. 8. Cassels and Mr, 7, P. F. Swin-
nerfon-Dyer for their most valuable assistamce. Also I am grateful to
Mr. Swinnerton-Dyer for showing me his manuseript [9] dealing with
the case » = 3, and for suggesting the general problem to me.

§?. Statementl of Theorem 1. We adopt the following notation.
I U is a ring, T shall denote the additive group of U, and U”* the
multiplicative group of nnits. Tet d, be a square-free integer and % the
field Q(V — dy), with diseriminant d and ring of integers R. R is gener-
ated by 1 and o (say), where o

if dy=3mod4, thend= —d, and ¢ = -+ —.};Pf-w dy,
otherwise, 4 =—4d, and ¢ =V :;Z;.
In either ease, Im{s) = %]-‘Jl—dT. :

.Let 8 be the subring § = Z-1-fR, for some integer . An ideal a of
§ will _be called proper if @ is not a T-module for any ring T = 8. The
p.roper.ldeals are the projective modules of rank ome 8. The proper frac-
tional ideals are those finitely generated subgroups of k¥ which are S-modu-
les but nm.; T—m.,odrdes. They form a multiplicative group generated by the
proper prime ideals. The subgroup of prineipal idealy has finite index
h, say. We ean therefore construct a zystem (B, say) of ideal numbers
for twlhe proper ideals of S in the same way as we form ideal numbers for
the ideals of R. See [8] for the method. :
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Let m be an ideal of S, 7, a character on (S/m)*, and y any extension
of %, to B. A Hecke Grossencharakier i3 a function

_ ' a\" .
(2.1) 2(0) = (W) (&)

defined on ideals a of S, prime to m. Here @ is an. ideal number represeht—
ing @, and y must be such that i(e) does not depend on the choice of a.
A Ilecke zeta function with Grossencharakier is a function defined by the

series

2
(2.2) £(s, ) EZTV%))?’

Lo

the sum running over proper ideals of 8§ prime to .

We use the standard notation for elliptic functions, as in Fricke [5].
2 shall denote a typical element of & period lattice I'. Lattice fnnctions
such as the Weierstrass elliptic function will be denoted by (2, I}, ete.,
the argument I" being inserted only when necessary. We shall be considering
series summed over 17, and the following lemma jusbifies the use of these
series. The proof ig left to the reader, but see Fricke [5], page 256.

Immma 2.1, Let f(2) be o function such that f(z)2"* is bounded for some
u > 3. Then the series

D fle+2)

L0
converges absolutely in the domain (E, say) of the (2, 0y, wy)-8pace defined
by these conditions: , '

(1} oy # 0, wy 5% 0, w;/w, not real,

(2) 2 5 my -+ My, for any mq, My 0 Z.

The convergence is everywhere-locally uniform.

For any @, Sz is a period lattice. Since g,(Sz) is homogeneous of
degree —4 in @, @ can be chosen to make g.(Sw) an algebraic number.
Then gy(Sz) will also be algebraic, because j(Swz) is algebraic (Hasse,
[67, Satz 8). '

Some of the functions to he defined pregently are many valued.
In each case this happens becanse 2° is a many valued function of 2 and s.
We asswmime from now on that a value of log(2) has been chogen for every
¢ (£ 0), subject to the following .

BRANCH CONVENTION. Whenever z and Z appear in the same formula,
then log(3) is fo be interpreted as log(z). ‘

‘ With this convention, everything -defined in this paper is single
valued, independently of the choice of 1og(z}, but & =7z does not imply

i
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iog(#) = log(z). In particular,

£ = exp(s(log(z}—{—log(é)))
iz single valued. Also if »+-v is in Z, then

gu—sj{zr;%.s — / )”-HJ(Z”
is single valued.
This paper is devoted to the proof of
TmeoreM 1. Let [(s, 2} be a Hecke zeta function defined by the series
(2.2), let s, be & value of s such that In—sje and 0 < g, < su, and let
@ be chosen to make g,(Sx) and g,(Sz) algebraic numbers. Then S(s. ) s
vegqular at 8 = g, and the number

(o0, D)t = 0, sy
18 algebraic.
By substituting —» for » and @ for @ in (2.2) if need be, we may
asyume that » 2> 0. But if » = 0, the theorem is Wlthout content Dbeeause
0 << 8, §n is impogsible, The ba;sm idea of the proof is that : ( A) will

be e*;pressed in terms of certain doubly perlodlc funetions. We proceed
to construet them.

. §3. The functmns Kz, I). We adopt the convention that in series
summed over © any term in angle hraclkets is to be omitted when £ = 0. Lot

. 1 1 2
I

el

be the Weierstrass zeta function. Then
(3.2) L+ Q) = fe)+y

Where 9 = My, man, if 0 =My WMy w,. 7y and 5, are consfanty
which satisfy

(3.3) O1#s— @aty; = Img
(see Fricke [5], page 160).
DermvTION. For integers 4,7 with 0 <4< 4 define
(8.4) Eiz, IV
\-1 { et Q)}
_ QEF (e QY

_ Z :z{er-.Q) 17': . i ) )
- (027 Ef} toi=it,

{ (z+Q 7 iz g2 . ' )
_57;{ (2t Q7 < ;(1‘1‘ " '—"?2“)>} H . =if1.
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Lewrva 3.1, K‘ is a well defined reqular function of wy, w, and 2 in
the domain E of Lemma 1. The series may be differenticted term by term.
For fiwed I', K} has poles of order 147 af the lattice poinis. _

Proof. Bach term of each series in (3.4) is & regular function of
0y, 0y and 2z in B, Moreover as 2] — oo,

S+ 02) =L@+ =%+0{1) and x5 = 0(my,m,) = 02\

It can now be checked that the three summands in (3.4) are 0(Q7%)
as |2} — co. By Lemms 2.1 the series {3.4) are each locally uniformly
convergent in B, so X! is regular there.

Now ﬁx I and comlder the pole of Kf at a lattlee point z = Q.
The term Z'{z— 2)/(z—0) hag a pole of o1der i--7 and every other term
has a pole of order i. So K has a pole of order i+j. QE.D.

Let
S 9

D =D,+1(z)

Q
[&)

»

ad . . : .
where D, = = MG 159 15 ag in Fricke [5], page 316, From Fricke's

formulae (p&ges 316 3926 ?’;25) we deduce

D) = D, (my o+ myw,) = 7+ my 7 = 77,

Dn) = Dy(myn,+myny) = “'“legzr(‘ml w1+m§w2) = —uhe,

Diz) = {(2),

D(L(e) = ie' (&) ~Fime,

D+ Q) = (o) +n = L(++ Q)

D+ Q) =30 (=) G+ Q).
LEina 3.2, |

(3.6) .DI(K;'(% I) = ig’ (&) B~ (=, [)— nbgzK,"{(z I—jK +1(z I).
Proof. First sappose j >4+ 2. Differentiate the series for K:, term

(3.5)

hy term:
\“r (C‘(ﬁ+!%))
D(Ej(z, I‘) P 1 o)
1, (TR 1 [ (et s )}_.{zi+1<z+9>}]
P Rl e e e

i::y equations (3.5). Bach of the terms in curly brackets iz 0{Q7%) as

"|£2] oo, s0 they can be summed separately over Q. This gives equation

L =442 or§ =i41,

Acta Arithmetica XVIL3 ’ . 5

(3.6), and proves the Lemma when j>i+ 2
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the proof is similar hut more complicated due to the presence of angle
bracket terms, Delails are left to the reader.

DepmirroN. A slandard function is a polynomial in @(z), ¢/ (2)s
% gs, and 1g,, with coefficients in Z. A standard constant is a standard
function that depends only on g, and gs.

From. formulae given by Fricke ([5], pages 317, 322) we deduce:

D(l_lz.%) =DW(I1§9'2) == _égss
DGgs) = DyGgs) = —56hs

_ . ) ' |
(3.7) D(p() = (D,?+C(z) 3:;) (@) = — 20 (e)— 361,

a
Do’ () =37, (Dule @)+ 320" (9) = —p e (9).

Hence D(V) is 2 standard function if ¥ is. We now have
Levmaa 3.3.
(3.8) - (—1)1EH2) = Ti(e)+edi+ L (2) B,

where T; s a standard funclion, A} and B} are standard constants, ond
Al =Bl =0 if j>i+2.

Proof. First suppose ¢ = 0. Gonsuier the series (3.4) that define &}
If § =1, then

(5:9) e =311 ~(F-5)} =t

_by (3.1). 8o (3.8) holds with 7! =0, 4 =0, B! =1. If j = 2, then

e =2{(z:s?)2 (%)} =0

80 (3.8) holds with A = B? = 0, 70 =

p(z) a standard function. For j =
. ' (i—1)! _ 972
G-I = s = v T 0.

" To prove the Lemma when § =0 and j = 83, it is enough to show thab

the derivatives of g (2) are standard funetlons This iz proved by differen-
tiation, using the formulae :

(3.10) . (3@ @) = p* () —Lap () —
and '

(3.11) | () — 6@2@_;,,;;. |
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Now suppose the Lemma proved for all integers ¢
(3.6),
(3.12)  jLEHL(e)

=G0 () [0 — 1B ()]~ (00 [~ 1) EF () - DI — 1) K ()]
If j}; 42, then by the induetive hypothesis the terms on the right
hand side of (3.12) are standard funetions, hence so is jIEIiI. This

establishes the indnetion from ¢ to ¢4+1. If § = ¢+ 1, the inductive hypo-
thesis is .

i. By equatwll

(— 1)1 () = Ti(e) + eAi+ L (2) B}

Applying D gives
D((j—1)1K}(2)) = D(T}+2D(4})+ () D(B) + ALD (#)+ BiD (L))
= D(TH+ 5@ (#) B+ 2[D(A]) — 354, B+ L (2) [D (B)+ 47].

This has the form of (3.8) because the termg in sgnare brackets are stan-
dard constants. Then all the terms on the right hand side of (3.12) have
the form of (3.8). This establishes the induection when § = i4-1. Q.E.D.

§ 4. Periodic non-analytic functions.
DerFiNrrior. A fonction f(z) shall be called guasi-periodic if there
are consbants a,, @, such that

flet w) = fl2)+a4,
(4.1)
: flet o) =fl2)+a

for all .
Leya 4.1, If f(2) is guasi-periodic, there is precisely one pair of
constai® o, p such that .

(4.2) C ‘ F)+ az4- 2

8 period’ic.
Proof. (4.2) will be periodic if and only if

g+ awy+ g = 0,
ay+ eyt f, = 0.
The determinant of this pair of equations is
(00 Wg— gm) = wym,(0—w)

whare o = w,/w,. S0 equations (4.3) ean be uniquely solved for a, § since
wy, # 0 and o iy not real :
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DEFINTFION.
(4.4) h(z) = L(2)+ gt 2

where {(2) is the Weierstrass zeta function and ¢ and v are the umque
pair of constants that make A (2) doubly periodic,
Lewra 4.2, Let b be on ideal in S and @ ony number. Then

(4.3) 7ja® = v (b)(—3f4 (b)Y |d]).

Proof. Let 4(]) denote the area of a parallelogram of I. Put ¢ = ¢,
8 = v, q =u; in equations (£.3) and solve for . This gives

Wsty— W1 %a —2im T

ooy —wgm, | SAT) | A

(45" () =
by equation (3.3} and simple trigonometry. By the results quoted in § 2,
A{R) = 3V]d}. Also b has index 4"(b) in § which has index f in R, 50
1
L (bYVia)

'y

:,F e o
A(bs)  aZA(b)

—yp(bz} =

T
z

henece (4.5).
‘DrrrrrrioN. For integer m, define

- UGN ga’(rz)—@'(z)}

4., H,( — .

(9 v *% Pl

Lanva 4.5, H,(2) 15 equal in value to h(z) whenever mz is in I' bul

z 18 not-an T

Proof. Thiy lemma is due to Swinnerton-Dyer, [9] Consider the
addition formula

47 E{ute) = {(u)+ L ()~

(<3

1 p'w)—p')
2 plu)—p)
(Fricke [5], page 202). In the limit as v»— u, this becomes

1 s
-3

Apply (4.7) repeamedly and (4.8) once to (4.6). This gives

(4.8) : (2u) =

“.9) Fo) = - {(m—1)2 () — £~ 1]}
= L 1k k
= — {m—1)his)—k(m—112)}

_becanse the linear terms in # and % cancel.
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Suppose now that mezel but 2¢" Then (m— Lyz¢l, so (4 9} is finite.
Since %(z) iz an odd and periodic flJJlG‘thIl of z,

mH,, (2} = (m— Lk (@) —h((m—1]2) = (m_—l)h(z) —h{—2)=mh{z), QBE.D.

DErINtTION. A, subsiandard function is a polynomial in kh(z), @ (2),
@' (2), §o, g5 80d @, with rational coeﬁmlents
CoroLLARY 4.1 (to Lemmsa 3. 3) Kj{(z) 48 periodic if § = i+92 and

quasi-periodio if § = i1, If u, § be chosen to make Ki(z)+ az--fZ periodic
(50 @ == 8 =0 4f § = i+2), then

(4.10) (=1 YE} =)+ az+ 2} = Ti(2)+ Bih(z),

where B} = 0 4f j 2 4--2. This is o substandard Funetion.
Preoof. By Lemma 3.3,

(—11Ej@)

This is quasi-periedic if j = {41 and periodie i j > {42 becanse then
Al = Bl = 0. So (410) holds if j=i+2. ¥ j =441, then by adding
multiples of » and 7 we may replace Z(2) by k{z) and cancel the term in 2.
By Lemma 4.1, these multiples of 2 and Z are unigne. This gives (4.10).
T¢is a standard function and B! a standard constant, so (4.10) is substan-
dard. '

§ 3. The funetion F, (z,s, .
DEFINITION. Let %, v, 2,'s, be complex numbels guch that w--v¢Z,
and » an integer. Define .

= Ti{z)+ Alz+ Bl (2).

| T W s i
(5.1) F (2, 8,1) T2 oy QyER
| . o N ERQrT e
{5.2) G (2,8, 1) = g{ (e Q) <Qv+s>}’
' §u~s
(5.3) Wits, I) = Y o
540

By the branch convention each ferm of each series is zingle valued.
By Lemma 2.1, the series converge in the respective dormains

re(s)'> 1,

- re(s) > b+4(u—0)
a_,nd

re(s) > 1+ 4 {u—7)

and they represent regular functions there.
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The object of this section iz to show that if ¢, is as in Theorem I,
then F,(z, 8, I') can be expressed in terms of a substandard function.
This requires the analytic continmation of F, beyond s = 1. To prove
analytic continuation we must assume that [' admits complex multipli-
cation.

Irawes 5.1, Suppose that I admits compler mulliplication by the ring
S. If wtv =0, W¢ has at worst ¢ simple pole of ¢ = 14+ (u—w). If
w0 £ 0, W2 is regulor there and its value is given by

(5.4)  WEL+du—}o) = [ (/" =117 D@ ofr, 14+ du— i)

where T 38 in 8, 1Y is not real and o runs hrough the non-zero residucs
of I' modulo =1\

Proof. Take any v 50 in S§. Every Q2 0 in [ can be umquely
expreszed as . .

Q=10 (@ %£0) o £=oF+r2 (o0).

So (5.8) gives

() (e+7Q)
Wyls) = ——ww T T A
W= e 2 o e
Hence
. . (eft+ o
Wy () (@7 —1) = —=
| ” 4; = lofrt QP
But there are (v7v—1) values of o, s0
B éu—a
(=) Wit = D' ¥ .
. o0 290 :
By subtraction,
(5.5) L WS [P —aT] = Y @t 9).

2£0

Call the factor in square brackets U(s). Sinee G ig regular in re(s)

> ++ 3 u—a), W is regular there-except for poles at the points where
U(s) = 0. Now

. (b.8) U(8) = ™[0 =27 = (x]|2|)%+° (rr) Wi _ 7

and

| U'(s) = log (z7) (U (s)+77).
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Clearly the zeroes of U (s} are simple, 5o the poles of WY are at worst simple.
If udv 0, pub s =1+ 3{u—<) in (5.6). This gives
{5.7) U+ du—1to) = e ({z/|z}*"—1) #0
provided that +*** is not real. Hence W2 is regular at s = 113 (4 —o),
and gubstituting (5.7) into (5.5) gives (5.4).

LmmmA 5.2, Let 5, be such that In—syeZ and 0<C sy 3n, Pul

P = Fn—s, ond ¢ = In-ts,. Assume that I' admils complex multiplication
by 8. Then T, (2, 8,1" is regular at s = s,, and

~ V|2
BAzﬁ

LUt v=p

(5.8} " F, (2, 8)—

h(z)( e (= 1Y EE_,(2) ]+Gz+1)z,
where B = 0 unlesg 8p =1 and € =D =10 unless s, = }. Th.e right hand

side of (5.8) 48 a substemdard function (U(z), soy). If &, =1, then
= [w({z/le*— 1)1 D) Ulefr)

e#0

(5.9)

where T 8 an element of S, ©° not real, and o runs fhrough the non-zero
residues of I' modulo I

Proof. First suppose s, > 1. Sinece
hie) = {(z)+-gety?
is penod.m, it follows that
hiz) = C(z+9)+¢(3+9)+w(z+9)

Multiply (5.1) by 47, substitute for w(Z+4 Q) and expa,nd the numerator
by the Binomial Theorem. This gives

k(z)— D)—{(z4 &)
‘QUPF”(?}, o) =Z( @ ¢(z(:+g)q£( i ))
oo £2 .
u £'(z+ Q)
IAE e —or-ur  EEEE).

2 5+u+‘i) =1
As |Q] -~ oo, the term in ourly brackets is O(L°~@™), But v—(g—u)
= p—1t—g = —1—28, < —2. S0 we may sum these terms over £ before
summing over t, %, %, by Lemma 2.1. This gives (5.8), with B = ¢ = D = 0.
Next suppose # is even, and s, = 1. When re(s) is large the series
(5.1) can be rearranged as follows:

" (§+ ﬁ)mz—s énizwa ﬁ,”g_s
(5.10)- Folz,8) = 2 { e+ Q)mz-:-s T\ s "I‘ZW
E 2 Q%0

= Gz, 5)+WIE(s).
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Both terms are regular at s = 1, by Lemma 5.1. Tt can now be proved
- that when s =1,
!
v B A _f. 4
L tlule! (e (— )

tudt=p

(3.11) PEE (2, 1) = — 1y K, _.(2).

The method is the same as before, but the debails are more complicated
because the sum over £ confaing angle-bracket terms, Combining (5.10)
and (5.11) gives (5.8), with ¢ =D = 0. '

Now suppose % is odd, and s, =3. When re(s) is large the series
(5.1) may be rearranged as follows:

)
(3.12)  F,lz,8)
_ v{_(gh}“ E)n,’zus B Q'n./zu ( 3 Z
Sl T\ g o .6 *
\1 pn/d—sk‘

1 /2— 1,’..—-3
VET G ¥
+‘L, Qnits (-E%-.]_S)zé_/ Q’n/”rsll +(-2-}l-—'e5 Z_f Qn./‘l—;—.s
Q=0 020 W0

1
T

The first series is regular in re(s) > 0, by Lemuma 2.1. Sines » iz odd the
second series vanishes because the terms in + Q cancel. The third and
fourth series ave Wyj,, and Wi~ these are regular at s = } by Lemma
5.1, except that W?,jz ' may have a simple pole at 8 = 4 if # = 1. Buf
t-hen («}n— §) has a simple’ zero so the product is regular. 8o F, is regular
at s = 4. By the game method ay hefore, we have

(3:33) VEED= > —Llaey—

Tl PI(— 1) Hy. (;:)-|- 03+D’-
ttutv=g :
This iz (5.8), with B = 0. Observe that
(5.14) O = —(dn+H "Wz (5.
So (5.8) holds for all values of s,.. . _
Next consider the funetions KY_,. (g—u)—v = - 28y, s0 by Corol-

lary 4.1 the K}_, are periodic unless 8y = % a,nd 1 == 0. Hence the non-
periodic K’s occur only with consfant coefficients in (3.8 ), and. by adding
multlples of z and 2 we can replace each of them by the periodic funetion

Ky .(2)+ a2+ B3, which is a bubstandard function by Corollary 4.1.
Then (3.8) becomes

(55) wﬂF,,(z,,su)—

tu-rr=p

= Z m{'v' ()t( 99)u( 1)v( g-u(? )~i¥az+ﬁz)+clz+1)1§.
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But the series (5.1) is a periodic function of 2 and so ¥, is periedic. So
the comstants ¢, and D, must vanish by the uniqueness part of Lemma
4.1. Henee {(5.15) is a substandard funetion (U (2), say).

Finally, congider B when s, = 1. By comparing (5.15) and (5.10)
we see that U(z) = v @52, 1) and that

W o (e~ 1)1 D @lilefr, 1)

o0

B =y Wii(1)=

= [ ({z/[e i — 1] D Tlefw),

a0
by Lemmsa 5.1, This completes the proof of Lemma 5.2.

§ 6. Proof of Theorem 1.

Lmnina 6.1, Let @ and 8y be as in Theorem 1. (That is g,(Sx) and g,(Sz)
are wlgebraic and 3n—syeZ and 0 << s, < 3n.) Let I' = ba where b is an
ideal of S, and let 2 have finite order (m, say) modulo I

“Then w9 F, (2, s, bx) is an algebraic number.
Proof. Let 4 be a sublattice of I'. By comparing Q-series, we see that

(6.0) gD = ga( )10 Y 9 (ey A)

! e

where g rung through the non-zere residues of I modulo 4. Choose a (7 0)
in b N Zand put I' = ba and 4 = Saz. Each g has order ¢ modulo 4 and
¢, (Sx) and g;(Sz) are algebraic. So the @' (g, Saw) are algebraie, hence
80 is g¢.(bx). Similarly, g.(bz) is algebraic. ‘Bince # has order m module
bz, it follows by standard theory that p(z, be) and @’ (2, b are algebraic,
and so 1Is

ga“(z) "5—1 @ () — @' () }
i

: 1
h(z) = Hm, (z) = %{ KOI () ‘@(1;2) — (’a‘)

by Lemma 4.3. )
Now congider ¢. ut » = 1 in eqnafﬁlon (5.8). Since p = n—% =0
and ¢ = 3n++4 =1, (5.8) reduces to
Pz, 4, ) = Ki(z)+ Oz DZ. ’
But K'(z) == £(2) by equation (3.9). Sinee F, is periodic i follows from
(4.4) and Lemma 4.1 that ¢ =¢ and D = . So

(6.1} o(I) =0C = (—1)Wid) (by equation (5.14))

= [ {1 (/i) 2 Gihlelr, 1)

00

= (sF~ Zmo 224

pF0

(by Letma 5.1)
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since

1/2 1 1 1
Gz, 3) = 5’{( o7 <_§>}m @(2)

by equation (5.2), Now put I' = bz. Since g/r has finite order modulo
bz, it follows from (6.1) that o(bz) is algebraic,

Suppose now that U{z) is a substandard function and that ¢ has
order m modulo bx. Then U{z) is a polynomial with rational coefficients
in p(2), $'(2);, R(2); 02y 2, and ¢, Bach of these is algebraic, hence so is
U(z). By Lemma 5.2, y"*~%F (z, s, bz) = U(2)+ B, where U/ is sub-
standard and B = 0 unless ¢, = 1. If 8, = 1, then (5.9) shows that B is

" algebraic. Hence 4™~ %F (z, s,, bw) is algebraic. Q.E.D.

We now proceed to prove Theorem 1. Let @y, ..., @, be ideals of §,
prime to m, representing the proper ideal classes A;,..., 4, of §. The
ideal a;" lies in A; " and the integral ideals of this clags have the form

a = [aa;'
with ¢ in @;. Then the series (2.2) for (s, 1) can be written

_ Mlala™) _ Jf’"(ﬂ [a])
s, 7 = X s Z T 2 Half

[d=a

If ¢ iz the number of units of 8, each [a] has just e genemtors, and the
inner sum can be converted into a sum over numbers. Substitute for
i from (2.1) and put 4 ([a]) = ca. This gives ‘

I3
. X7 Al ( )S n;’2-3
C(SJ A) = @ 1% l(ai) 2 aﬂ'/2+s (a).
. = aceg;

Let & = wne;. Let § run through a set of representatives of residues

of 6; modulo b, and put a —ﬂ-i—,u, where peb. Then x(a) = ¥(B) and

a:,/ $
s, A) _3—12 l(a Z 2(6) (Brmy-

fmod b 1eh (‘8+ )n/2+a .
Multiply both sides by ="*~%/s" = (zn°—* ey ( /ca.::)”"2 f, (Thig is
single valued by the branch convention if we choose some value of log(x).)
'Then
n["-—s f 3.) /:]‘3

1 A (@) ) : ' B 1 mya—s

Bmodb e (B M)n12+s

icm
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The innermost sum is 7, (fz, s, bz), s0 {(s, 1) isregular at ¢ = s, by Lemma
5.2. Put ¢ = g;, p = {n—g, and snbstitute for =/sz from (4£.5). Substitute
for i(a;) trom (2.1) and put #(a;) = &, = a,@;. This gives

(6.2) O = g (s,, 1)z

= e b (m)fVIdl)? T M@ Y B, s, ba)

Bear;

fmod b

where b = me;. Now the a; are algebraic, the values of y are roots of
unity, and ¢*F, (82, $,, bx)ig algebraic by Lemmz 6.1, Hence @ ig algebraie.
This proves Theorem 1.
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