icm

Embedding of the category of partially ordered sets
into the category of topological spaces

by
Milan Sekanina (Brno)

Let U = (8(U), <p) denote a partially ordered set (§(U)) the support
of U~—ie. the underlying set, <y the corresponding order relation).
Let U,V be two partially ordered sets, f a mapping of 8(U) in 8(V).
f is called dsotone when & <gy = f() <y f(y), for all »,y <« S(U). The
category of all partially ordered sets with isotone mappings as morphisms
will be denoted by AU.

Under the topological space we mean the topological space in the
sense of Bourbaki [1]. A topological spa¢e X will be denoted in details
as (S(X ) rX) , where S(X) denotes the support of X and 7x the system of
all open sets (zx is called the topology of X). The category of all topological
spaces with continuous mappings as morphisms will be denoted by .

As for notation concerning categories see [2]. Especially when a ca-
tegory X is given and X, ¥ are two objects of X,[X, ¥]x denotes the
set of morphisms from X to ¥ in X.If X, ¥ are algebraic or topological
structures, S(X) and S(Y) their underlying sets, then morphisms are to
be taken as triples (X, Y, f> where f C §(X) x §(Y) is satisfying conditions
for morphisms of a given category ¥. Such a “complication” is needed
for getting disjoint sets of morphisms. Nevertheless, as usual, f will be
often used ingstead of <X, ¥,f).

Put

S(X, YIx) = {fI <X, ¥, ) e [X, Y]x}.

Recall here the notion of full embedding. Let two categories X and £
be given, let F be a covariant functor from X to ¢ with the following
properties:

1. X, Y being two objects in X, a,fe[X, Ylx, a+f, then F(a)
= F(f), too.

2. If X # ¥, then F(X) #F(X).

3. If ¢ e [F(X), F(X)], there ewists ac[X, Ylx such that Fa)=o.

Then ¥ is a full embedding of X into £.
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Let U be a partially ordered set and » e §(U). Define
Aw)={t] te S(U),t<va},
B)={i| teS(U),2<vt}.

Let 7(U) be the topology on S(U) with the subbase for open sets
{4(2)] ze8(T)}. w(U) is called the left lopology for U. A general left
topology for U is a topology = on 8(U) such that the intersection
M {X|z e X, X e} of all neighbourhoods of is A (z). Similarly, dealing
with B (x) instead of A (x), one gets the definitions of the right topology
7,{U) and general right topology.

LeMMA 1. Let U be o partially ordered set. If w(U) (or v.(U), re-
spectively) is a general right topology (or gemeral left topology, respectively),
then U is an antichain, i.e. every two distinet elements are incomparable.

Proof. For every ¢ ¢ 8(U) it is E(x) = A(x). So B(z) = A(x) = {#}.

Theorems 2.6 and 2.7 in [3] give

LEMMA 2. Let U, and U, be two partially ordered sets, let ©(U,) be
a Ty-topology on S(Uy), v(Us) a Ty-topology on S(U,).

(1) If none of Uy, U, is an antichain, then the following conditions
are equivalent: ' .

(A) ©(U,) is the right topology for U, and ©(U,) a general right topology
for Uy or ©(U,) is the left topology for Uy and ©(Us) a general left topology
for U,.

(B)Y A map f: 8(U;)—8(U,) is isotone if and only if it is continuous
with respect to the topologies ©(U,) and ©(Uy), i.e.

8Ty, Tala) = 8([(8(T), w(T), (S(Ts) y2(Uy)]s) -

(i) If U, is an antichain and card 8(U,) = 2 then (B) is equivalent to

(A%) ©(T,) is the discrete topology (therefore it is at the same time the
right topology and the left topology for U,).

Let F1(U) = (8(U), uw(U)), Fy(f) = f for every partially ordered set U
and every isotone mapping f. Similarly F, iy defined. F, and I, ave full
fambeddings of U in B. This fact (following among others from lemma 2)
is kmown in essential for a long time, see e.g. [1], chapter I, § 4, problem 3.

Now we prove

TemorEM. Bvery full embedding G of W into 6 is neturally equivalent
to F; or F,.

Pro(_)f. Let U be a partially ordered set, one-point set A = {a} Dbe
also considered as an object of . Let ¢ 8(U), fo: A~8(U) such that
Jo(a) = ©. As card[4, AJy, =1 and card[X, Aoy, > 1 for every partially
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ordered set X, so card[G(4), G(4d)ls=1 and card[G(X), G(4d)]s > 1..
Hence card§(G(4)) = 1. Put S(G(4)) = {3}. Define ga(@) = [G(f)1().
As G is a full embedding, gy is one-to-one mapping of §(U) onto S(G(T)).
Let V be a partially ordered set too, f: U—V an isotone mapping.

Let @ ¢ S(@(T), y=5'(e). Pub f(s) =y’ Then ffy=7fy. So
G(f)Hfy) = G(fy), therefore G(f)&(f,)(b) = G(f,)(b). Hence G(f)(z)
= fr(y) = prfov’ ().

So
(a) (G(F@) = grfov'(@) .

Define = on §(G(U)) so that

© 39y = ev'(®) <vev ()

Denote (S(G(U)), é) as U’. Similarly V', for a partially ordered
get V, is defined ete.
According to (a)

(b) ST, V) = 8([&(D), ¢(N]e) .

Now we shall prove that tep; is a T,-topology for every partially
ordered set U.

Admit that there exists a partially ordered set U, such that rewy
is not a T,-topology. There exist z and y in S(G(Uy), » # y, such that
for all O € Tg(uy @ € O is equivalent to y € 0. Define p: (G (U,)) 8 (¢(T1))
as p(%) =¥, ¢(y) = @, ¢(2) =2 otherwise. ¢ is clearly continuous. Then
aceording to (b) ¢ is an isotone mapping of Ui into itself. That means
that # is incomparable with y. Let V; be a two point chain, V; = {u, v},
w <y, 0. Put w' = @p,(u), v = @r(v). It is v’ <p{o'. Define y: Ui—~V1
as follows: if teA(m), then y(f) = w', y(f) =v’, otherwise. y is clearly
isotone. Nevertheless ¢ cannot be continuous mapping of G(U,) in G(V1).
Suppose on the contrary that y is continuous. As all open sets in G(U,)
containing # (contain y) and similarly as all open sets in G(U,) containing y
(contain ), all open sets in G(V,) containing (z) (or y(¥), respectively)
contain y(y) (on y(z), respectively). According to the above consideration
p(®) is incomparable with v(y), which is a eontradiction to uw gt

Hence g is a To-topology for every U.

Now we can make the use of lemma 2. Let none of U and V be an
antichain. So none of U’ and V' is an antichain. According to (i) and (b)
Te(u) = ‘L‘z( U') or Tqo) = "L‘T( U’).

Let the first case occur. Then gy, is a general left topology. Now
interchange U and V. By lemma 1, 74y, is the left topology for V'. Hence
for every V being not an antichain zeg) = 7(V’). By lemma 2 (ii) the
same is valid for antichains.
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Accordingly in this case gy is a homeomorphism of (8(U), u( U)) onto
8(U"),w(U")) = G(U) and by (a) a patural equivalence between I
and @ has been established.

The second case is dual.
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Cup product, duality and periodicity
for generalized group cohomology*

by
Morton E. Harris (Chicago)

Introduction. A finite permutation representation (&, X) of
a group G consists of a finite non-empty set X, with & acting on the left,
such that (po)x = g¢(ow) for all p, o ¢ G and all # ¢ X and such that 1o = &
for all » e X, where 1 denotes the identity element of @.

Out of a given arbitrary finite permutation representation (&, X),
one can form the “standard complex” O(X; &) (see [6], p. 135) which
generalizes the standard complex for ordinary group cohomology. By
means of this “standard complex”, a ,,cohomology theory of finite permu-
tation representations” was defined and investigated in [6], [7], [8] and [9].

Using recent developments in relative homological algebra, this
“cohomology of permutation representations” was axiomatized and
investigated in [4]. In this paper we continue this study.

In Chapter I we investigate the cup product in this relative homological
algebra setting, thereby extending illuminating and giving new proofs
for the results of [7].

In Chapter II we examine the results of [8] in this relative setting
and generalize the results of [8] to arbitrary (i.e. not necessarily transitive)
finite permutation representations.

In Chapter IIT we go on fo investigate question of periodicity and to
generalize the results on periodicity for ordinary group cochomology given
in [2], Chapter XII, § 11.

If (¢, X) is a finite permufation representation, then f((&, X)} will
denote the finite collection $ of the subgroups of finite index in G which
fix the points of X. Clearly f((&, X)) = $ is closed under conjugation
by elements of G. Moreover, if we are given a finite collection $ of sub-
groups of @ of finite index which is closed under conjugation, then there
exists a finite permutation representation (&, X) such that f{(¢, X )= %.
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