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Accordingly in this case gy is a homeomorphism of (8(U), u( U)) onto
8(U"),w(U")) = G(U) and by (a) a patural equivalence between I
and @ has been established.

The second case is dual.
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Cup product, duality and periodicity
for generalized group cohomology*

by
Morton E. Harris (Chicago)

Introduction. A finite permutation representation (&, X) of
a group G consists of a finite non-empty set X, with & acting on the left,
such that (po)x = g¢(ow) for all p, o ¢ G and all # ¢ X and such that 1o = &
for all » e X, where 1 denotes the identity element of @.

Out of a given arbitrary finite permutation representation (&, X),
one can form the “standard complex” O(X; &) (see [6], p. 135) which
generalizes the standard complex for ordinary group cohomology. By
means of this “standard complex”, a ,,cohomology theory of finite permu-
tation representations” was defined and investigated in [6], [7], [8] and [9].

Using recent developments in relative homological algebra, this
“cohomology of permutation representations” was axiomatized and
investigated in [4]. In this paper we continue this study.

In Chapter I we investigate the cup product in this relative homological
algebra setting, thereby extending illuminating and giving new proofs
for the results of [7].

In Chapter II we examine the results of [8] in this relative setting
and generalize the results of [8] to arbitrary (i.e. not necessarily transitive)
finite permutation representations.

In Chapter IIT we go on fo investigate question of periodicity and to
generalize the results on periodicity for ordinary group cochomology given
in [2], Chapter XII, § 11.

If (¢, X) is a finite permufation representation, then f((&, X)} will
denote the finite collection $ of the subgroups of finite index in G which
fix the points of X. Clearly f((&, X)) = $ is closed under conjugation
by elements of G. Moreover, if we are given a finite collection $ of sub-
groups of @ of finite index which is closed under conjugation, then there
exists a finite permutation representation (&, X) such that f{(¢, X )= %.

* This research was supported in part by NSF Grant No. GP 6539. The au.thor
wishes to express his gratitude to Professor Ernst Snapper for his advice and suggestions.
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If B is any ring with an identity, then zeC will denote the category
of left R[¢]-modules; however, for simplicity, if B = Z, the ring of rational
integers, then 7€ will be denoted by ¢C. Also, Ab will denote the category
of Abelian groups. If K is a subgroup of & and if A e pe®, then A%
={aeAlba=a for all ke K} and Tg: rmaC—rz € will denote the
“forgetful” functor.

If now K is assumed to be of finite index in G and if {z,, ..., #a} is

a representative choice for the left cosets of K in & and if 4 ¢ g €, then
ki3

the trace map Segx: A¥ 4% ig defined by: Sex(a) =i,§1 zeafor all a e A%

and is elearly independent of the coset representative choice. If A e geC®
is such that there is a u ¢ (Homg(4, A)}ZL = Hompx (4, 4) such that
Sex(u) = 14, then 4 is said to be G| K -special. B

If now § denotes an arbitrary collection of subgroups of &, then §
will denote the set of all finite intersections of elements of §. Fz(H) will
denote the class of sequences in pe© which are exact when for each
He$ the functor Homp(R, Tx(%)) is applied (note that if A e px G,
then Hompz (R, 4) =~ AX for any group K) and Qx(¥) will denote the
short exact sequences in 3az($); thus Qr($H) forms a proper class in the
sense of [5], Chapter XII § 4 (see [4], Chapter I, § 1). Again, if § denotes
an arbitrary set of subgroups of @, then EG($) will denote the sequences
of g€ which upon application of the functor Ty are split exact in ;€
in the sense of [3], Chapter I, § 1 for every H ¢ §; Cr($) is similarly de-
fined using cosplit coexactness and Pr($H) will denote the short exact
sequences of Go($) and hence of GH($H). Moreover, Go($H) is a projective
class of sequences in the sense of [3], Chapter I, § 2 (see [4], Chapter I,
§ 1), and, similarly, Gx($) is an injective class of sequences. Also, Pr($)
is a proper class of short exact sequences, and Pgr($)C Qr(%) for any
such $.

If now § is assumed to be an arbitrary set of subgroups of finite
index in @, then Ug will denote the functor Ug: peC—+A4b defined by:
Ug)(A):AG/HZG;SGIH(AH) and if Pr denotes any proper class of short

exact sequences in pg@, then by a (Pg, $)-comology theory (see [4],
Definition 2.1.1) is meant a set {F&| n ¢ Z} of covariant additive functors
from g® into Ab, such that F% is naturally equivalent with Ug and,
such that for each n ¢« Z, (F%, F%™) is a Pg-connected pair of functors
which is both left Pg-couniversal and right Pz-universal in the sense
of [5], Chapter XTI, § 7.

Il‘l all of thig, if R = Z, then the symbol R will be dropped.

Finally, it should be noted that all of the results of [6], (7] and [4]

are validZif the ring Z is replaced throughout by any commutative ring
with an identity.

icm
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L Cup produect.

Although all of the definitions and results of this Chapter are given
for ¢C, it should be noted that they are also valid if the ring Z is replaced
by any commutative ring with an identity.

§1. The Definition. For any 4, B¢ ¢, one turns A®gB into
g left @-module by setting g(a®zb) = ga®zgb for all ge G, a e A and
b e B. (For simplicity of notation, when tensoring with respect to Z, ®z,
the subscript Z will be omitted provided that no confusion can arise.)

Levmma L1L. If $ is a collection of subgroups of finite imdex in @
and if A, BegC, then the map y: A°@BC~(A®B)® in Ab given by
pa®b) = a®b for all aedA® and beB induces a map P: Ugld)®
@ Ug(B)—> Us(A®B) in Ab.

Proof. Let H, K ¢ $ and let ¢ = 0 2 H = CLJ y; K be corresponding
i=1 j=1
left coset decompositions of &. Then if a e A" and b e B Seu(a)®b
n n
= (3 wa)®b= Yr:(a®b) ¢ Soa((4® B)"). Similarly, if o « 4%and b ¢ B,
q=1 i=1

then a® Semu(b) < So((4® B)F) .

Let P be a proper class of short exact sequences in ¢G; let § be a col-
lection of subgroups of finite index in G; and assume that {F"| n <2}
is a (P, $)-cohomology theory. Observe that a covariant additive functor
J* 66X g&—Ab for any n ¢ Z is defined by sefting J"(4, B) = F"(4® B)
for all 4, B e ¢G. Similarly, for any p, ¢  Z, a covariant additive functor
MPY EXeE—>Ab is defined by setting MPY4, B)=TF"(4)@FYB)
for all 4, B ¢ Q.

DerFmNiTION 1.1.1. A cup product for a (P, $) cohomology theory is
a collection {fpq| P, qeZ} of natural transformations fp,: Mg
for all p, q ¢ Z such that:

1) if p = ¢ =0, then foo corresponds to @ of Lemma 1.1.1 via the
natural equivalence F° =~ U.

9) I E: 0>A"+A—-A"—-01isin P and if B € ¢® is such that E® B:
0> A'®@B—>A®B-~A"®B—0 is also in P, then the following square
commutes for all p, ¢ e Z:

MPYA, B) = F°(A") @ FYB) 224425 prHY A" ® B) = JPYIA", B)
E,81 (E@B).
M”H'Q(A', B) =F”H(A')@FII(B)f”+1'"u”3)—>ﬁrp+q+l(A'®B) =Jp+q+1(Ar, B)
where the subseript star denotes the P-connecting morphism of {F"\neZ}
for the appropriate short exact sequence of P.
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3) If B: 0B -+B-—>B"—01is in P and if 4 € ¢C is such that A® B:
0+A®B ~A®B->A®B"—0 is also in P, then for any p, ¢ € Z, the
following square commutes up to (—1)":

P44, B') = FP(A)© FYB") L2t E) prH (A © BY) = J7*(4, B
108, (A QL).

m’q+1(A,B’) :_FF(A)@.Fq+1(B’)f"’q+l(A£)~9F27+q+l(A®B/) ::JQO+Q+1(A7BV).

§ 2. Existence of a cup produect.

Lemva 1.2.1. If H is a subgroup of finite index in @ and if 4 ¢ 4G
is G|H -special, then for any B € g€, A® B and B® A are also ¢|H - special.

Proof. If weHomg(4,A) is such that Sgu(u)=1,, then
u®1lp e Homp(A®B, A®B) and Sgu(u®1s) = Seu(u)® 1= lips.
Finally A® B and B® A are isomorphic in 5.

We now restrict considerations of cohomology theories to those
discussed in [4]. Hence, we may assume that we are given a finite permuta-
tion representation (&, X) of & such that f{(&, X)) = § is the (finite)
collection of subgroups (of finite index) in @& which fix the points of X
and let {F"| n ¢ Z} denote a (Q(§), §)-cohomology theory which exists
by [4], Theorem 2.2.2. Moreover, if the @($)-connecting morphisms are
restricted to P($), then {F"| n ¢ Z} becomes a (P($), $)- cohomology as
follows from the results of [4]. Chapter IT, § 2.

In [6], [7], [8], [9] and [4], the more cumbersome notation {H™(X , &,%)|
n e Z} was used for these cohomology theories; where no confusion can
arise, we shall use the simpler notation {F"| n ¢ Z} for such cohomology
theories.

A sequence A' =+ A-£5 A" in 4G is defined in [7]. Definition 6.1, to
be (G, X) exact if both the sequence and the induced sequence of cochain
complexes Homg(C.(X, &), 4') »Home(C, (X, &), 4) »Homg(C.(X, G),A4")
is exact where C.(X, &) denotes the ‘“standard complex” of the per-
mutation representation (&, X) as given in [6], p. 135.

LEMMA 1.2.2. An exact soquence A'-*> A-Ls A" in & is (G, X)

exact if and only if it lies in ().

Proof. If A'-%> 425 47 is in F (%), then, since the objects
in the “standard complex” are §($)-projective ([4], OChapter I,
§1 and TLemma 2.2.1), it follows that A'~2s4-Ls A ig (G, X) exact.
Conversely, assume that A'%sA-P5 4" jg (@, X) exact. Now, for
any H e$, there is a positive integer o such that X has transitive
constituents T, ..., Ty with H, the subgroup of & fixing a point of T;.
But, Homg(Z[Xg],A’)»Homg(Z[X"],A)»Homg(Z[Xe],A") is exact

e ©
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U
and Z[X]= (:Bl Z[Ty] and Z[T = Z[F1®rZ in &8 Hence,

Homa(Z[F1®nZ, A')~Homg (Z[H1®r%Z, 4) ~ Homa(Z[(1QxZ, 4") is
exact and thus Homg(Z,Tx(4')—+Homg(Z, Ta(4))~Hompg(Z, Tu(A"))
is also exact. This implies that 4'—2>A4-f5 4" lies in F(%)-
CorROLLARY 1.2.1. A short ewact sequence of ¢C is (G, X) exact if and
only if it lies in Q).
Hence, [7], Propositions 5.1 and 6.1, demonstrate:

TaEorEM 1.2.1. Hvery (Q(8), §)-cohomology iheory {F™ n e Z} has
a cup product.

Moreover, if the @(§)-connecting morphisms of the (Q($), )-
cohomology theory {F"|n eZ} are vestricted to P($), then {F"| n e Z}
becomes a (P(H), 55)~coh0mology theory and the cup product for the
(Q(E), 5)—cohomology theory {F"| n ¢ Z} satisfies the definition for the
cup product of the (P($), $)-cohomology theory {F"|n e Z}. Hence:

TeEOREM 1.2.2. Every (P($), $)-cohomology theory {F"| n < Z} has
@ cup product.

However, a different proof of Theorems 1.2.1 and 1.2.2 can be given,
using only ‘“‘universal properties”, which we feel is of some interest and
hence, we proceed to do this. (We assume that {F"| n ¢ Z} denotes both
a (P($), $) and a (Q(B), $)-cohomology theory where the P($)-con-

necting morphisms are obtained by restricting the Q($)-connecting
morphisms to P($).)

LeMMA 1.2.3. For any BegC, {F"(¥®B)| neZ} is an ewact P(H)-
connected sequence of fumctors such thai (F™(%® B), F*"(%® B)) is left
P(9)-couniversal and right P($H)-universal for any n e Z. The same holds
for {(F(B®%)| n e Z}.

Proof ([7], Prop. 7.1; Lemma 1.2.1; and [5], Chapter XTI, Theorems
7.2 and 7.6; and [4], Chapter I, § 3).

LMMA 1.2.4. For any BeoC and for any fiwed qeZ, {F (RO
QFUB)| p € Z} is o P($)-connected sequence of functors with P($)-con-
necting morphism B, @1 for B: 0+A'>A->A"—0 in P(H) such thal
(I (%) @ FYB), F* (%) ® FYB)) is right P($H)-universal for all p < Z.

Proof. Apply ([5], Chapter XII, Theorem 7.6) noting that ®RFYB)
is right exact in A4b.

Similaxly we have:

LEMMA 1.2.5. For any AegC and for any fimed pe.Z, {F"(A?@
®FYR)| g e Z} is a P($)-connected sequence of functors with c(lmnectm;q
morphism for B': 0B —~B—B"—0 in P($H) given by: 1QE)(c® ")
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= 6@ Byo' for all o F"(A) and o' ¢ FYB"). Moreover, (F"(4)QF(x),
FPA)RFT(R)) ds right P($)-universal for all ¢ e Z.

We now proceed to derive Theorem 1.2.2, using only the ‘“universal
properties”.

Tet 4 g€ and let foo(d, ¥): F(A)@F ()T (AR®%) denote the
unique natural transformation corresponding to @ of Lemma 1.1.1. By
universality, there exist unique natural transformations f£,(4, %)
FARQF N —~F{A®%) for all ¢eZ such that {fo,(d,%)] ge2} is
a morphism of P($)-connected sequences of functors. Thus, if E': 0
—B'-+B—~+B"—0 i3 in P($), then
Jo,alA,B")
e

(4)® F(B") PA®B")

ll@E»ﬁ lu@ﬁ:’m

PA)@F (B 2D, putt 4 o)

commutes.

We claim that the natural transformations f,,(4,%) are functorial
in 4. For, let A-*+A’ be a map in ¢C and consider {F(y@1) o fou(d, )|
qeZ} and {fo(d', %) o (F°(y)®1)| ¢ e Z}. It is easy to see thét both
sets are morphisms of the P(§)-connected sequence of functors {F"(4)®
@F%)| g« Z} which for g=0 correspond to the map of Ug(4)®
® Ug()— Ug(A'®@%) induced by & o (U@(’)J)@l) = Ug(y®1) o B. Thu,
by uniqueness, F(y®1) o foal4, %) = foglA', %) o (F(y)® 1) forall geZ
and hence fo,(4,%) is functorial in 4. Now, fix ge Z and B ¢ ¢G, then
Toal#; B): FO%)® FYB)—+P*%® B) is a natural transformation of functors
and thus extends uniquely to a morphism of P($)-connected sequences
of functors {fpo(%, B)|p € Z}: {(F*(%) Q@ FYB)|p, q e Z}—{F" %R B)| p < Z}.
{I;hus, {Fval P, ¢ € Z} satisfies 2) of Definition 1.1.1 and is functorial in the
Tflrst variable. For the second variable, suppose that B-2->B’ is a map
in ¢€ and consider the natural transformations Tra(#, B'Y ¢ L TYw))
and F**(1Q o) o fpq(%, B) of the functors (%) ® FP(B) - BP9 (%© B')
for iny peZ. It is easy to see that {fp (%, B') o (L@Fw)) p  Z) and
F1® w) o fpg(%, B') p € Z} are actually morphisms of P($)-con-
nected sequences of functors. But, foe(%,B’) o (1@ Fw)) = FY1LE
® o) o fo,’g(*’B’)’ si;me foq is functorial in the second variable. Hence,
Joal¥; B) o (1®?“(w)) =F"(1Q w) o fou(%, B') for all peZ. Thus, it
iimglm;(tg ven;y ‘3) of ].I)eﬁnition 111, Let B': 0-+B'—>B—B"—0
be | ) ’a.n fix geZ, for each 4 ¢4C and each p e Z set °(4)
;—fmﬂ( 1 B) 0 Q@ B) and 4"(4) = (~1)(A® F')y ofpq(4, B"). Then,
c;r each p e Z, it is easy to see that A” and 4" are natural transformations
of functors: FU(x)@F(B")>F""*(x® B"). Using the generalization

-
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of [2]. Chapter ILL, Prop. 4.1, to proper classes of short exact sequences,
it follows that {A"| p € Z} and {y”| p ¢ Z} are actually morphisms of P($)-
connected sequences of functors. Finally, for p = 0 and for any 4 € 4G,
A = fogsr(d, BY) e L@ E) = (AR B,)  fou(4, ') = 4*(4) as has been
previously noted and hence, 7= y” for all p € Z — completing this proof
of Theorem 1.2.2.

CorOLLARY 1.2.2. Hach (P(g)) s 55) -cohomology theory has a wunique
cup product.

Next, we give another proof of Theorem 1.2.1 using only the “universal
properties.” '

Lmvya 1.2.6. If B: 042> B-2>0—0 is in Q(9), then there emists
a commutative diagram

E:0— A s B2s0—s0

oo Pk k

B: 0— A% B2 00— 0

such that E ¢ P($) and such that F"(a) is an isomorphism for all neZ.

Proof. Since () is an injective class, there is a sequence 0—+4-2+D
in G%($) such that D is an G"($)-injective. Let u: A-+>B@®D be defined
by: @(a) = (u(a),ul(a)); then # is clearly monic. Setting 7 = coker %
and letting z be the projection of B@D onto the first component we
obtain the commutative diagram (1) with a unique and F ¢ P($). Applying
(F"(%),F"*'l(*)) to the diagram and observing that F'(B@®D)=F'(B)@
®FYD) and F™(D)= 0 render F"(n) an isomorphism, the desired con-
clusion is a consequence of the five lemma.

Now, the (Q($), $)-cohomology theory {F"|n e Z} after restricting
the connecting morphisms to P($) becomes a (P($), $)-cohomology
theory and hence, has a unigue cup product {foal Py e} asa (P(g), 5)-
cohomology theory. We show that {f| p,qeZ} is also a cup product
for {F"| n e Z} as a (Q(§), H)-cohomology theory. Thus, it remains to

verify 2) and 3) of Definition 1.1.1 for the proper class @(9).
Suppose that X: 04 —+~B—~C—0 is in @(H) and D eqC is such

that F®D: 0-A®@D—+BR®D—-~0®D—0 iz also in Q(9). Applying

Lemma 1.2.6 to ¥ and tensoring diagram (1) of this Lemma with D, we

get the commutative diagram:
E®D: 0-A®D->BRD—+0®D~0
il ln@l la@l
E®D: 0>A®D-+BRD—>0QD~0
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where E® D is in P($) (7], Prop. 7.1) and F®D is in @ ($). This gives
rise to the cube:

PO)@F(D) —2E22 o IPH(0® D)

/
Pa@1 A ‘@ ag)
/ . /e,
P0)RFYD) —252" s FPYYC®D)
¥
F@+1(A)®FQ(D) — _}_ZpTl'i‘/H-l(A @.D)
/r Foi1,0(4,D)
Ee1 / FEenw 1
: Vs
F*4)Q F(D) s P4 D)

where all faces except the rear face are known to commute. But F7(a)® 1
is an isomorphism and 2) of Definition 1.1.1 follows. A similar proof
yields 3) of Definition 1.1.1, concluding the proof of Theorem 1.2.1.

CororLARY 1.2.3. Each (Q($), §)-cohomology theory has o unique
cup product.

Proof. A cup product for a (Q($), $)-cohomology theory {F"| n € Z}

is also a cup product for {F"|n e Z} as a (P(g)) , $) - eohomology theory
and hence, is unique. ‘

§ 3. Applications of umiqueness. As usual, (G, X) denotes
a finite permutation representation of the group @ and § = f((G, X)).
Let Ty(#), ..., Un(%), V(%) each represent an exact P(9)-connected
sequence of covariant additive functors from 4G into 4b. A map F: U,®
®U,®..0 Up—=V is a family of morphisms F': UiA)® ... ® Ui An)
SVHt A ® ... ® An) defined for all 4, ..., 4, € o6 and all Uiy enyine Z
which is natural relative to each of the variables Ay, .y Ay and which
commutes with the connecting morphisms as follows: if 0474,
~>4i'—0 is in P($), then the diagram:

U 4)® @ T(41)®...® Un(An) > V(41 ® ..® AF @ ... ® An)

T 4)® . @ Uj( AN ® ... ® Un(dn) —> V(41 ... ® A} ® ... ® An)
(V.vhere we have omitted iy, ..., 1,) “skew commutes” for all choices of
(B15 ey tn) € 2™

'Usmg the fact that P($) has enough projectives and injectives
(which are the same class of G-modules), one can use the same method

of proof as in [2], Chapter XII, Theorem 5.1, or ag in [7] Prop. 8.1, to
demonstrate: ’ ' 7

e ©
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THEOREM 1.3.1. Assume in the above that all of the functors U,, Uy, ...
wey Un, V vanish on the €y $)-projectives (and hence on the € $)-injectives);
then if two maps, F, G: U,®...Q Un—V coincide in any one dimension
(Gyy ey Bn) € Z", then B = @.

This theorem has Corollaries 1.2.2 and 1.2.3 as immediate conse-
quences. However, this theorem has several other consequences, including
those paralleling the results of [2], Chapter XTI, § 5 and of [7], Sections
9-15.

For any A, B e Ab, we always have the isomorphism A(4, B): 4A®
&B-—+B®A given by: A4, B)(a®b)=0bRa for all ac A and beB;
when 4, B egC, then 1(4, B) is also a G-isomorphism. Assuming that
{foal , @ € Z} is the cup product for the (P($), $)-cohomology theory
{F"| n € Z}, then for any 4, B ¢ C and for any p, ¢ ¢ Z we have a mor-
phism in Ab:

(=19 AU(B, A)) o foulB, A) o A{FP(4), FY(B)): F(A)QFYB)~
: - I"*YA@B).

ProposrrioN 1.3.1. The above defines a (P(Sj), 5}~cup product for
{F" n < Z} and hence for any A, BegC and any p,q<Z we have:

(—1)P'F"M(A(B, A)) © fan(B, 4) o AF"(A), F(B)) = fps(4, B) .

Proof. Straightforward verification.

This is another proof of [7], Prop. 11.1.

If 4 € oG, p e Z and o « FP(A) are fixed, then, for each g € Z, a natural
transformation of functors fZ: FY%)—»F Y A®x) is defined by: if B e oL
and y e F%B), then f;(y) = fp.o(#®y). Obviously, a natural transformation
of functors 7o: FU%)—>F TU%®A) is also defined by: if BegC and
y e F(B), then fi(y) = fop(y O ). ,

For fixed A «C and fixed a A% a natural transformation y, of
tunctors is given by: if BeC, then y.: B—~A® B is defined by Wa(b)
= a®Db for all b e B. Obviously, a natural transformation of functors y
is given by: if Beg®, then % B—~B®A is defined by Pu(b) =b®a
for all b e B.

Prorosrrion 1.3.2. If 4 €6C, if « e A% and if © e F(A) denotes the
element corresponding to a—i—fgjﬂjﬁam(Aﬂ) of Ug(4), then:

Py =f; for all geZ
and
FYg,) =g forall geZ.

Fundamenta Mathematicae, T. LXVI
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Proof. Show that {f7| ¢ Z} and {F"(y.)| g € Z} are “maps” of the
exact P($)-connected -sequences of covariant functors {F%x) | qe)
> {FY{A®¥)| g'eZ}in the sense of Theorem 1.3.1 which agree for ¢ = 0,
for the last part, observe that p, = A(4, %) ¢ ¥, and fo=1"2(4, %) of2.

This is another proof of [7], Prop. 9.1. ‘ )

ProPOSITION 1.3.3. For any A, B, CecC® and any p,q,re 7,
foralA®B, 0) o (fp,q(A: B)®1)= Joqrld, B®C) o (1 & for(B, 0)) .

Proof. Apply Theorem 1.3.1, viewing the above as defining maps
of F( A)@W(B)@F’(O)»F””M(A ®B®C) which agree for p=qg=7r
= 0.

For the rest of this section, it is necessary to switch notation and go
we shall now let {H"(X; &, %)| n e Z} denote a (P($), Sj)—cohomology
theory.

If K is a subgroup of ¢ and if # € G, then (K, X) and (zKo™", X)
are finite permutation representations with f((K, X)) = & = {K ~ H|
He$)and f(@Eo ™, X)) = M= {(@Ka™") ~» H| H ¢ $}. Let {H"(X; K,%)|
neZ} denote a (P(8), ) cohomology theory with cup product {fa,|
P, 07}, leb {H"(X; sEa™",%)| neZ} denote a (P(8), 8)-cohomology

prEa1

theory with cup product {fp; | P, q e Z} and let Tx: g€ —+x® and Tpgyp-1:
¢C—4reE denote the usual “forgetful” functors.

ProrositioN 1.3.4. For any A,BegC and any p,qeZ we have:

0 foalTx(4), Tx(B)) = fie” (Texas(A), Taxas(B)) o (¢o® ¢)

where ¢, is as defined in [4], Chapter 11, § 4.

Proof. Observe that for p = g = 0, we have equality and apply
Theorem 1.3.1.

Suppose now that K is an arbitrary subgroup of ¢ and that L is an
arbitrary subgroup of Kj let f((K, X)) =82={H~ K| He $} and let
fT, X)=M={HAL He$}. Then we have {Res™(L, K)| n e Z}:
(A"(X; K, TK(*)H neZ)>{H"(X; L, TL(*))I n ¢ Z}, a morphism of exact
P(9)-connected sequences of functors, defined as in [4]. Chapter II,
§ 4. Assume E’hat {foel P, q € Z} is the cup product for {H"(X; K, %)| n e Z}
and that {fuel p,¢<Z} is the cup product for {H™(X; L,%)| ne %} .

Prorostrion 1.3.5. For any A4,B o€ and any P, qeZ we have:
Res” (L, K) o f3,(Tx(4), Tx(B))

= Ial Tr(4), Te(B)) « ((Res”(L, K)® Res¥(L, K)) .
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Proof. Similar to that of Prop. 1.3.4.

Now, further assume that L is of finite index in K; then we have
(Cor™ (K, D) n e Z}: {H'X; L, Tr(%))| n e Z|—{H"(X; K, Te(%) n e 7},
a morphism of exact P($)-connected sequences of funectors, defined as
in [4], Chapter II, § 4.

PRroPOSITION 1.3.6. For any A, BegC and any p,qeZ, we have:

Cor? (K, L) o fuy( T A), Res’(L, ) (Tx(B)))

= fralCor”(K, L) (T1(4)), Tx(B))
and

Cor® (I, I) © fg( Tu(A), Res (L, K) (Tx(B)))

= foul Tx(4), Cot¥(K , L) (T5(BJ)) .

Proof. Similar to that of Prop. 1.3.4.

In order to complete the derivation of the basic results of [7] by means
of our axiomatic relative homological algebra setting, it remains to deal
with sections 14 and 15 of [7] in which generalizations of the restriction
and corestriction mappings are introduced and utilized. Once these generali-
zations are illuminated, all of the basic results of sections 14 and 15 of [7]
will be consequences of our previous results.

Suppose that (¢, X) and (¢, X’) are finite permutation representa-
tions of two groups where f((¢, X)} = § and f((¢", X)) = §' and suppose
that ¢: G'—@G is o group epimorphism such that:

1) Ker(p) CH' for all H' ¢ §’,

2) for every H' e ', @(H') e 9, and

3) for every H e § there exists an H'e ' such that ¢(H')= H.

(As an example, suppose that X' = X and that (¢, L): (¢, X)—
—(@, X) is a morphism of permutation representations — as defined
in [6], p. 134, Definition 1 — with ¢ onto.) Letting ¢ induce by “pull
back” the functor T,: ¢C-—¢C:

Luvma 131, {H"(X', ¢, T (%) n e Z} is a (P($), H)-cohomology
theory.

Proof. It is siraight forward to see that Ug o Tp= Ug and that
it BeP($H), then T,(F) e« P($H’). Moreover, if H e H and B exC, then it
is easy to see that if H' ¢ $’ is such that ¢(H') = H, then T (Z[GI1®
®©nB) = Z[@ @B where B is the left H'-module obtained from B
by “pull back” along g. ’

Tt is now apparent that in the above, if & is a subgroup of L where
(L, X) is a permutation representation of L, then {Res"(&,L)|n «Z}:
{HYX; L, %)| n e Z}—>{HYX; G, Ta(¥)| n e Z} induces the morphism
@l q e 2y: {(H"X; L, %) n e Z}—={H"(X', &, Ty o Ta(¥)| n ¢ Z} of exact

8*
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P($)-connected sequences of functors. This is the restriction mapping
of [7], Definition 14.1. An analogous result holds for the corestriction
mapping of [7], Definition 15.1. Now, Proposition 14.1 and 15.2 of [7]
easily follow from Propositions 1.3.5 and 1.3.6 respectively.

For any 4, B, 0 g€ and any G-homomorphism 0: A® B—(, we
obtain a “cup product relative to 67 defined by: foald, B) = TP X &, 0).
o foul4, B): H'X; &, A)@ HYX; ¢, B) ~H""(X; &, 0).

In particular, if R eqC is also a ring such that g(r, rs) = (gr,) (gn)
for all g e G and all 7,7, e B, then 0: R® R—EK defined by: 0(rn,Qmn,)
= 17, for all 7,7, ¢ B is a G-homomorphism of B® E— L and the “cup
product relative to 67 turns H*(R) = {H"(X; &, R)| n e %} into a graded
set of Abelian groups with a mulbiplication which is associative by Prop.
1.3.3 and is skew commutative by Prop. 1.3.1 if I iy commutative. Thus,
H*R) is a graded ring. Moreover, if B has a unit element, then it is easy
to see from Prop. 1.3.2 that (since 1 eRG) the element of H'(X; &, R)
corresponding to the element 1—|—I f}:sSGW(RH) of Ug(R) is a unit element

[ €

of H*(R), thereby giving another proof of [7], Prop. 13.2.
Finally, [7], Prop. 14.2, is a consequence of the definition of restriction
in dimension 0.

Thereby, all of the results of [7] have been subsumed by our axiomatic
relative homological algebra setting.

If. Duality

§ 1. The funetors hy,. For this chapter on duality, we shall
always refer to a fixed finite permutation representation (¢, X). Leb
f¢, X)) = $ and let {F"| n < Z} denote a (P($), $)-cohomology theory
with cup product {f,,/p,qeZ}. For ease of notation @ will mean
®z, ®e¢ will mean ®zgq, Hom(4,B) will denote Fomy(d4,B) and
Homg(4, B) will denote Homgg(4 , B) throughout this chapter.

For any A, BeqC, the mapping 0: Hom (4, B)® 4B, defined
by 6(f®a) = f(a) for all f<Hom (4, B) and a e 4, iy a homomorphism
of left: ¢-modules and hence gives rise to a “cup product relative to 07,
{fral Dy g € Z}, a8 previously defined. Then, as in [8]. Section 2, for
4,BecCand any p,qcZ, we define: hyy(4,B): F”(Hom(4, B)
Hom(FY(4), F"*(B)} Dy: i yeF?(Hom(4, B)) and aeFYA), then
hoo( 4, B)(y)(a) = fra(y® a). Tt is easy to see that, for any p, ¢ € Z, hpg is 8
natural transformation of functors which are contravariant in 17he‘first
variable and covariant in the second variable.
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We then derive, as in [2], Chapter XII, Prop. 6.2:

PropoSITION 2.1.1. If BegQ has the property that hy, (A4, B) is an
isomorphism for all A e g& for some fized p, q e Z, then hy(A, B) is an
isomorphism for all A € o® and oll w,v e Z such that u-+v=p-gq.

§ 2. Change of rings. Now, observe that all of the results of [6],
[7], [4] and of this paper up to this point can be completely rewritten
(with at most insignificant changes) by replacing Z throughout by any
commutative ring with an identity. For our duality program we utilize
two such rings besides Z.

For the rest of this chapter, we assume that & is a finite group.

Let d' denote the index of the permutation representation (see [6],
p. 140 for the definition) and let »'=lem. {|H:1|/H ¢ H}; it is easily
seen that [G: 1] = h'd’. Set d=(k',d') and let 1’ = hd, d' = md where
(hym)=1. Set B = Z[1/d] and 8= Z[1/h']= R[1/h] and let xxC and
si® denote the categories of left R[G] and S[G]-modules respectively.
One can view g€ as the class of ¢-modules which are uniquely divisible
by d and hence zx€ forms a complete subcategory of ¢€; a similar state-
ment holds for geC. .

Thus, we obtain cohomology theories with respect to § = f((&, X)):
{F}Lﬂ " € Z} for R[G]@ and {Fﬂ"l ne Z} for g[g](ﬁ.

LeMMA 2.2.1. If w: A—B is o map in soC which splits over 8,
then u splits over S[H] for all H e $.

Proof. Let a: B4 be an S-map such that # ca=1p and let
=Fi%—ﬂ;a*la(ab) for all beB.
Then, it i easy to see that @ is an S[H]-map such that u o a = 1p. A similar
proof holds if there is an S-map a: B—~4 such that acu=14.

Letting & denote the set consisting of just the identity subgroup
of @, we see that the class G (%) of all sequences in ge® which are S[H]-
split exact for every H ¢ § is just the class G5(R) and similarly for G3($)
and GYR) and thus Pg(H) = Ps(K).

THEOREM 2.2.1. Tf & s the sct consiting of just the identity subgroup
of &, then the (Ps($), H) and (Ps(R), K)-cohomology theories in sa®
coincide. (Here (Ps(R),8R) dis the 8-split “ordinary” cohomology theory
m sie®).

Proof. It suffices to ghow that if A egeC, then Ug(d) = Ua(4).
Clearly, if A e gC and H ¢ §, then N(4)C SGIH(AH) where N = Sgp.
It o e A” and if {w,, ..., @} are representatives for the distinet left cosets

He$ and define a: B4 by u(d)

n -
of H in @, then N(a)= Z 2 @ihe = |H: 1|Sar(4). But, since H € §,

i=1 hell


GUEST


112 M. E. Harris

|H:1| has in inverse in § and hence Sem(A®) C N (4). Thus, Seu(A7)
= N(A) for all H ¢ § which implies that Ug(d) = Ug(4).

§ 3. Interrelationships between the cohomology theories,
Let Tr: rigi®—+¢C and let Ts: si@-—+re® denote the usual “forgetful”
functors. If B e Pr($), then Tr(E) e P($H) and Tr sends G|H -special
modules of g€ into G|H -special modules of o€ for all H ¢ §; moreover,
F° o Ty is naturally equivalent to the functor Ug. A similar result holds
using the functors Ts: g@C—pmC and Ty o Tg: geC-+C. Hence:

TaEOREM 2.3.1. {(F" o Th)| n e Z} is a (Pn(g), Sf)) -eohomology theory
for marC and {(Fr o Ts)| 0 e Z} and {(I" o Tr o Ts)| n ¢ Z} are (Py($), §)-
cohomology theories for gimC.

On the other hand, consider the functors: V: ¢C-+psC defined
by: V(4)=RQA=R[GI®gd for 4 cgC and W: € g€ defined
by: W(B) = 8®rB = S[F]Q@meB for B € genC. For 4 € zC, V(Z[F1Qy4)
gR[G]@GZ[G']@HA o R[GJ@HA o= R[G]@R[H]R[II]@)HA, HGHGG, V
sends Gy($)-projectives (and G*(H)-injectives) into (652(55)—pr0jeetives
(and €x($)-injectives); also, V sends P(§) into Pr(H).

THEOREM 2.3.2. {(F% o V)| n € Z} is an exact P($)-connected sequence
of eovariant additive functors from G into Ab such that, for each n e Z,
(FooV,F5 o V) is both left P(9)-couniversal and right P($)-wniversal
in the sense of [5], Chapter XTI, § 7, and the functor Ty oV is naturally
equivalent to the functor Tg o V. Moreover, {Fg o V| n < Z} with these pro-
perties is wunique up to isomorplism of doubly infinite P($)-connected
sequences of functors. A similar situation holds for the sequences of functors
{F5eWoV)|neZ} and {(Fgo W) ne 2.

Proof. Apply the results of [5], Chapter XII, § 7.

Levma 2.3.1. If 8 = R[1/h] and @ are as above, then for any fimitely
generated left R[G1-module A and any B e G, the natural homomorphism
&: S@RHOHIR[G;(A, B)—>H0mR[a](A, S@RB), deﬁ%ed by: @(3@]3]‘) (a)
= s@=f(a) for all s e 8, f e Hompme (4, B) and a e A, is an isomorphism.

Proof. Since R is noetherian and @ is finite, R[G] is left noetherian
and hence A is a finitely presented left R[@]-module. Now ([1], Chapitre T,
§.2, No. 9, Prop. 10) applies with left and right interchanged.

Now, returning to the situation before the lemma, if we view R as
& trivial G-module, then for any B e =€ and for any subgroup K of @,
S®r(BXy == 8 ®rHompxi(E, B) o~ Hompm (R, §®zB) o (§@ zB)* where
the isomorphism A: S@R(BK)»(S(@RB)K Is given by: A(s@gb) = s@gb
for all be B and s 8.

Lemma 2.3.2. The functors By o W and Us are natumily equivalent.
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Proof. Fg o W is naturally equivalent to the functor Ug o W. For
B enaiC,

Us(W(B)) = (8B 3, Sum(S@rB)®
~ S@Ic(BG)/S®R(H§5'gG|H(BH)) = S®zrUs(B) .

But, 0 = d'Ug(B) = md Ug(B) = m Ug(B) since d is a unit on Tg(B);
thus, (m, b) = 1 implies that k is a unit on Ug(B) and hence S xUg(B)
o2 Ug(B). Finally, note that all of the isomorphisms are functorial in B.

Applying Theorem 2.3.2, we obtain

TrorEM 2.3.3. {(F o W) neZ} is a (Pr($), §)-cohomology theory
for mea®.

§ 4. The Duality Theorems. Let {fh,| p,qecZ} denote the
cup product for the (Pg($), 53)-eohomolog'y theory {Fs|neZ} and,
forany A, B € i@, let 1(4, B): (§Qr4)®s(8®rB)—~S®r(4 ®rB) denote
the obvious S[G]-isomorphism determined by: #(4, B)((sl® 70) @ s(5,®rb))
= 5,5, ®nr(a®rb) for all s;,8,¢8 and all ae A and beB. Also, if 4, B
are R-modules (respectively left R[G]-modules), then A®B = A®zB
= A®zB as R-modules (respectively left R[G]-modules). The same
holds true for the pairs of rings (Z, 8) and (R, §) and these facts will
be used in what follows without further notice.

TuEoREM 2.4.1. For any p, qeZ and any A, B € ;€ the morphism

TR (A, B)) o forgW(A), W(B)): FE(W(4)) ®FYW(B))
- FE™(W (A®=B))

defines the cup product for the (Pr(9), H)-cohomology theory {(Fs o W)|
n ez} o ‘ .
Proof. It is easy to check the cup product defining properties.

Noting that {(fy.l p,qeZ} i sthe cup product for the (P(9), $)-
cohomology theory {F"| n € Z}, the same method of proof yields:
THEOREM 2.4.2. For any p,q<Z and any A; B e o€ the morphism

Foal Tr(A), Ta(B)): TP(Ta(A)) @ F"(Tn(A))~F""*(Tr(4 ©xB))

defines the cup product for the (Pa($), $)-cohomology theory {(F" o Tr)|
neZ}. ‘

The following generalizes [8], Theorem 4.1, since we do not assume
that (G, X) is transitive: :
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TEROREM 2.4.3. If BegaC s a trivial G-module which is also
divisible as an 8 (or Z)-module and if A ¢ paC, then the map

hpe1,+(T(A), Tr(B)): F*~*(Hom(Ta(4), Tr(B)))
= F"""(Homa(Ta(4), TR(B)))—>Hom(1ﬂ'1(TR(A))) ) PE( Ty B)))

= Homz(F"~(Tr(4)) ,'I«’””E(TR(B))) ,
defined by:

s, ~1(Tr(A), Ta(B)) (¥) (@) = (F"7(0) o foms,—2 (Tn(A), Ta(B)))(y® o)

=(F"0) © fo-1,-1(TR(A), Tr(B)))(y @ nar)
for all
y e F*~(Homz(Tr(4), Ta(B))) = F"~(Hom(T(4), Tr(B)))

and all a e F7(Tr(A)) where 0: Homg(4, B)®rA = Hom (4, B)® 4A~B
is  defined by: 0(f®a)= 0(f®ra)=f(a) for all feHomg(4,B)
= Hom (4, B) and all a <4, is an isomorphism for all p < Z.

Proof. Using Theorem 2.4.2 and the analog of Prop. 2.1.1 in the
category mm@, it suffices to show that h—1(Tr(4), Te(B)) is an iso-
morphism for B as above and for 4 arbitrary in meC. Thus, by the
“uniqueness” of a (Pz($), H)-cohomology theory and the “uniqueness”
of the cup product, it suffices to prove that

I,—1(4, B): FY{W(Homa (A, B))) > Homa(Fg} (W (4)), F5H(W(B)))
defined by:
ho,2(4, B)(y)(a)

= (FEl(W(ﬁ))Fs"l(t(HomR(A, B), 4)) « f§1(Homg(4, B), A)) (y® rat)

for all y eF%(W (Homg(4, B))) and all o € Fg*(W(4)), is an isomorphism,
On the other hand, consider the morphism
h1(S®r4, B): Fs(Homg(S®r4, B)) - Homg(F5'(S@r4), F5*(B))

w}%if:h is the analog in the category s€ of the mapping ho,—1 and which
utilizes the S[@]-morphism 6": Homs(S®xrd, B)®s(8®rA)~DB defined
by: 0’(f®;(s®Ra))b=f(3®Ra) forall s e 8, aed and f e Homg(S@pA, B).
But, by Theorem 2.2.1, {F&| n ¢ Z} can be computed by using the ordinary
standard complex with coefficients from § instead of Z. Hence, by analogs
of [2], Chapter XTI, Prop. 6.3 and Theorem 6.4, we find that hy'_1(S®
®rA, B) is an isomorphism. ’
If o denotes the natural § [G]-isomorphism ¢: §

] ¢: S®rHomg(4, B)

Homs(S® A, B) and if & denotes the mnatural g [G]-isomorphism’ S:

©
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S®rB-»B, then & « W(0) o t{Homp(4, B), 4) = 0’ « (0©®s1) as S[¢]-maps
of (S@rHomg(4, B)) ®s(S®rA)—B. From this, it is easy to see that
B —1(A, B) = F5(G™") o hil1(S®=r A, B) o F4(p) and hence Tig,—1(4, B) is
also an isomorphism, which coneludes the proof.

If we agsume that the (P(.ﬁ‘)), .‘f))-cohomology theory {F"| n e Z} is
obtained by restricting to P($) the Q(g)—eonneeting morphisms of the
(@ (%), §)-cohomology theory {F"|n ¢Z}, then the cup product for
{F"| n e Z} as both types of cohomology theories comprise the same set
of functors {fp.dl P, q € Z}.

Note that the short exaect sequences 0—+R—~8—R/S—0 and 0—+R
—~+@—>Q/R—>0, where () denotes the rational numbers and where G acts
trivially on all modules, lie in ¢($). Then, using Theorem 2.4.3 (without
assuming (G, X) transitive), we ean generalize [8], Theorem 6.1, to:

TamoREM 2.4.4. The howmomorphism f*: F~%(R)—Hom(FR), F(R)),
defined by: FUa)(B) = foala® ) for all acF YR) and B < FYF) where 6
is as defined at the end of Chapter I, § 3, is an isomorphism.

Since @ is uniquely divisible by @', F*(Q) = 0 for all n ¢ Z and 0—R

—+Q—+Q[R—+0 e F(H). It follows that
F7(Q/R) = I"(R)

and
FQIR) 22 F5 (S On(Q/R)) = Kex(N: (S©z(Q/R)~(SOQ/R)))
= {a ¢ (SORQ/R))| |6 1] « = 0}

by Theorem 2.2.1. But |G: 1| = d'h’ and hence F5'(S@=z(Q/R)) = {a < (8®

®=r(Q/R))| ma = 0} == S@=r{o < Q/R| ma =0} = {a < Q/E| ma = 0} since

(m, h) = 1. However, mF%R) = 0 and thus, the result of [8], Remark 6.2

has also been generalized to arbitrary finite permutation representations:
TarorEM 2.4.5. FYR) = Hom (FYR), Q/R) for all q<Z.

III. Periodicity

§ 1. Shapire’s Lemma Generalized. For this chapter, we
have as usual a finite permutation representation (G, X) of the group &
and we assume that K is an arbitrary subgroup of finite index in @, that
F((&, X)) = $ and that f((]f, X)=2={K~H HeH}

LmvvA 3.1, If {F" neZ} is o (Q(8), ) (resp. (P(9), H)))-coho-
mology theory, then [I"(Fomg(Z[6], WneZ) s a (@(R), ) (resp.
(P(8), 2)) -cohomology theory for xGC.
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Proof. If BexQ, then
P(Homg(4[¢], B)) = (Homg(Z[6], B))"’/Hzﬁsam(l—lomlc(z[G], BY) .

Now f e Homg(Z[G], B) is fixed by the action of ¢ if and only it
flgy=r1) for all ge@ and since f is a Z[K]-homomorphism,
Homg(Z[G], B) =~ B under the map f-f(1). Also, fe Homg(Z[G], B)
is fixed by the action of H ¢ § if and only if f(gh) = f(g) for all g ¢ & and

heH. It G=|JEnH is the (IL, H) double coset decomposition where
i=1

{®,, ..., ®s} is a representative choice from the distinet double cosets and
if {ky;] 1 <J<m(@)} is a representative choice from the distinet left
cosets of K ~ (z:Hwi') in K, then {fyms 1 <i<m,1 S < m(d)} s
& representative choice for the distinet left cosets of H in @. Now, it is
clear that
n —
( @ BKﬁ(hlel) - (HOHIK(Z[G], B))II
i=1
under the mapping which sends
L KAzt
(Byy ey ba) € @ BENEHRT
i=1
into the unique f ¢ (Homg(Z [G],B)}H determined by the property that
fl@) = b; for all 1 <4< n. Moreover, if fe (Hom;c(Z[G]B))H, then

H

(%)

b

(Se(H) @) = D)

n
i=1j=1

[

Fhsjms) = Zﬁmxnmm;’(f(%)) .
i=1
By varying H in §, it is now apparent that
P(Homg([6], B) &2 B/ % Smin(B").

I AezC for some Le8, then Homg(Z[G], Hom(Z[ K], 4)) ==
& Homy(Z[@], 4) and hence is G¢|L-special by [4], Theorem 1.3.1 (here L
I of ﬁnite index in @). But, L = K ~ H for some H ¢ $ and [4], Prop. 1.3.1
implies that Homy(Z[6], 4) is ¢|H-special and thus 7" (Homg (%[, %))
\;rlamsl:es,on the E(8)-projectives (and E€*(8)-injectives) of xE. If 0-+A
“—>B>0-+0i8 in Q(2) and # H ¢ $, then (using the notation above:

n N N
G = El KuH, efc:) the sequence

N :
@ (AKO@HES » BEOGEHSY o T -
0 = ¢ @ ( K LNy (OFNE T

=1 =1 0

-
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. * L R, . .
is exact where o, f* are just o, acting component-wise. Consequently,
the analysis above shows that

0 — (Homg(Z[G1, A))Ui'—>(HOln];(Z[G], B))HL(HomK(Z[G], O))H__> 0
is exact and hence

0—Homg(Z[G], 4)—Homg(Z[G], B)—Homg(Z[&], €)—0

—_— n
is in Q(H). For He H, let G = HI(wiﬂ be as above and for 1 i< n

let {hy| 1 < < m(i)} be a representative choice for the distinct right
cosets of H ~ (@ liwy") in H, then {mhyll<i<n,1<j<m@)} is
a representative choice for the distinet right cosets of K in G. As a left
. n m(i)
K -module and a right H-module Z[G] == @ M; where M;= @ Z[K]zihi;.
=1 j=1
Now let 0-»d4-4>BL> (0 be in P(L); to finish the proof of this lemma,
it suffices to prove that 0 —Homg(M;, 4)—Homg(M;, B)LHomK(M i, 0)
—0 ig split exact as a sequence of left H-modules for any 1 <i<n.
Since 0 A-2>BE> (0 is in P(Q), thereisa K ~ (z;Hai")—mapo: B4
such that ¢ o @ = 14. We define a map o*: Homg (M, B)~Homg(M, 4)
by: (o*g) (kwihy) = k@(g (mihij)) for any g e Homg(M;, B) and any k¢ K;
clearly, o*g ¢ Homg(M;:, 4) and ¢* » o' = 1. We claim that ¢* is actually
an H-map. For, let he H and let hyh = #7 '%'wil; where &' ¢ K, then
if geHomg(M:, B) we get o*(hg)(limihs)) = Fol(hg)(@ihy) = kolg(@ehyh))
= kolg(k'wihy)) = Tk’ (g (wihiy)) since ;'K e H implies that &' ¢ I A
~ mHmf and (h(@* o g)) (k.?)ihﬁ) = (Q* ° g)(km{h»ijh) = (g* o g)(kk’wﬂli,-:)
= kk'o(g (wihiy)) which finishes the proof.

§ 2. Periodicaty in Z[G]. Assume the wusual setup (&, %),
f(@, X) = $ and let {F"|neZ} denote a (P(H), $) or a @(9), 9)-
cohomology theory.

Lmmma 3.2.1. If for some integer q and some integer m the functors
F™ and B are naturally equivalent, then the functors F"™* and F" are
naturally equivalent for all w e Z.

Proof. The natural equivalence of " and F™ extends by univer-
sality to a matural equivalence for all neZ.

DErINITION 3.2.1. Any integer g, for which the functors F* and F’f“
are naturally equivalent for some n and hence all » e Z is called a period
of (&, X) or of (P($), H) or of 0(%),9) -

Obviously, the periods of (&, X) form a subgroup of Z and (6, X)
is said to be periodic if this subgroup of 7 is not just the zero subgroup.

=
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CoroLLARY 3.2.1. If K ds a subgroup of finite index in G, then any
period of (@, X) is also a period for (I, X). ‘

Proof. Apply Lemma 3.1.1.

COoROLLARY 3.2.1. If the finite group @ has an Abelian subgroup K
of type (p, p) such that (K, X) is fized point free, then G is not periodic.

Proof. Since (I, X) is fixed point free f((I, X)) = £ consists of
just the identity subgroup and hence the (P(2), g and (Q(X), E) coho-
mology theories are just the “ordinary” cohomology theory for K which
is not periodic.

CoROLLARY 3.2.3. If @ is a finile group and &f h' is as defined in
Chapter IT, § 1 and if the prime p divides |G 1| but does not divide b’ wnd
if (&, X) is periodic, then the p- Sylow subgroup of & is eyelic or generalized
quaternion.

Proof. The result follows from a well known group theoretic
argument, since ¢ does not have an Abelian subgroup of type (p,p).

§ 3. Periodicity in R{G] and S[@]. In this section, G will denote
a finite group and (&, X) and f((&, X)) = § are as usual. Also, &' = hd
and d'=md where (m,h)=1 are as defined in Chapter IT, §1 and
R=Z[1/d] and 8 = Z[1/W'] = R[1/h). Let & denote the set congisting
of just the identity subgroup of @ (hence & = K) and let I =T (@, X)
={peZ| p is a prime, pld', pth'}. It I = &, then d’ is a unit in § and
hence any (Ps($), $) (which is the same as (Ps(8), ]) or (Qs($), 35) or
(@s(8), R)) or (Pa($), $) or (Qa(%), $)-cohomology theory (by Theo-
rem 2.3.2) consists only of the zero functor. Thus, for the remainder of
the section, we assume that I = @ and we let d' = nd where = is an I
number (the primes dividing » are in I ) and where & is an I’ number
(the primes dividing § are not in I). Thus, w51 and |G: 1] = &'}’
= n(6h') where 6k’ isan I’ number; hence, if {F§| n ¢ Z} denotes a (I’s(.‘f)),ﬁ)

(or equivalently a (Ps(R), ]) or a (Qs(9), $)ora (QS(R),R) cohomology
theory), then zFg =0 for all n e Z since & and oh' are units in S. Here,
it should be noted that if {F5| n € Z} denotes a (Q,g(&}), R) cohomology
theory, .since Qs(R) 2 Qs_(fg_) 2 Ps(R) = Ps($), then {FE n e Z} can be
turned into a (Qs($), §) (resp. (Ps($), $)) (which is the same as
a (P,s (R),S}_))-eohomology theory by restricting the connecting morph-
isms o Qs(H) (resp. Ps(H) = Ps(R)). Consequently, it will usually only
be necessary to work with just a (QS(R), R}-eohomology theory.

It 8 is viewed as a trivial G-module, then FY(K)z S/d'S o NN

=2 Z|nZ which. is eyelic of order « and this holds for all of the cohomology
theories mentioned above.
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Ag has been noted before, the results of [6], [7], [4] and of Chapter I
can be completely rewritten in the category g for the three cohomology
theories mentioned above. The same can e said for the results of Chap-
ter 11T, § 1 and § 2 provided that in Corollary 3.2.1 the prime p is assumed
to be in I. Moreover, since (Ps(R), &) and (@s(R), &) form the “ordinary”
cohomology theory in g C, the results of [2] Chapter XTI, can be examined
for S-analogs.

In particular, [2], Chapter XTI, Theorem 10.1, holds for any (@s(R), §)-
cohomology theory {F§| n e Z} where it is to be noted that if a prime
p ¢ I, then I5(A) has no p primary component for allw e Z and all 4 e sa1@
and that the “ordinary” cohomology theory over § for a p-Sylow sub-
group of G consists only of the 0 functors.

Using [2], Chapter X1II, § 7, it is easy to see that a cyclic group has
a periodie (Q,w(.ﬂ), R) -cohomology theory (of period 2) if the cohomology
theory is not 0 and a similar result holds for generalized quaternion groups.
Also, [2], Chapter XII, Propositions 6.1, 6.2, and 6.3 and Theorem 6.4
carry over directly to (.PS(R), R)—cohomology theories as has been noted
in the proof of Theorem 2.4.3 and hence these results carry over to
(QS(R),ﬁ)-(xohomology theories. Also, using the @s(]) sequence 08—
—+Q-—>0Q/S—~0 where ¢} denotes the rational numbers and where @ acts
trivially on all modules and recalling that F§(8) = 8j8 ~ Z/nZ, the
S-analog of [2], Chapter XII, Theorem 6.6 follows via a parallel proof
for the (Qs(R), K)-cohomology theory {F§|n e Z}.

DEFINITION 3.3.1. An element a ¢ FE(S) (where S is a trivial @-mo-
dule) will e called a mazimal generator if o is a generator of F§(S) of
order .

With this definition, §-analogs of [2], Chapter XTI, Propositions 11.1
and 11.2 follow for the (Qs(R), R)-cohomology theory {Fg| % e Z}. Then
from the §-analogs of Lemma 3.2.1 and of Definition 3.2.1, it becomes
obvious that ¢ is a period of (Qs(ﬁ), R) if and only if F%(S) has a maximal
generator, Also, it i clear that the (Qs(R), &) periods form a subgroup
of Z. Also, the §-analog of Lemma 3.1.1 shows that if K is a subgro_up
of ¢ and if ¢ is a (Qs(R), K) period for &, then ¢ is a (@s(R), &) period
for K.

1f the subgroup K is sueh that | 1) = mxk’ where ng is an I number
and &' is an 7' number and where mg # 1 and if g is a maximal generator
of F%4(8), then the proof of [2], Chapter XII, Prop. 11.3 can beT used to
show that then Res?(I, @)g is a maximal generator for H§(K, TK(SZ)
where {HYI, %)| n ¢ Z} denotes a {@s(R), &) -cohomology theory for K.
T, now, we assume that K is a p-Sylow subgroup of & for.zmy Ppe 1 , then
the S-analog of [2], Chapter XII, Prop. 11.4 also follows directly. Finally,
the §-analog of [2], Chapter XII, Theorem 11.6 gives:
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THEOREM 3.3.1. For the finile group G, with I # &, the following
statements are equivalent: S

a) At least one of the following cohomology theories:

(Bs($), 9] » (@s(9), ), (Ps(R), 8}, (@s(R), &)
has period > 0.
b) All of the cohomology theories:

(Bs($), §), (0(5), 5], (Ps(), &) , (@s(8%), )

have a period > 0. .

¢) Buvery Abelian subgroup of G whose order is an I-number is
eyclic.

d) If p e I, then every p-subgroup of G is either cyclic or is generalived
quanternion.

&) If p e I, then every p-Sylow subgroup of G is either cyclic or is a gen-
eralized quaternion group.

Since (Ps($), $) and (Ps(R), ])-cohomology - theories coincide,
Theorems 2.3.1 and 2.3.3 can be applied to give:

THEOREM 3.3.2. For the finite permutation representation (&, X) of
the finite group G with I = @, the 5 equivalent statements of Theorem 3.3.1
are also equivalent to each of the two equivalent statements:

a) The (Pr($), $)-cohomology has a period > 0.
b) The (Qu($), )-cohomology has a period > 0.

It d =1, then B = Z and these results apply to the (P(@), $) and

0% » §)-cohomology theories. Thus, [2], Chapter XII, Theorem 11.6
has been generalized.
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