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(6.2) To giwve an interior characterization of the movability.

(6.3) Does there exist a non-movable compactum X such that all its
homology groups are isomorphic to the corresponding homology groups of
a movable compactum Y?

(6.4) Let X and A C X be movable compacta. Is the homology sequence
of the pair (X, A) necessarily exact?
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Incompleteness of Lp languages

by
Mitsuru Yasuhara (New York)

An Lp language is an extended first order language which is “rich
enough” for the comparison of the cardinalities of two sets. In §1 we
develop a general theory about Lp languages, and show them to be in-
complete (the set of valid formulae is not recursively enumerable) and
incompact. Also, it will be shown that no obvious modification of the
Liowenheim-Skolem—Tarski theorem holds in an Lp langnage.

In § 2, we consider four examples of Lp languages. The first one is
an ad hoc invention from the definition. The remaining three were
considered in the literature. We have repeated definitions of these lan-
guages so that this paper will be intelligible by itself. Some results are
extended, some problems are solved, and some conjectures are refuted.
These are mentioned in § 2.

§ 1. The general theory of Lp languages. We have in mind
extensions of first order language made by the introduction of new guan-
tifiers or quantifier variables. Semantical notions such as interpretation
and satisfiability include those of possible new variables.

DEFINITION OF AN Lp LANGUAGE. In an Lp language, there is a for-
mula [4, B], having no individual variables and no predicate symbols
but 4 and B (these are monadic), and satisfying the following two con-
ditions:

(Lp 1) If [A, B] is true in an interpretation, and if (the interpretation
of) A is a subset of B while the complements of 4 and B are of the same
power, then A is of stricily less power than B.

(Lp 2) For every strictly ascending sequence of cardinalites {xy, %y ., #n)
there is anm interpretation of the variables in [y, *,] so that [4, B] is true
for all subsets A, B of a given domain D if the cardinalities of 4,B,D
are wg, wpe1y %y Tespectively, where {41 < 7.

‘We call this interpretation right for the given sequence of cardinalities.

We call a language incomplete if the set of valid formulae is not
recursively enumerable; incompact if there is a set of formulae which
is not simaltaneously satisfiable even though each finite subset is.
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TuroREM 1. Feach Lp language is incomplete.
Proof. We denote by Od(<,F) the conjunction of the following
formulae:

) () Te<am,

(ii) (@) (y)()r <y &y <zds<e),
(i) (@) (y) (e <yve=yvy <a),
(iv) @[ (E)F(@,y,2) & @ <eve=2r) &

(&) <zve=2D (Ely)F(z,y, »)),
Q) @) <yD[Elz<y&z+a),bz<y)),

Here [2p(2), 2p(2)] is the result of the substitution () of p(z) for Alz)
and p(z) for B(z) in the formula [4, B].

We are to show that Od(<,F) characterises natural numbers with
the less-than relation. That is, Od(<, F) is satisfiable and in every model
the interpretation of < is isomorphic to the less-than relation of natural
numbers.

First, take the set of natural numbers as the domain, and let (the .

interpretation of) < be the less-than relation, and for each number b
let 7'(d,*;, *;) be a one-one mapping of the terminal segment of b onto
the natural numbers. Certainly (i)—(iv) are all true in this interpretation.
Congider the sequence of cardinalities (xy, x, ..., %,) Where x; is the
cardinality of {, and take the interpretation right for this sequence. For
each number b, the cardinality of its initial segment is x, and the cardi-
nality of this segment ‘minug’ an element is »,—1. Thus (v) is also
true.

) Conversely, in every model of Od(<,F), the interpretation of < is
@ linear ordering and each proper terminal segment is of the same power
a8 the domain. Hence the domain must be an infinite set. Now congider
elements a, b such that ¢ <b and let 4 = {m; m = @, m < b} and
B = {m; m <b}. Certainly, 4 is a subset of B, and the complements
of 4 and B are of the same power. Hence, by (v) and (Lp 1), 4 must be
of smaller power than B. But 4 and B differ by only one elémen.t. So B
Fnust be a finite set. We have shown that < is a linear ordering of an
pnﬁnite set- such that each of its initial segments is finite. Flence < is
isomorphie to the less-than relation on natural numpers.

A lan.gua‘ge which is eapable of characterising the ordering of natural
numbers is known to be incomplete (2).

(*) in the sense of [1].
(*) Refer to, e.g., [4].
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THEOREM 2. Hach Lp language is incompact.

Proof. We use infinitely many individual constants ay, a,, ...
Consider the following set [IC] of formulae: (i)—(iv) in the proof of the
previous theorem and

(1,3 a; < a &[22 < ay), Tz < a:)]
for all 4,j=1,2,..and ¢+<j.

Bvery finite subset of [IC] has a model. Indeed, a model can be the set of
all ordinal numbers less than w,, a finite number of designated cardinalities
#1y -y #n in this domain, and an interpretation right for the sequence
31y voey Hny 1> WHETE ppy 1S 0.

On the other hand, the whole set [IC] has no model. For, otherwise,
there would be a linear ordering such that the cardinalities of the initial
segment determined by @y, a;, ... would form an infinite descending chain:
Contradiction, since the cardinalities are well-ordered.

Remark. The incompactness is an easy consequence of the char-
acterizability of natural numbers with the usual ordering. We presented
the above proof, since it is just as easy and does not depend on the other
result. Thus a language which can distinguish infinite cardinalities but is
“blind to” finite ones, is incompact, even though it may be incapable
of characterising natural numbers.

THEOREM 3. The Liowenheim—Skolem—~Tarski theorem does mnot hold
in any Lp language. More precisely, there is no infinite cardinality » such
that either a formula is satisfiable at (%) = if 4t is satisfiable at some »’ > %
or a formula is satisfiable at every =’ > = if it is satisfiable af x.

Proof. We exhibit formulae [Lt] and [Sc] which are satisfiable
exactly at limit and at successor cardinalities, respectively.

[Lt] is the conjunction of (i)—(iv) and

(@) (Ey) (¢ < y & [z <), 3z <p)]) -

[Lt] is certainly satisfiable in a domain of limit cardinality »;, under
the interpretation right for the sequence consisting of all cardinalities < #;.
Conversely, a model of [Lt] must have a linear ordering in which
each initial segment must be included in another of greater cardinality.
Thus the cardinality of the domain must be a limit cardinality.
[Sc] is the conjunetion of (i)—(iv) and

@B <2),36=2) &E)@)[(0|u<yD(Elafe<z&
&Gy, u, z))) & (z)(z <zD(Elu)u <y &Gy, u, z)))] .

() ‘Satistiable at »’ is short for ‘satisfiable in some domain of cardinality «'.
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By virtue of the last formula, each initial segment is of smaller power
than the domain and there must be an initial segment which is at least of
the same power as every initial segment. Hence a model of [Se] mugt
De of successor cardinality.

2. Examples of Lp languages.

2.1. Consider the language L, which has a new binary quantifier

(La)[g(x), w(z)], in addition to the usual features of a first order language
-with equality. The new quantifier has the following meaning: In eve;V
interpretation, Azg(x) is of less power than Ary(z). Here A:qu/(w) is t}fe
set of those elements which satisfy ¢(*) in the interpretation.
) Evidently, if (Ls)[A(z), B(z)] is true in an interpretation, then 4
is of.l.ess power than B. Thus (Lp 1) in §1 is satisfied without further
conditions on sets 4, B and their complements. Also, the above inter-
prets.mtiop of the new quantifier is right for every ascending Sequenée /of
cardinalities. Thus, (Lo)[4 (x), B(#)] serves as the formula [4 B] in the
definition of an Lp language. ’

2..2.. L, is the language considered in [2]. The new feature is a binary
quantifier (Ez)[p(2),y(2)] with the meaning that Azg(x) and Z:m/)(a,:)
are of the same power. We take 7 (Iz)[4 (@), B(z)] as [4, B]. If 4 lis
a subset of B and 7] (Iz)[4 (), B(z)] is true, then A must be of less
power than B. Also, the above interpretation is right for every mcendin;‘
sequence of cardinalities. Hence, L, is an Lp language. - :
1ﬂleotl_‘he compaetgless (Endlichkeitsatz) and the Liwenheim—Skolem

rem were mentioned as in i ¥ i bh ar
negatively by romultate o § l’o'erestmg problems in [2]. Both are answered

.2.3. .Lz has the quantifier Qu24, in [3]. The new quantifier is ex-
plained in [3] as follows: “A formula (Q2.a.%, Y3 0, W) (w, y; v, w) can
be read as .meaning that for every » there is a v, and for ever’y (1; t{wre isj a
w—depending only on y—such that @(®, y; v, w)holds; and this formula ié

equivalent to the second- y
et i ond-order formula (Eg) (EL) (a)(y) ¢ (z, y; g(#), b (3))” ().

Qe y; 9, w)[((2 =) =

(v= w)) &q)]

is equivalent to (%)

(Eg)[g is one-one & (a) ()¢ (z, y; g(w), ()] -

(*) We changed the notation slightly.

(*) For Ehrenfeucht’s proof of this equivalence, refer o [3] p. 182
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For [4, B], take

T (Quaas®, U3 0, 0)[(@ = y) = (v =1w)) &(A(0) =B(a)) Sy =y &w =w].

This formula is equivalent to
71 (Eg)[g is one-one & (a‘)(A(g(m)) = B(m)ﬂ .

[4, B] clearly satisfies the requirements for an Lp language.

L, was shown by Ehrenfeucht to be incomplete. Actually, he showed
that the notion of being a finite set is expressible in L,. Thus, he showed
essentially the characterisability of the less-than relation on natural
numbers and the incompactness (8) of this language. The result concerning
the Lowenheim-Skolem-Tarski theorem seems to be a new contribution.

2.4. 1, bas one unary quantifier variable (Q*). The meaning of Q
was given in [4]. A recapitulation runs as follows: in a domain of cardi-
nality », an interpretation of Q is a set @ of ordered pairs of cardinalities
whose sum is equal to ». (Qz)g(2) is true in this interpretation if {(u, v « Q
where p and » are the cardinalities of the sets lzg(x) and iz 71 e(2),
respectively.

I, is an Lp language with "7 ((Qu)d(x) = (Qx)B(@)) as [4,B].
First, we remark that if two sets 4, B are of the same power, and if their
complements are also of the same power, then (Qu) A () = (Qz)B(x)
is true under every interpretation of Q. So, if this formula is false, or
[4, B] is true, and the complements of 4 and B are of the same power,
then A and B must be of different power, for every interpretation of Q.
Tf 4 is a subset of B in addition, then 4 must be of less power than B.
Thus, the condition (Lp 1) is satisfied.

Given an ascending sequence of cardinalities (sy, #1y ...y %575 consider
the interpretation of Q consisting of ordered pairs <u, v, such that u = »x;
for some even { <17, and ¥ = »,. Then the truth values of (Qx)d(x) and
(Qu) B(x) are different for all sets A and B if they are of power x; and -y
for some £+1 < 7. So our [4, B] satisties (Lp 2) also.

Thomason proposed in [5] an axiomatic system for a language with
denumerably many quantifier variables, and conjectured that every set
of formulae has a model if it is consistent in his axiomatic system (strong
completeness). Also, he conjectured a modified Léwenheim—Skolem theorem,
stating that every set of formulae has a model of cardinality 2, if it has
an infinite model. Since strong completeness implies compactness as
well as completeness, our results refute these conjecturs even for a language
with only one quantifier variable.

(%) Refer to the Remark after Theorem 2.
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Added in proof (July 1968): This paper was presented at the San Franeisco
meeting of the American Mathematical Society, January 1968.

In the meantime we noted that the following definition is much simpler and
better suited for our work.

“In an Lp language, there is formula [4, B] —here 4 and B are monadic
predicate symbols — which satisfies the following two conditions:
(Lp 1)” — the same as in the text,
“(Lp 2) In every infinite domain, there is an nterprelation of the variables in [,1.
so that [4, B] is true if B is of the smallest cardinality after that of A.”
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