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on [0,1] below the identity

by
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1. Introduction. It has been known for some time that the
collection of all limits of inverse sequences of mappings from the interval
[0, 1] onto [0, 1] is the collection C of all non-degenerate chainable continua
(compact, connected, metric spaces) [4]. The study of the collection §
of all limits of inverse sequences with a single bonding map on [0, 1]
is more recent. Henderson [5] showed that the pseudo-arc is such a limit,
while Mahavier (6] showed that not every chainable continuum is.

We let B denote the collection of all limits of inverse sequences
with a single bonding map f on [0, 1] sueh that if 0 <& <1, flz) <2,
and note that Henderson’s paper also shows that the pseudo-arc is an
element of B.

In this paper, we characterize the decomposable elements of B
(Theorem 1), and show that B is a proper subcollection of §, sinee the

sin%—continuum is not an element of B (by Theorem 3), but is the

inverse limit with single bonding map f, where f(0) = 0, f(3) = 1, f(1) =
and f is linear on [0, 1] and on [4,1].
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2. Preliminaries and main theorem. For a discussion of
inverse limits, the reader is referred to [2], and for chainable continua,
to [1]. A 8-regular &-chain is a chain such that each link of it is of diameter
less than ¢, and the distance between any two non-intersecting links of
it is greater than 8. A regular chain is a chain which is, for some 6 > 0
and some &> 0, a §-regular s-chain. For more on this, see [3].

Tf f is a continuous funetion from [0, 1] onto [0, 1], then lim denotes
the limit of the inverse sequence with f as the only bonding map. The
distance between two points (&g, &a, -+v) and  (¥y, ¥a, ) of Umf is
D lws—yel- 27

=1

DeriNizioN. The contintum M is said to have property S with
respect to the points A and B of M if and only if there exists a reversibly
continuous transformation 6 from M onto M such that 9(4d)=A4, 8(B)= B,
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and if ¢ > 0 and 8> 0 then there exists a positive integer m such that
if the distance from B to the point P of M is greater than 4, then the
distance from A to 6™(P) is less than e.

TEEOREM 1. If M is a decomposable continuum then in order that
there exist a continuous function f from [0, 1] onto [0, 1] such that if 0 < z < 1
then f(z) < @, and such that M is topologically equivalent fo limf, it is both
necessary and sufficient that (1) M be chainable, (2) M be irreducible between,
some two of its points, A and B, and (3) M have property S with respect
to A and B.

3. The conditions are mnecessary. Suppose f is a continuous
function from [0, 1] onto [0, 1] such that if 0 <o <1, then f(z) <a.
Then lim f is chainable and irreducible from the point 4 (0, 0,...) to the
point B(1,1,...). Let 6 denote the reversibly continuous transformation
from lim f onto imf such that if P(p,, ps,...) is & point of limf, then

0(P) = (f(pa), F(2)s ) = (F(12)s D1, Bay oor) «

Lewwa 1. If 6> 0, and n is a positive integer, there is a positive
number 0" such that if P(p,, ps, ...) is a point of imf at a distance from B
greater than 6, then 1—py > &',

. THBOREM 2. The. continwum limf has property S with respect to the
points 4(0,0,..) and B(1,1,..).

Proof. Suppose &> 0 and 6 > 0. There exist (1) a positive integer n
SHC].1 that (4)" < s, (2) a number 8’ > 0 such that it P(p,, p,, ...} is & ;oint
of limf at a distance from B greater than § then 1—p, > ¢’ (by lemma 1)
(3) @ number # such that 0 <z<1 and if 2<% <1, then f(z) >1— 6’.’
(4) & number % such that 0 <k <1 and if }e <2 <2, then f(a) < kw;

and (5) a positive integer m such that ™ < —2§

Now, if P(py, pq, ...) is a point of limf at a distance from B greater
than 4§, then 1—p, > §', and p, < 2. Thus

e > ™) > M (Pros) > oo > Moy .

The distance from 4 to 6™(P)= (f"(p.), f™(p,), .-) is easily shown to

be less than f™(p,)+ ()" <.

. h;rBEOREM 3. If lin'lf is decomposable, and irreducible from the point P
o the point Q, then P is one of the points A and B, and Q is the other.

N Proof. The qontigu?m limf is irreducible either from A to P, or
om B to P. If }n.nf is irreducible from A to P then, since limf is’de—

f:ompos.a,ble, there is an open set R that contains A such that lim f is not

irreducible from A to any point of B. It P is distinet from B then by
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theorem 2 there exists a positive integer m such that 6™(P) lies in R, and
limf is irreducible from A to a point of R, which is impossible. So P is B,
and limf is irreducible from @ to B. By a similar argument, ¢ can now be
shown to be 4.
Similarly, if limf is irreducible from B to P, then P is 4 and @ is B.
4. The conditions are sufficient. Suppose I is a decomposable
chainable continuum, with metric d, irreducible between two of its points,
A and B, such that M has property S with respect to A and B. Let 6
denote a transformation satisfying the requirements of property S with
respect to A and B.
LEmMA 2. If &> 0, there s a regular e-chain for M from A to B.
DerFINITIONS. Tf NV is a subcontinuum of M that separates A from B,
then the two mutually separated connected point sets whose sum is
M— N, and which contain A and B Tespectively, will be denoted, re-
spectively, by Ca(¥) and Cs(N). There exist (1) a subcontinuum N,
of M that separates A from B such that for some number y > 0,
a0y, Op(Ny) > v and (2) a positive integer m such that the con-
tinuum 6 ™(N, v Cs(X,)) does not intersect N,. Let 1= 7™ and Npi:
— N, for each n. Let L, denote the continuum (v, © CB(Ny)) ~
A AN, v 04(Ny), and for each m, let Lny: denote A%(Z,). For each =,
let J, denote Ln— (Nn v Naia) and let 8, denote a positive number which
is less than half of each of the following numbers: (1) (3" (2) the diameter
of N, (3) the distance from N, to M— (Tt~ Nnudy) if #>1, and
(4) @{Ca(Nu), C5(Nn)). Finally, for each =, let Hx denote Lon w Lont1,
K, denote Na,, and o denote iR
THEOREM 4. There exist sequences &, e, ... of positive numbers, and
Gy, Cay oo and Dy, Dy, ... of chains such that if n is a positive integer, then
(1) en< (3)" and Cn is @ reqular e,-chain that properly covers Hy,
(2) Dn and Dy are non-degenerate subchains of Cy such that
(a) the closure of any link of D does mot intersect the closure of any
link of Put1, and
(b) the first (last) link of Dn (Dny1) is the first (last) link of Chr,
and Dy (Dyi1) is the collection of all links of Cy that intersect Kn (Knt1),
(3) every link of Dns1 lies in Hy v Hpy,
(4) every link of Cn—(Dn w Dpya) lies in Hyp—(En © Knta), and
(8) if 1 < i < n, then w¥(Cy) is bolh an eq-chain and a strong refine-
ment of Cn—i, Such that no two adjacent links of it intersect two non-adjacent
links of Cn-j, if 1<J <t :
Proof. If ¢ is a chain for M from A to B, the first link of C is the
one that contains A. There exist (1) a sequence E,, B,, ... of regular
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chains for M from A to B and (2) decreasing sequences o, as,.. and
;31, Bss ... of positive numbers such that for each n, (1) if 0 < ¢ < n, then
\~{(E,) is a Bu-regular a,-chain, (2) ay is less than both d, and d,41, and (3)
If %> 1, then a, is less than half of the Lebesgue number of the covering
By, of M , and ay < £fz—1. For each n, let (1) Ey denote the collection
of all links of H, that intersect Ly, (2) Fns1 denote the (non-degenerate)
collection of all links of B, that intersect N, and (3) dn4a denote the
first link of Ey.i that does not lie in some link of Hy. If # > 1, then d,
lies in J, and intersects only the last link of By, which must be a link
of Fy.

For each n> 1, let I, denote the chain of which I’ is a link if and
only if for some link [ of F, I’ is the union of I ~J, and all the links of B,
that precede d, and lie in I. Let By’ denote (H{—F,) v Fi and if n > 1,
let E;/ denote the collection to which [ belongs if and only if either (1) 1 is
a link of Fy,w Fpyiy, or (2) lis a link of B7— Fyy, that does not precede d,.

For each n, let Cp= Ei v Eiy1, Dp= Foy, and e, = azs_;. The
SEqUENCes &, & ...y U1, O, ..y and Dy, Dy, ... have the properties required
by this theorem.

DerFINITIONS. With the aid of theorem 4, we now construct a func-
tion f such that limf is topologically equivalent to M. For each positive
integer 4, and positive integer j such that the chain G, v C,w ... v (;
has j links, let I; denote the jth link of it. For each 4, let n; (ni) denote
the positive integer such that Im (Ix}) is the first (last) link of D;. Then
Zl_z and the sequence Mgy M1,y gy Wy oo 18 Increasing. Let €' denote

v G,

Let a,, a,,..- denote an increasing sequence of numbers that con-
verges to 1 such that a, = 0. If I is a link of €', then a(l) denotes a;
where ¢ is the positive integer such that [ = I;. Let f denote the funetiori
from [0, 1] onto [0, 1] sueh that (1) f(0) = f(an—1) = 0 and f(1) =
(2) if ¢ is a positive integer and ¢ > n,, then (a) if w(l;) intersects only
one element, I; of ', then f(a:) = a;, and (b) if o (;) intersects two elementé
l; and ljp1, of €, then f(a:) = %(a;+ a511) (o(li) cannot intersect th.reé
elements of C’), and (3) f is linear on each of the intervals [0, apg—1] and
[aiy @s41], for each i = n,—1. Note that f is continuous and if,O ; z<l1
) <. B

Finally, for each ¢, let s; denote (1) the sect [0, a,) if ¢ = 1, and (2)
the segment (41, @) H 4> 1. Tf 1i5 a link of (", let s(I) = s, Vsrhere 7 is
the positive integer such that = I;. ’ }
" MThe following theorems establish that limf is topologically equivalent

Lmywa 3. If 4, j, and n are positive integers (ny—1 < <1 <j) and
there s @ number y such that a5 <Y < @1 and ar < f"Y) < @ig1, then f*
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is linear on [aj, aj+1], the interval f'Taj, aj41] is a subset of the interval
[ai, ait1], and

If™(a5+0) = el < ()" (as1—ai) -

LEmMA 4. If 4, §, and n are positive integers (n, <1 <j), and o™(ly)
is a subset of ly, then f"(5;) is a subset of s; (3; denotes the closure of s;).

DuriniTioN. Let H denote the set B v Hyw Hy v ..., and C denote
the collection Cp v C3 v ....

LEMMA 5. If 6> 0, 7= 0, and i > 0, and P is a point of H that lies
in w™(ly), then there is a positive integer E such that if e> B, and j is
a positive integer such that o™e(l;) contains P, then f\5;) is a subset of s;
and the length of the interval f°(3;) is less than e.

Proof. It is easy to show that ¢ > n, and that there is a positive
integer E such that if e > B, then (1) if 0™*¥(l;) contains P, then o"+¢(l;)
lies in w®(l;), from which wﬂ(l ) lies in I; ‘and, by lemma 4, f 3;7) Hes in sy
and (2) the number 3¢ is greater than each of the numbela (3)¥as—ai—y)
and (1)%(@;+1— as). Hence, with the aid of lemma 3, each of the numbers
If(aj+1)—f(a;)] and |F%(@;)—f(a;j-1)| is less than je. Since f° is linear on
both [aj_1,a;] and [aj, a;.], the length of the interval f%(5;) is less
than e.

DerFINITIONS. Let 7 denote the collection of all sequences ¢ = ¢y, s, ..-
such that for each positive integer 4, (1) there is a link [ (to be denoted
by Ia(v)) of (' such that v, = w"~'(l), and (2) Tyyq lies in vy, If 0 is
a sequence of V, let P, denote the point of H common to all the elements
of v. The sequence v will be said to determine Py.

THEOREM 5. Suppose v is a sequence in V and for each n, Ly deno-
tes Ln(v). Then if m is a positive infeger, each term of the sequence

$(In), 15 (Dns)), F2(8(Lna2)) ; - contains the closure of ihe next, and there is
only one number common to all the elements of this sequence.

This theorem follows easily from lemmas 4 and 5.

Drrrvrrioy. If o is a positive integer and » is a sequence in ¥ and
for each 4, L; denotes Li(v), t then let #,(v) denote the number common
to all the elements of the sequence §(Ln), fIs(Lnt1) T, Fls{Lns2)]s e

TrEorREM 6. If v is a sequence in V and m is a positive integer, then
2a() = flens2(0)]"

TamorEM 7. If the sequences v and ¢’ of V both determine the point P
of H, then zn(v) = ('), ), for each n.

Theorems 5, 6, and 7 ]ubhfv the following:

DrrFINvITION. Let T denote the tramsformation from H into Hmf
such that if P is a point of H, then (a) if P= B, Ty(P)=(1,1,..) and
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(b) if P # B, then Ty(P)= (1, %5, -, where for each n, @n = x4(v), for
any sequence v of V that determines P.

Leanva 6. If 1 ds an element of ¢ and P is a point of H in omY(l),
for some positive integer n, and Ty(P) = (@1, %3, ...), then @y belongs to s(l).

THEOREM 8. T, is reversibly continuous.

Proof. With the aid of lemma 6, it is easy to show that T is re-
versible. Since H is compact, we need show only that T is continuous.

Suppose P is a point of H, Ty(P) = (2, @, ...), and R is an open
set in limf that contains T,(P).

Suppose P # B, v is a sequence of ¥V that determines P, L; denotes
Liv) for each i, ¢ > 0 and = is a positive integer such that if Q (¢, g, --.)
is a point of limf and |gu—as| < &, then @ is in K. By lemma 5, there
is a positive integer ¢ such that, since P is in vppe = o® VYL, ), the
length of the interval fI5(Ln+e)] is less than e Also by lemma 6, if
(¢, G, ---) is the image under T of any point of the set H ~ a4, (which
is open with respect to H), then gui. lies in s(Ly+e), from which g, lies
in fs(Inte)], as does @g. S0 |gn—@a| <&, and @ les in R.

Suppose P = B, ¢ is a positive number such that if Q(g, ¢, ...)
is a point of limf and 1— ¢, < &, then @ is in R, and » is a positive integer
such that 1—a, < e. Let D denote the set

HA(B vl vy,

which is open with respect to H. If @{(gy, g, ...) is the image under T,
of any point of D, then either @ = B or @ is in I; for some 4 > n, so that
by lemma 6 ¢, is in s(l;). In any case, 1—¢ < ¢ and @ lies in R.

DeriNiTiON. For each #n, let T,,; denote the transformation from
o™ H) into limf such that if P belongs to w™H) and (zy, s, ...)
= Tafw™X(P)], then Tni(P)= (f(ml)jf(mz)y )

THEOREM 9. If the point P belongs to o™ (H) for some positive
integer n, then Tyu(P)= Tpi(P).

DEFINITION. Let T denote the transformation from M into limjf
such that if P belongs to M, then (1) if P= 4, T(P) = (0,0, ...), and
(2) if P # A, then T(P)= Tynui(P), for every positive integer n such
that o®(H) contains P.

Lemma 7. There is a positive integer m such that if P is a point of
M—o™H) and T(P) = (i, 2, ...), then z, = 0.

THEEOREM 10. T s reversibly continuous.

Proof. Clearly T is reversible, and sipce M is compact, it suffices
to show that T is continuons. So suppose P is a point of M and R is a region
in limf that contains T(P).
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If P = A, then with ‘the aid of lemma 7 it is not difficult to show
that there exists a positive integer # such that if D denotes the open
set M— w™(H), then T(D) lies in R.

If P # A, there is a positive integer n such that P lies in an open
subset @ of w(H). T(P)= Tps1(P), and there is an open subset Dot Q
containing P such that Th(D) lies in R. But Tpsa(D) = (D).

THEOREM 11. T'(J)= limf.

Proof. Since f(0)= 0 and f(1)=1, limf is irreducible from the
point (0, 0, ...) to the point (1,1,..). But T'(H) is a subcontinuum of
limf, and T(4)=(0,0,..) and T'(B)= (1,1, ..). Hence T(M) = limf.

Theorems 10 and 11 show that 3 and limf are topologically equiv-
alent.
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