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A transformation group of a space has been defined as a pair (¢, Y)
where @ is a topological group, Y is a space and where further to each
element ¢ € @ there is given a homeomorphism g(y) = f(g; y) of Y onto
itself satisfying

1) flg; ) = ¢g(y) is simultaneously continuous in G and ¥;

2) 1(9:(9)) = (9292 (¥)-

@ effectively acts on Y means that F(g, ¥) = ¥ implies g = e, the identity
element in @, where ¥(g,Y)= {y ¢ ¥| g(y) =y}, called a set of fixed
points of g e G F(G, ¥) = {y« ¥| g(y) =y, g « G} is a set of fixed points
under G. Gy = {g < @] g{y) =y Y} is called an isotropy group at y € Y.
If H is a closed subgroup of &, we denote by (H) the set of conjugate
subgroups {gHgY| g « G}. We call the sets of the forms (H) G-orbit types.
The subsets of ¥ which are unions of all orbits of a fixed type form
a partitioning of ¥ into invariant subsets. We call this partitioning of Y,
each subset labeled by the corresponding orbit type, the orbit structure
of X. ’

Tf Y is a compact Hansdorff space whose cohomology ring is isomorphic
to that of lens space and a group & acts effectively on Y, is it true that
the fixed point set F (G, Y) is a cohomology lens space if PG, Y) #0?
An affirmative answer is given it G = Z,, where Z, is a cyclic group of
0dd prime order [4]. That is F(@, Y) is a set of cohomology lens spaces
of lower dimensional. In general this type of questions are hard to answer,
but putting additional conditions on the space Y and the group ¢, and
the way the group G acts on Y we can get reasonable answer.

Here on, G will be either a circle groups or a toroid group T unless
otherwise stated explicitly.

Let ¥ be a (2n-+1)-dimensional compact, connected, locally pathwise
connected, and semi-locally 1-connected space sueh that II(Y)= Zy,
and

HY(Y; Zp) = H*(Lan1a(p); Zp) = Ala]l® Zplz]/(@"+)
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where Afa] is an exterior algebra on one generator a of degree 1,
Z[2]{(z»1) is a polynomial algebra on one generator of degree 2 angd
truncated in dimension 2n+2, and Lay4i(p) is (2n+1)-dimensional leng
space for odd prime p. Here cohomology group will mean Cech coho-
mology with compact supports.

Levwa 1. Let X be a compact Hausdorff space such that HXX; 7,)
= B¥S™; Zy). If Zyp acts freeby on X, then X|Zy is a cohomology (2n+1)-
lens space over Zy.

See Proposition 2.4 in [4]. o

LevMA 2. Let G act on Y so that F(G, Y) 5= @. Let X be the universal

covering space of ¥ with respect to a base point b e F(G, Y). Then the action
of @ can be lifted onto X.

Proof. Choose a path r from b ending at y. Let 2, ¢ ]I"l(b), where IT
denotes the projection represent trivial loops. ¢ € & acting on ¥ induces
a map on the path space based at b onto itself, that is, ¢(r) is
also a path at b ending at ¢(y). Take covering paths 7 and §(r) over r
and ¢(r) from z, and ending at # and «', where ITr =y and [Tz’ = g{y).
Let t e II)(Y) and a loop o belong to the homotopy class ¢ Then there
are uniquely determined paths 7 and §(r) at iz, covering 7 and ¢(r),
respectively, such that their end points are {x and tx’, where ITtx =y
and Iz’ = g(y).

Define g(x) = 2'. This is a well-defined map. Tt follows that g{t())
= t{g(#)) as soon as we show that loop o is homotopic to ¢(c). Let W(s)
be 2 path in @ joining ¢ to g, where ¢ is the identity element of & and
s€[0,1]. We defined a homotopy g; = W(s)g. Then go=¢ and g, = e.
During the homotopy, b is not moved. Hence the induced homomorphism
st I(Y)—~IL,(Y) is trivial. That is, ¢ and ¢(c) are homotopic. Thus
g(tr) = t(gr). Now we would like to show that g is in fact a homoemorphism
on X. The action of g is obviously one-to-one and onto. Let us take
g{z) € U, where z « X and U is open in X. Then since II, the projection
map of X onto Y, is an open map, we have that IT(T) is open in ¥ and
contains I7(g(x)). Since g is a homeomorphism on Y, there exists an open
set ¥V in ¥ such that ¢(V)C IT(U). Since IT is continuous, there exists
an open set W in X such that IT(W) C V. ¢(W) C U since IT and ¢ commute.
This shows that g is continuous and the same argnment shows that ¢!
is also continuous on X. This method of proof is somewhat similar to
that of [3].

TEEOREM 1. H¥F(S, ¥)) = H¥(Loy1(p)) over Zp where —1 <7 < n.

Proof. If F(S, ¥) is empty, there is nothing to préve. Asgume
F(S s ¥) # 0. Now we construct the universal covering space X over ¥
with respect to b, where b €F(8, ¥). We know that X is a cohomology
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sphere over Zp such that X/Z,= Y, where Z, is the deck transfor-
mation group II,(Y) (see Theorem 2.6 in [4] for this assertion).

By Lemma 2, there is a lifting of the action of § onto X such that
it commutes with the deck transformations. Let y « (S, ¥) and 2 « IT" '(y),
where IT is the projection map from X onto Y. Then if gz = a’, ge S,
H(gz) = g(II(x)) = g(y) =y since y ¢ F(8, ¥). Thus, gr = 2’ is obtained
from x by a deck transformation for each geS. Since § is connected
and the deck transformations are discrete, gr = » = 2. Thus II {P(8, T))
C F(S, X). On the other hand, if gr = « in X, then gz = IIr = gII(z).
Therefore, II(F(8,X))CF(S,Y). Thus, F(S,¥)=II(F(S,X) and
]T”(F(S, Y)) = F(8, X). That is, in order to find F(8, T), we need
only to find F(S8, X) and project it down on Y.

Let « e IT"Y(y). Then 8D @D @, since if g = x, then II(gx) = IT(x)
=y = g(IT(x)) = g(y). Thus if @, is a finite group, then @, is a finite
group for each # eI '(y). If G, = 8, then y e F(8,7T), and G, = 8§ for
xeIT '(y). A finite group has a finite number of finite subgroups, we
have a finite orbit structure on X .for §. By well-known theorem in [1]
and [2], we have F(S§,X) is a (2r+1)-dimensional cohemology sphere
over Zp for some r, where 2r+1 < 2n+1. Projecting F(S, X) back on Y,
we have the desired result, that is, II(F(S8,X))=F(S,¥), which is
a (2r-+1)-dimensional cohomology lens space over Z, by Lemma 1.

THEOREM 2. Let T" be a toroid group operation on Y such that
(T, Y) 0. Then

HYF(T", Y); Zp) = H*{Lorsa(p); Za) ,
Proof. Proof is very similar to that of Theorem 1 and we omit here.

Note. It will be interesting to try to eliminate some undesirable
conditions on Y.

where  r<n.
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