

The fixed point theorems of circle and toroid groups on lens spaces

by

Jingyal Pak (Detroit, Mich.)

A transformation group of a space has been defined as a pair (G, Y) where G is a topological group, Y is a space and where further to each element $g \in G$ there is given a homeomorphism g(y) = f(g; y) of Y onto itself satisfying

- 1) f(g; y) = g(y) is simultaneously continuous in G and y;
- 2) $g_1(g_2(y)) = (g_1g_2)(y)$.

G effectively acts on Y means that F(g, Y) = Y implies g = e, the identity element in G, where $F(g, Y) = \{y \in Y \mid g(y) = y\}$, called a set of fixed points of $g \in G$. $F(G, Y) = \{y \in Y \mid g(y) = y\}$, called a set of fixed points under G. $G_y = \{g \in G \mid g(y) = y \in Y\}$ is called an isotropy group at $g \in Y$. If $g \in Y$ is a closed subgroup of $g \in Y$, we denote by $g \in Y$ the set of conjugate subgroups $g \in Y$. We call the sets of the forms $g \in Y$. The subsets of $g \in Y$ which are unions of all orbits of a fixed type form a partitioning of $g \in Y$ into invariant subsets. We call this partitioning of $g \in Y$ each subset labeled by the corresponding orbit type, the orbit structure of $g \in Y$.

If Y is a compact Hausdorff space whose cohomology ring is isomorphic to that of lens space and a group G acts effectively on Y, is it true that the fixed point set F(G, Y) is a cohomology lens space if $F(G, Y) \neq O$? An affirmative answer is given if $G = Z_p$, where Z_p is a cyclic group of odd prime order [4]. That is F(G, Y) is a set of cohomology lens spaces of lower dimensional. In general this type of questions are hard to answer, but putting additional conditions on the space Y and the group G, and the way the group G acts on Y we can get reasonable answer.

Here on, G will be either a circle groups or a toroid group T^n unless otherwise stated explicitly.

Let Y be a (2n+1)-dimensional compact, connected, locally pathwise connected, and semi-locally 1-connected space such that $H_1(Y) = Z_p$, and

$$H^*(Y; Z_p) = H^*(L_{2n+1}(p); Z_p) = \Lambda[a] \otimes Z_p[x]/(x^{n+1}),$$

where $\Lambda[a]$ is an exterior algebra on one generator a of degree 1. $\mathbb{Z}_{p}[x]/(x^{n+1})$ is a polynomial algebra on one generator of degree 2 and truncated in dimension 2n+2, and $L_{2n+1}(p)$ is (2n+1)-dimensional lens space for odd prime p. Here cohomology group will mean Čech cohomology mology with compact supports.

LEMMA 1. Let X be a compact Hausdorff space such that $H^*(X; Z_n)$ $=H^*(S^{2n+1}; \mathbb{Z}_p)$. If \mathbb{Z}_p acts freely on X, then X/\mathbb{Z}_p is a cohomology (2n+1)lens space over Z_p .

See Proposition 2.4 in [4].

196

LEMMA 2. Let G act on Y so that $F(G, Y) \neq \emptyset$. Let X be the universal covering space of Y with respect to a base point $b \in F(G, Y)$. Then the action of G can be lifted onto X.

Proof. Choose a path r from b ending at y. Let $x_0 \in \Pi^{-1}(b)$, where Π denotes the projection represent trivial loops. $g \in G$ acting on Y induces a map on the path space based at b onto itself, that is, q(r) is also a path at b ending at g(y). Take covering paths \tilde{r} and $\tilde{g}(r)$ over r and g(r) from x_0 and ending at x and x', where $\Pi x = y$ and $\Pi x' = g(y)$. Let $t \in \Pi_1(Y)$ and a loop σ belong to the homotopy class t. Then there are uniquely determined paths \tilde{r} and $\tilde{g}(r)$ at tx_0 covering r and g(r), respectively, such that their end points are tx and tx', where $\Pi tx = y$ and $\Pi tx' = q(y)$.

Define g(x) = x'. This is a well-defined map. It follows that g(t(x))=t(g(x)) as soon as we show that loop σ is homotopic to $g(\sigma)$. Let W(s)be a path in G joining e to g^{-1} , where e is the identity element of G and $s \in [0, 1]$. We defined a homotopy $g_s = W(s)g$. Then $g_0 = g$ and $g_1 = e$. During the homotopy, b is not moved. Hence the induced homomorphism $g_{\bullet} \colon H_1(Y) \to H_1(Y)$ is trivial. That is, σ and $g(\sigma)$ are homotopic. Thus g(tx) = t(gx). Now we would like to show that g is in fact a homoemorphism on X. The action of g is obviously one-to-one and onto. Let us take $g(x) \in U$, where $x \in X$ and U is open in X. Then since Π , the projection map of X onto Y, is an open map, we have that $\Pi(U)$ is open in Y and contains $\Pi(g(x))$. Since g is a homeomorphism on Y, there exists an open set V in Y such that $g(V) \subset \Pi(U)$. Since H is continuous, there exists an open set W in X such that $\Pi(W) \subset V$. $g(W) \subset U$ since Π and g commute. This shows that g is continuous and the same argument shows that g^{-1} is also continuous on X. This method of proof is somewhat similar to that of $\lceil 3 \rceil$.

Theorem 1. $H^*(F(S, \Upsilon)) = H^*(L_{2r+1}(p))$ over Z_p where $-1 \leqslant r \leqslant n$. Proof. If F(S, Y) is empty, there is nothing to prove. Assume $F(S, Y) \neq \emptyset$. Now we construct the universal covering space X over Y with respect to b, where $b \in F(S, Y)$. We know that X is a cohomology

sphere over Z_p such that $X/Z_p = Y$, where Z_p is the deck transformation group $\Pi_1(Y)$ (see Theorem 2.6 in [4] for this assertion).

By Lemma 2, there is a lifting of the action of S onto X such that it commutes with the deck transformations. Let $y \in F(S, Y)$ and $x \in H^{-1}(y)$. where Π is the projection map from X onto Y. Then if gx = x', $g \in S$, $\Pi(qx) = g(\Pi(x)) = g(y) = y$ since $y \in F(S, Y)$. Thus, gx = x' is obtained from x by a deck transformation for each $q \in S$. Since S is connected and the deck transformations are discrete, gx = x = x'. Thus $\Pi^{-1}(F(S, Y))$ $\subset F(S,X)$. On the other hand, if gx=x in X, then $\Pi gx=\Pi x=g\Pi(x)$. Therefore, $\Pi(F(S,X)) \subset F(S,Y)$. Thus, $F(S,Y) = \Pi(F(S,X))$ and $H^{-1}(F(S, Y)) = F(S, X)$. That is, in order to find F(S, Y), we need only to find F(S, X) and project it down on Y.

Let $x \in \Pi^{-1}(y)$. Then $S \supset G_y \supset G_x$ since if gx = x, then $\Pi(gx) = \Pi(x)$ $= y = g(\Pi(x)) = g(y)$. Thus if G_y is a finite group, then G_x is a finite group for each $x \in \Pi^{-1}(y)$. If $G_y = S$, then $y \in F(S, Y)$, and $G_x = S$ for $x \in \Pi^{-1}(y)$. A finite group has a finite number of finite subgroups, we have a finite orbit structure on X-for S. By well-known theorem in [1] and [2], we have F(S,X) is a (2r+1)-dimensional cohomology sphere over Z_p for some r, where $2r+1 \leq 2n+1$. Projecting F(S,X) back on Y, we have the desired result, that is, $\Pi(F(S,X)) = F(S,Y)$, which is a (2r+1)-dimensional cohomology lens space over \mathbb{Z}_p by Lemma 1.

THEOREM 2. Let T^n be a toroid group operation on Y such that $F(T^n, Y) \neq \emptyset$. Then

$$H^*ig(F(T^n,\ Y);\ Z_pig)=H^*ig(L_{2r+1}(p);\ Z_pig)\ , \quad ext{where} \quad r\leqslant n\ .$$

Proof. Proof is very similar to that of Theorem 1 and we omit here.

Note. It will be interesting to try to eliminate some undesirable conditions on Y.

References

[1] A. Borel, Seminar on transformation groups, Annals Study 46, Princeton University Press, 1960.

[2] P. E. Conner and E. E. Floyd, Orbit spaces of circle groups of transformations, Ann. of Math. 67 (1958), pp. 90-98.

[3] P. E. Conner and D. Montgomery, Transformation groups on a K(II, 1), I, Michigan Math. J. 6 (1959), pp. 405-412.

[4] J. C. Su, Transformation groups on cohomology projective spaces, Trans. Amer. Math. Soc. 106 (1963), pp. 305-318.

WAYNE STATE UNIVERSITY

Reçu par la Rédaction le 23. 5. 1968