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Proof. Exactly as above, 2¢ collapses to cf » in the extension. In
this case we can only say that the union of a set of M of compatible con-
ditions of cardinality less than cf » is again a condition; so cardinals less
than or equal to cf » will be preserved.

Note. In this case, the set of conditions P will have cardinality
in I, #%; this may be greater than 2%, and we do not know whether this
also collapses to cf x.

COROLLARY 4. If the real cardinal of 2% of M is greater tham the real
cardinal of cf » of M, then there is no set generic over M for this notion of
forcing.

Proof. By Corollaries 2 and 3.

Tn the case of » singular, another notion of forcing is immediately
suggested, which turns out to be simpler to deal with than the notion
above: namely, to take as conditions, those partial functions in M from
into {0,1}, whose domain is bounded by an ordinal less than »x. (Clearly
this coincides with the previous notion for regular x.) Assuming @' i3
generic over M for this second notion, we can prove:

THEOREM 5. If « is an ordinal with cf x << a << 2%, then in the extension
M[G, a is similar to cf »; all cardinals outside this range are preserved.

Proof. The proof that for a cardinal a << » of M, 2° collapses to cf »
in M[G'], can be taken over from Theorem 1 without change (though
it i essentially simpler in this case); and the proof that cardinals less
than or equal to cf » are preserved is as in Corollary 3.

To see that cardinals greater than 2% are now preserved we simply
note that the set P’ of conditions in the new sense has cardinality 2% in M.

Added in proof: Since presenting this paper, the author has been informed,
that some of these results were known previously: in particular the case x ==§, was
known to Vopenka. Also Jech has pointed out that the question noted after Corol-
lary 3 can be answered negatively using results of Engelking and Karlowicz.
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Modified Vietoris theorems for homotopy
by
J. Dugundji* (Los Angeles; Calif.)

1. Introduction. Smale’s Vietoris theorem for homotopy [9] and
its various generalizations ([5], [8]) impose local connectivity conditions
on the fibres of the given map p: X —7Y; in this paper we obtain versions
that depend on the manner that the fibers of p are embedded in X rather
than on their actual structure.

In the first part (§ 2) we study a condition, called PC%, on the em-
bedding of a set A in a space X; in particular (2.4) snitable conditions
on A itgelf are sufficient (but not necessary) for 4 to be PC%. In § 3, 4,
upper semi-continuous decompositions of a space X into PC% subsets
having a paracompact decomposition space Y are characterized; under
certain agsumptions (4.4—4.7), for example, when Y is metrizable, then ¥
must have strong local properties. The Vietoris-type theorems for p: X —¥
are given in §5; the general result (5.1) can be improved considerably
if either ¥ is dominated by a polytope (5.2) or if ¥ has suitable local
properties. Some applications are given in § 6.

2. Proximally n-connected sets. In writing homotopy groups,
the base point will be omitted unless explicitly needed. Let A CB; for
7 > 1 we denote by mn(4|B) the image of wa(4) in 7,(B) under the homo-
morphism induced by the inclusion map; m(A|B) =0 will denote that
any two points of A can be joined by a path in B.

2.1. DeFINITION. Let X be 2 Hausdorff space. The set 4 CX is
called prowimally n-connecled in X (written: n-PCx) if for each neigh-
borhood U(4) of A in X there is a neighborhood V(4)CT of Ain X
such that m,(V|U) = 0. The set A is PCk if it is k-PCx for all 0 < k< n;
and A is PC% if it is PCk for every n > 0.

This notion reduces to that of LC™ ([1], [2], [6]) whenever A is a single
point, in that a, is PC% if and only if X is LC" at a,. No 0-PCx set can be
embedded into two digjoint open subsets so, in particular, a closed 0-PCx
subset of & normal X is necessarily conneeted. Other than this, even the

* This research was partially supported by an NSF grant.


GUEST


224 J. Dugundj.

strong requirement that A be PCT does not impose severe limitationg
(such as -connectedness, or local connectedness) on the structure of A
itself: in X = F°, bend the tube {(z,y,2) #2192 = (1%, 2 =1} to
form a sin(1/t)-shaped surface § that converges to the line segment
L={,0,0)] 3<z<4} as 2—>oo0; then the (closed) set A4 = § vl
is PC%.

The condition PC% is therefore a condition on the embedding of 4
in X, rather than on the structure of A itself; and if 4 is the intersection
of a descending sequence {4, ¢ =1, 2, ...} of compact PC% sets, then 4
itself is PCY since any U(A) contains almost all the 4. Moreover,

2.2. TeEoREM. If A is PC%, then

(U, A) ~ 7y(T) Dmg-1(4), 2

M
N

n

q
Sor every open UD A.

Proof. Given U, find W(A)C U such that m(W|U) =0 for 0<gq
< . Since the inclusion 4: 4 U factors through W, we find (4| U) = 0
for 0 < g < n so that the exact homotopy sequence of the pair (U, 4)
breaks up, for 1< g < m, into a succession of short exact sequences

=

0> U) 2y U, A) Smps(4) 0

(Bis t.he bo@dary homomorphism, j is that induced by inclusion). Similarly,
starting with W, we get the above short exact sequences with W
replacing U.

For any fixed 2 < ¢ < 7, we therefore have a commutative diagam
of short exact sequences

0 (W) S W, 4) Sy () >0
[ S

0>y U) »7o( U, A) ?nq_l(A) -0
7

where 1, 4 are induced by inclugion so that 2 is the zero homomorphism
hecalisle w{W|U)=0. Define s: %g-a(A) >m(U, 4) Dby setting s(w)
= ,uﬁ' (a) for each « € m,_4(4). Bach $(a) is & unique element of my (U, A):
for, if 98 = ?ﬁ’ = a, then (8—p") = j(y) for some Y € mg(W) and therefore
#B—f)=JA(y) = 0. Since s is clearly a homomorphism, and since
os = id, the bottom short exact sequence §plits, and the proof’ is complete.
; Under certain conditions on X, » the PO property of A follows from
a smple property of A; for example, it is easy to see (11, p. 87, [2] ) 239)
that if X is an ANR, and if AC X is either a closed AR 071‘ th’e ;'nter-
section of a descending sequence of compact AR, then ;1 is PO% TO
establish a somewhat more general such condition,, we need the .
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2.3. LemMa. Let X be a paracompact LC™ space, and let ACX be
o closed LCY subspace. Then given any mneighborhood U(A) there exists
a neighborhood V (A) C U with the property: for each 0 < ¢ < min[n, k+1],
every f: 8'=V is homotopic in U to a map of 8* into A.

Proof. Since X is LC", the open covering U = {U, X— 4} of X
has an open refinement {W} such that any two {W}-close () maps
{,g: P—~X of any polytope P, dim P < n, are U-homotopie (?). Let {W’'}
be an open star-refinement (%) of {W}; we can assume {W'} is nbd-finite.

Since A is LC"', it follows ([4], p. 179) that there is a nbd-finite open
covering {W’’} of X such that

(a) {A ~ W"} is a refinement of {4 ~ W'}

(b) Any partial realization (*) of any polytope K, dim K <%+1, in
{A ~ W} extends to a full realization (%) in {4 ~ W'}
Let {V'} be an open star-refinement of the open covering {W'~ W'}
of X, and define

V=U{F A~V #0}.

Then A CV; and also ¥V C U since each V' Csome W, and f A ~n V" =0
then 4 ~ W 5= @ so that WC U.

Now let f: 8%V be given, and subdivide 87 simplicially so fine
that f(Stp) Csome V' = TV'(p) ¢ {V'} for each closed vertex-star St.p.
For each vertex p, let g(p) be any element of A ~V'(p); then g is & partial
realization of S%in {4 ~ W"}: for if, 3= (P, ..., P¢) is any g¢-simplex
of ‘8% then

1@ €A £8tp0 € () V20

() If X is any space, and U any open covering, then two maps frg: B—X of
a space B into X are called U-close whenever f(r) and g(r) belong to a common U el
for each 7 ¢ R; f and g are U-homotopic if there is a homotopy H: f ~ g such that
H(r,I) csome U ¢U for each 7 ¢R. .

(*) A direct proof for paracompact spaces X is entirely analogous to _tha,t given
for metric spaces X in ([2], p. 234) it is also a special case of Theorem 3.2 in the next
section. N

() A refinement 2* = {U*} of an open covering U is called a sta.r~’reﬁnement
of Uit U {U* U*n U¥ # 0} csome U U for each TFelU .By Stone’s theorem
([4], p. 168) a space is paracompact if and only if each open covering has an open star-
refinement,. .

(*) Let ¥ be any space, 1l an open covering of ¥, and P a polytope (not necessarily
finite). A partial realization of P in 2 is a (continuous) map I Q->_Y.of sume'subl).olytope
@ ¢ P that contains the zero-skeleton P of P, such that f(@ n 9) is contm{led in some
Ul for each closed simplex & of P. The realization of P is called full if Q = P.ls

() The proof given in ([2], p. 234) is valid for paracompact spaces X; it is also
a special case of Theorem 3.1 in the next section.
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so, since {V’} is a star-refinement,

q q
flo) v LOJ g(pi) C LOJ V'(ps) C some W5 ~ W'

and therefore Lq) g(pi) CA ~Wy. Since ¢ <k-+1, we find ¢ extends
0 .
to a full realization of 8 in {4 ~ W'}. Any W' containing ¢(5) meets
a
the Wi above containing f(5) v | Jg(ps) so that W' o W§ (therefore
0

also f(5) v g(0)) lies in a single W e {W} and, since W ~ A 5 @, we have
WCU. Thus, f and ¢ are U-homotopic, and the homotopy is actually
over U. This completes the proof.

It now follows at once that

24. Let X be a paracompact LC" space and 4 C X a closed LO® subspace.
If mg(4d) =0 for some 0 < ¢ < min [n, k-+1], then A is q-PCyx.

As previously remarked, 2.4 remains true if 4 is the intersection of a de-

scending sequence {4;| i=1,2,..} of compact LC* sets such that

7g(44) = 0 for all large 4. In particular, if X is LC" and if 4 is an #-con-

nected closed LC™* subset (or the intersection of a descending sequence

of such compact sets) then 4 is PC%.

3. Decomposition spaces. In this section, we study upper
semi-continuous decompositions of a space X into PO% subsets or, equiv-
alently, eontinuous closed surjections p: X »Y where each fiber p—i(y)
is PCx. We will show that such maps are characterized by a partial realiza-
tion property (3.1) and also by a homotopy property (3.2); observe that
by taking p = id, these results give characterizations of LC" in para-
compact spaces analogous to those in [2], p. 234, [6], p. 265 for metric
spaces. .

If p: X»¥ and BC Y, the set p~3(B) C X is denoted by B.

3.1. THEOREM, Let X be arbitrary, Y paracompact, and p: X >¥
« continuous closed surjection. The Sollowing two statements are equivalent:

(a) Bach fiber of p is POY%.

(b) For each open covering {U} of Y there ewists an open refinement {V}

with the property: Any partial realization of amy polytope P,
dim P <n+1, in {V} extends 1o a Jull realization in {U}.

Proof. (a) = (b). Denote the given covering {U} by {U™"} and
for each y ¢ ¥, let U™*(y) be a definite set of the open covering {U"*'}
that contains y. Construct a succesison of open coverings {U°}, s = n,
f—1,..., 0, as follows: )

(n,1) Let W*"(§) be a neighborhood of 7= p~(y) such that

(W G)] T y) =0 .
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(n,2) Let G""(y) be a nbd of y such that
27 Co (6" ) C W)

(this exists since p is a closed map ([4] p. 86)).

(n,3) Let {U"} be an open star-refinement of

{0 y) A~ ")) (9,9) e T T},

We proceed recursively until s = 0: if {U"*"} ig defined, repeat the above
construction using { U"'“} and the s-PCr property of the fibers to get
W™ F), ¢ (y) and then {U°} as an open star-refinement of the open
covering

(U () ~ ) (y,9') e TXT}.

Bach {U°} is clearly a refinement of {U°*'}; we will show that the refine-
ment {U°} of {U"™'} has the property stated in the theorem.

Let g be a partial realization of P in {{°}; then ¢: @ v P°>X for
some subpolytope @ C P and g(¢ ~(Q v P%) Csome U° for each closed
simplex ¢ of P. We proceed by induction, assuming that for some 0 < » < =,
the map ¢ has been extended to a partial realization ¢": Q u P' =X
of P in {U'} ‘

Let o7*+! be any fixed (r+1)-simplex of P; all the wlerticeNS of o7

have images lying a single J°C I}, and ¢(o") Csome U= U'(5)) for
each r-face o" of o"+L Thus Uj ~ U'(") + @ for each 5" and, since {U"}
is a star-refinement of {U" " (y) ~ @"tY(y")}, this shows that |J {g"(c")| 5
a face of 5"+1} Cgome G '(y) C W''(7); therefore g7| 57+ is extendable
to a ¢ T U (y). Extending over each (r-+1)-simplex in this
manner extends the partial realization g™ to a partial realization g +:
QuUP™sX of P in {U™"}, completing the inductive step, and the
proof. :
(b) = (a). Given y e Y, and any open GDp~*(y), choose a nbg Uly)
such that §C §'C ¢ and then a nbd W(y) such that y e WC W C U.
Let U = {U, Y—W} and let {V} be an open refinement satisfying (b).
Choose any V ¢ {V} containing y; then ¥ C U.k I‘l‘or any 0 <k <n, each
fr 8 >V is a partial realization of the ball H 1 in ¥, h%ﬂcie extends to
a full realization F of H* in N and, necessarily, F(H""")C U. Thus,
p~y) is PO% and the proof is complete. .

The companion characterization by homotopy is

3.2. TusorEM. Let X be arbitrary, Y paracompact, and p:.X =Y
a continuous closed surjection. The following two statements are equwalem;

(a) Each fiber of p is PCk.
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(b) Each open covering {U} of Y has an open refinement {W} with
the property: For any Npolytope P, dim P < n, any two continuous
f,g: P—X that are {W}-dlose are {U}- homotopic, and a homotopy
‘can be chosen rel any subpolytope @ such that f1Q = ¢|Q.

Proof. (a) = (b). Let {U*} be a star-refinement of {U}, and let {W)}

be an open refinement of {U*} satisfying 8.1(b). If f, g: P - X are {W}-close
then {f7}(f) A ¢ (W) W e{W}}is an open covering of P. Subdivide P
simplicially so fine that each closed simplex lies in some set of this covering,
and take PxI in the standard simplicial subdivision that introduces
no new vertices other than those on P x 0 and P X 1. Let L = (Px0) u
v(@xI)wPx1 and define H: L—+X by H|IPX0=f, HPxl1= g,
Hig,t)=flg) =glqg) for (q,t) e@x 1. Then H is a partial realization
of Px I in {W}: for, any (n+1)-simplex & of Px I is of the form 5
= (PeX 0, ..., DX 0, pi X1, ..., Pn X 1), where T= (Doy <vs Pty oovy D) Nils
n-simplex of P so, because f(r) v ¢(r) Csome W we find H(o ~ L)C .
Thus, H extends to a full realization of Px I in {U*}, and this is easily
seen to be a {T}-homotopy of f to g¢.
(b) = (a). As in 3.1: given y and an open U Dy, choose an open W such
that y « WC WC U, and let {V'} be a refinement of the open covering
{U, T~W} satisfying (b). If Ve {V} containg 4, then any f: §* -V
O<Ek<n) is {7}—close to the constant map of 8% to a point of p—1(y)
so is null homotopic over U.

4. Characterization by function spaces. It is convenient to
express the results 3.1, 3.2 in terms of function spaces.

The compact-open topology in T¥ will be called the ¢-topology.
For each fe Y™ and each open covering U of ¥, let

(f,)={ge Y% g is U-close to f)

clearly (f, B) C (f, U) whenever B refines Y. We shall need the following
useful (%)

4.1. LenMA. Let X be compact. Then the family of all sets {(f, W)}
forms a basis for the c-topology in Y=.

Proof. Let (4,V)= {fe ¥ f(A)CV}; the ¢-topology in ¥ nas
the family {(4,V)] A compact, V open} as a sub-bagis.

(1) Bach (f, U) is open in the ¢-topology. Let ge(f, ). For each
zveX there is & U(x) e W such that f(®) v g(») e U(w) so we can
find a nbd V(%) of & such that V(z) is compact and TV (=) w g(7(2))

(®) If ¥ is regular, X arbitrary, the topology in. ¥¥ obtained by using the family
{(f, W)} as sub-basis is easily seen to be admissible ([4], p. 274) so that it contains the
¢-topology.
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C U(2). Let {V(m), ..., V{aa)} e a finite subcovering for X; then ge @
- (7 (), Ulws). Moreover, G C (f, W): for, let h e G; given z ¢ X, we
1
have x e ¥ (2;) for some 4, 50 h(z) e U{x;) and also flz) ef(T'(;v,)) C U(x)
thus, be(f, ™). .
. n
(i) The {(f, W)} form a basis. Let fe & = () (4, Wy), where G
1

is a basic open set. For each r =1, ..., %, let W, be the open covering
{(Wo, T—f(4)} of Y. Let U={Un..nT, U,e®,,1<r<nl;
then U is an open covering of ¥, and we have fe(f, U)C G: for, let
ge(f, W) and fix any A,; for each a ¢ A; there must be a set of U con-
taining ¢(a) and f(a); but since f(a) ¢ ¥ —f(4;) such a set must be from
among those having W; in the 4th place, and all such sets are contained
in Wi. Thus, ¢(4:) C W; for each i=1,...,n so (f, U)C & This completes
the proof (7). )

Using the ¢-topology in the function spaces, recall that a continuous
p: XY induces a continuous pu: X°—-Y" by setting pu(f)=p of,
and that whenever P is (locally) compact, two maps f,g: P—-X are
homotopic if and only if they belong to the same path-component of X~ ([41,
p. 320). With these preliminaries, a function-space formulation of 3.2 is

;

4.2. TuROREM. Let X be arbitrary, Y paracompact, and p: X -Y¥
a continuous closed surjection. The following two statements are equivalent:
(a) Bach fiber of p is PC%.
(b) Let P be a finite polytope, dim P < n, and let f « ¥¥. Given any
nbd (f, W) of f, there ewists a refinement B* of W such that
PESf, B*) is path-conmected in pg'(f, U).
Proof. (a) = (b). Let U* be a star-refinement of U, let B satisfy 3.2
relative to U*, and let B* be a star-refinement of B. If py, pg" « (f, B*),
then ¢, ¢’ are B-close consequently there is a W*-homotopy H: g=~g¢';

‘since pH (2, I) C some U%, f(z) v pH{z, 0) C Uf and f(z) v pH(x,1) C U%,

it follows that pH (x,1) v f(z) Csome Uel, consequently pz(f, B*
is path-connected in p;( f, N). (b) = (a) is trivial.

For any @ C P and any ¢: Q- X, let XP(Q, q) C X% e the (possibly
empty) subspace of all extensions of g over P; if =@, this set is
simply X*. Theorem 3.1 implies a weak lifting property:

4.3, Let X be arbitrary, ¥ paracompact, and p: X ~Y a continuous closed

. surjection having each fiber PC%. Then for any finite polytope P,

dim P < n+41, any subpolytope Q CP, and any g¢: §>X, the sei

- pyLXN(Q, 9)] ds dense in YT(Q, pg)-

(") The proof shows slightly more: the family {(f, )| fe higs Ua finite open
covering of ¥} forms a basis for the c-topology in ¥* whenever X is compact.
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Proof. Let G: P—Y be any extension of pg; we are to show each
px(6G, M) contains an extension of g. Let U* be a star-refinement of U,
and let B satisfy 3.1 relative to U*. Subdivide P so fine that G(5) is
contained in some V ¢ B for each closed simplex o of P. Define ¢: @ u
VP >X by | Q=g and ¢°(v) e p~*G(v) for each ve P°—@. Then ¢
is a partial realization of P in Ef}, 80 it extends to a full realization & of P
in I*, and p@ e (G, N).

By imposing an additional condition on Y, these two results imme-
diately give a necessary condition for the existence of surjections such
as we are considering:

4.4, TumoreM. Let X be arbitrary, Y paracompact, and p: X T
o continuous closed surjection with PCx fibers. If the space v s first
countable for some 0 <k < n, then 7% ds LC and therefore Y 4s k-LC
(and first countable). ’

Proof. This will follow from the simple

4.5. LeMmA, Let Z be a first countable space and let D C Z be dense.
Assume that for each 2 ¢ Z and each nbd U(z) there is & nbd V (2) such that
V ~n D is path-connected in U. Then Z is LCS.

Proof of Lemma. We show that any two points of ¥V can be joined
by a path in U; for this, it suffices to show that each » € ¥ can be joined
to a point of ¥V~ D by a path in U.

Let U,2 U,D ... be a countable basis at v. Proceeding inductively,
define sets V,DV,D ... with v ¢ V; C U; as follows: find Vi) CUAN T,
such that V; ~ D is path connected in U ~ U; assuming Vigowy Voo
defined, find Vu(») C Vg ~ Uyp such that V.~ D is path-connected in
Vn-1~ Un. Choose d; ¢V~ D; according to the construction, there is

foreach =1, 2, ... a path o; from d; to d;.; such that ai(I) C U;. Define
a: I->Z by

a(0)=wv, t=0,

1 1
a(t) = al(n+1)(1—nt)], ArIS<tisy =12,
This is clearly continuous at ¢ = 0, because of the behaviour of the i,
and provides a path from o to d, lying in 7.

Proof of Theorem. According to 4.3, the set D — p#(XSk) is
dense in Z = Y% and aceording to 4.2, the remaining requirement of the
Lemma is satisfied, because P4 is continuous. Thus, 7% i LC% and this
implies, as is well-known, that ¥ is k-LO: given y « ¥ and any nbd U (y),
form the open covering W = {U, Y—y} of Y, and let ¢: S*—y be the

eonstant map; since ¥ ig LC", there is a refinement B of M such that

(¢, B) 15 path-connected in (¢, U); so0, it Ve B is a set containing y, any
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f: §*—~V is nullhomotopic in T. Finally,kY must be first countable, since
it ecan be embedded as a retract of 7
Since for compact X, the ¢-topology in ¥~ is metrizable whenever T

is metrizable, 4.4 gives

4.6. CorOLLARY. Let X be arbitrary and p: X —Y a continuous closed
surjection with PCx fibers. If ¥ ds metrizable, then Y must be LC"

Tn the special case that the fibers are PC% because of 2.4, this result
can be improved:

4.7. Let X be paracompact and LC"™, let ¥ be metrizable, and let p: X T
be a continuous closed surjection with n-connected LC" fibers. Then T
is LO™,

Proof. Because the fibers are PC%, it follows from 4.6 that ¥ is LC"
we now show Y*" is LC® This will follow from 4.5 by showing that
for each fe I’SM, each nbd(f,U) contains a nbd(f, B) such that
ps(X¥™) A (f, B) is path-connected in (f, ). _ N

For each y ¢ Y, let UyeW be a set of the covering containing y.
It follows easily from 2.3 that for each U, there is & nbd V,C U, of y
such that any h: 8""'—¥, is homotopic in ¥, is an A': 8" >p7'(y).
Let 8= {Vy| y « ¥} and B* be a star-refinement. .

Let @ denote the n-skeleton of §™*' in some simplicial subdivision.
Since the fibers are PC%, there is, by 4.2, a nbd (fi@,2) such that
P2 (f1Q, W) is path-conneeted in px'(f1Q, B*).

Nowlet ¢, ¢': 8"~ X be such that psg, gy’ < (f,W); then g1Q~g'1Q
by a B*-homotopy H, so H[(¢""* xI)] lies in some Vy ¢ B for each closed
(n-+1)-simplex o""* of §"*. Since the map H|(o""*xI)" of an (n+1)-
sphere into ﬁ, is deformable over U, into the ﬁbe_r p~Yy), the map
puH|(on+1 % I)* is null homotopic over Uy e U; extending p4H over eac%l
o"*1x I, in this manner, yields the required homotopy of puy to Py,
and completes the proof.

5. Homotopy behaviour of p. In this section, we consider
the behaviour of p on the homotopy groups. If p: XY and BCY,
the map p|p~(B): p~YB)~B is denoted by pZ.

5.1. TuroreM. Let X be arbitrary, Y paracompact, and p: XY
a continuwons closed surjection with PO% ﬁber&. Then for e.ach open (5) set
U C Y, the induced homomorphism p¥: mo U) —mg(U) is monic f_m" 0< g<mn
and the induced homomorphism p,: m(X, U)—>mf¥, U) is monic for
I<g<n.

(*) Recall that an open subset of a paracompact space may not itself be para-
compact.
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Proof. We prove the latter assertion, that for the former being
similar. Let « € 7(X, U, @) be represented by g: (V*, V7, n) (X, {f, )
and assume p,(«) = 0, so that there is a homotopy H: V'x I =Y guch
that H[V?x 0 = pg, H(V'x1)C U and H (v, t) = H(v, 0) for (v, 1) e %+ |
Define §: F'x0 0V XI=X by §(0,0)=F(0,1)= g(v); then pj
= H|V'x 0 v V'xI and, given the open covering U = {U, Y—H(V“xi)}
there is by 3.1 an extension ¢: V*xI—-X of § such that p@ « (H , 1[)1
thus, G(V?x1)C U and therefore « = 0. '

In particular, p,: #(X)->s(Y) is monic for 0 < i < n. However
if ¥ is dominated by a polytope (e.g., belongs to Milnor’s [7] cn.tegorvms;
then this can be improved: )

5.2. THROREM. Let X be arbitrary, Y paracompact, and p: X =¥
a continuous closed surjection with PC% fibers. If X is dominated by a poly-
tope, then p,: 7(X)—>my(Y) is an isomorphism for 0<g<n, and ep}’c
for g=n+1.

Proof. We need show only that p, is epic. Choose base points r, e X
and yy = p(%,) for the homotopy groups. Let P be a dominatihg' polytope,
and »: Y-P, ¢: P-Y such that gox~id. Let o ¢ (Y, o) be represented
by f: (8%, 80) (¥, 9,) and choose the covering U = {»~(Stp)| p e P’}
for Y. According to 4.3, there is, provided g<m+1, an h: (87, s,)
(X, %) such that ph e (f, ™). Since »f and xph are {Stp}-close, they
are ([3], p. 215) also {Stp}-homotopic, and consequently homotopic rels,,“
Thus gxf and gxph are homotopic and, since gx =~ 1, we find f homotopic
to ph. This completes the proof.

To have the p¥ isomorphisms for every open UC ¥, rather than
for just U= ¥, is a strong requirement, for we show

5.3. TaroREM. Let X be arbitrary, ¥ paracompact, and p: X ¥

a continuous closed surjection with PO fibers. The following two statements
are equivalent:

(®) ¥ is LO",
(b) p¥: n:g(ﬁ)mnq(U) Jor all open UCY and all 0 <g<n.

. Prooi:f. (a) ::(b). Let as-nq(U,uo) be represented by f: (87, so)(T, 1,).
Since Y is ,LC’ then using the open covering U = {U, ¥ —f(8")
of ¥, there is, by 3.2, an open refinement B such that B-close maps
gSq,Ifgf(ILlT,uo) are U-homotopics rels. Since (4.3) p#(XSq) is dense
in » there is a g: (8% 8) (U, m,) with 3 .
is homotopic to f over U’. T #4241, B, consequently 24

(b) = (a). Let y, e Y, and let F = p-1 i
: ‘ = P~'(¥,). Because ¥ is PC%, given
any nbd U(y,) there is a nbd V(y) C U such that nq(f’l ﬁ):(? for

icm®
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0 < g<n. Letting ¢: V- U and j: VU be the inclusion maps, we have
the commutative diagram

For 0 < ¢ <, i, I8 the zero homomorphism so, since p¥, p¥ are isomor-
phisms, j, is the zero homomorphism. Thus (%), ¥ is LC™ at y,.
In the cagse that ¥ is metrizable, then (5.3 and 4.6) we have

5.4. TuroreM. Let X be arbitrary, Y metrizable, ond p: X Y a con-
tinuous closed surjection with PC% fibers. Then Y 4s LC™ and therefore

~

p¥: my(U) ~ m(U) for every open set UCY and 0< g<n.

This remains true if Y is paracompact and YS‘, 0<i<n, are first
countable.

6. Applications. We give here only some immediate applications
of the main results.

The following generalization of the result in [8], [9], has also been
obtained in [5].

6.1. TaEorEM. Let X be a paracompact LO" space, and p: XY
o continuous closed surjection in which each fiber is LC™ ™" and (n—1)-
conmected. If Y is metrizable, then ¥ is LC™ and p,: adX)->nlY) is an
isomorphism for 0 < i< n—1 and epic for ¢ =n.

Proof. That ¥ is LO™ follows from 4.7. Since the fibers are PCY "
then because of 5.3 we need prove only that p,: 7a(X)->m.(Y) is epie.
According to 4.7, the space 75" is LC® so that the path components of 5
are open sets; the dense set p#(X‘S" ) therefore meets each path-component,
30 P, is epic.

If X is a metric space, and p: X —~7¥ is a continuous closed surjection,
then by Michael’s theorem ([4], p. 165) the space Y is paracompact and,
by the Stone—Hanai theorem ([4], p. 235) ¥ is metrizable whenever all
the fibers are compact. Thus, if X is an ANR and p: X 7 is a continuous
closed surjection with AR fibers, then it follows from 5.2, 5.4 that

(a) If Y is {dominated by a polytope, then p,: mu(X) ~ m(Y) for
all 4> 0 so that p is in fact a homotopy equivalence,

(*) Observe that, by using the 5-Lemma, it follows immediately from 5.3(b)
for 1 < ¢ <n and all pairs ¥V c U of open sets

~ o~

that also pu: w (U, V) ~ m(U, V)
in 7,
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and
(b) If the fibers are compact, then Y is LC™ and p is a weak homo-

topy equivalence; moreover, if dimY < oo, then ¥ is an ANR and p
a homotopy equivalence. These results contain those in ([1], p. 127).
We also obtain (compare [10], p. 487)

6.2. Let X be paracompact and A C X a closed POk subset. Let p: X->X|A
be the projection. If X|A is dominated by a polytope, then p,: myX)
>m(X[A) is an dsomorphism for 0 < i < n, and is epic for
i=n+1.

Proof. Since p is a continuous closed surjection, Michael’s theorem
shows X/A is paracompact so 5.2 is applicable.
Because of 2.2, it follows that under the hypotheses of 6.2, we have

:‘LZ(X’ A) S "Li(X/A) @ni_l(A) for 2 << i< m.

We also determine some conditions under which each fiber in a Serre
fibration is PCEx.

6.3. Let (E,p,B) be a Serre fibration, where E is compact and B is

" dominated by a polytope. If each fiber F is PO%, then each fiber is
n-connected.

Proof. Since m(F|H) =0 for 0 <i<n (cf. 2.2) the homotopy
sequence of (E,p, B) decomposes into short exact sequences

0 —>mi(E) 3;m(B) >mia(F) >0 0gi<<n

and a long exact sequence ... —my1(H) p»;nnH(B) ~>7a(F) 0. Because E
is compact, p is a closed map so, by 5.2, p, is an isomorphism for
0 <4< n and epic for ¢ = n-1; from the exact sequences- we find
mi(F) =0 for 0 <i << n.

It is trivial to veﬁfy that, in a Serre fibration (E, p, B), if B is LC"
and if each fiber F' iy n-connected, then each fiber F is PCj. Thus,

6.4, Let E be compact, B a polytope and (E,p, B) a Serre fibration. Then
every fiber is PCE if and only if every fiber is m-commected.
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