

Proof. Exactly as above, 2^{\varkappa} collapses to cf \varkappa in the extension. In this case we can only say that the union of a set of M of compatible conditions of cardinality less than cf \varkappa is again a condition; so cardinals less than or equal to cf \varkappa will be preserved.

Note. In this case, the set of conditions P will have cardinality in M, \varkappa^{z} ; this may be greater than 2^{z} , and we do not know whether this also collapses to cf \varkappa .

COROLLARY 4. If the real cardinal of 2^{z} of M is greater than the real cardinal of $cf \times of M$, then there is no set generic over M for this notion of forcing.

Proof. By Corollaries 2 and 3.

In the case of \varkappa singular, another notion of forcing is immediately suggested, which turns out to be simpler to deal with than the notion above: namely, to take as conditions, those partial functions in M from \varkappa into $\{0,1\}$, whose domain is bounded by an ordinal less than \varkappa . (Clearly this coincides with the previous notion for regular \varkappa .) Assuming G' is generic over M for this second notion, we can prove:

THEOREM 5. If a is an ordinal with cf $\varkappa < a \le 2^{\aleph}$, then in the extension M[G'], a is similar to cf \varkappa ; all cardinals outside this range are preserved.

Proof. The proof that for a cardinal $a < \varkappa$ of M, 2^{α} collapses to cf \varkappa in M[G'], can be taken over from Theorem 1 without change (though it is essentially simpler in this case); and the proof that cardinals less than or equal to cf \varkappa are preserved is as in Corollary 3.

To see that cardinals greater than 2^z are now preserved we simply note that the set P' of conditions in the new sense has cardinality 2^z in M.

Added in proof: Since presenting this paper, the author has been informed, that some of these results were known previously: in particular the case $\varkappa = \aleph_1$ was known to Vopenka. Also Jech has pointed out that the question noted after Corollary 3 can be answered negatively using results of Engelking and Karlowicz.

References

[1] J. Derrick and F. R. Drake, Independence of the Axiom of Choice from variants of the Generalized Continuum Hypothesis, in: Sets, Models and Recursion Theory, J. N. Crossley (Ed.), North-Holland 1967 (pp. 75-84).

[2] P. J. Cohen, Set Theory and the Continuum Hypothesis, Benjamin, N.Y., 1966.

Reçu par la Rédaction le 5. 8. 1968

Modified Vietoris theorems for homotopy

b;

J. Dugundji * (Los Angeles; Calif.)

1. Introduction. Smale's Vietoris theorem for homotopy [9] and its various generalizations ([5], [8]) impose local connectivity conditions on the fibres of the given map $p\colon X\to Y$; in this paper we obtain versions that depend on the manner that the fibers of p are embedded in X rather than on their actual structure.

In the first part (§ 2) we study a condition, called PC_X^n , on the embedding of a set A in a space X; in particular (2.4) suitable conditions on A itself are sufficient (but not necessary) for A to be PC_X^n . In § 3, 4, upper semi-continuous decompositions of a space X into PC_X^n subsets having a paracompact decomposition space Y are characterized; under certain assumptions (4.4–4.7), for example, when Y is metrizable, then Y must have strong local properties. The Vietoris-type theorems for $p\colon X\to Y$ are given in § 5; the general result (5.1) can be improved considerably if either Y is dominated by a polytope (5.2) or if Y has suitable local properties. Some applications are given in § 6.

- **2. Proximally** n-connected sets. In writing homotopy groups, the base point will be omitted unless explicitly needed. Let $A \subset B$; for $n \ge 1$ we denote by $\pi_n(A|B)$ the image of $\pi_n(A)$ in $\pi_n(B)$ under the homomorphism induced by the inclusion map; $\pi_0(A|B) = 0$ will denote that any two points of A can be joined by a path in B.
- 2.1. DEFINITION. Let X be a Hausdorff space. The set $A \subseteq X$ is called proximally n-connected in X (written: n-PC $_X$) if for each neighborhood U(A) of A in X there is a neighborhood $V(A) \subseteq U$ of A in X such that $\pi_n(V|U) = 0$. The set A is PC $_X^n$ if it is k-PC $_X$ for all $0 \le k \le n$; and A is PC $_X^n$ if it is PC $_X^n$ for every $n \ge 0$.

This notion reduces to that of LC^n ([1], [2], [6]) whenever A is a single point, in that a_0 is PC_X^n if and only if X is LC^n at a_0 . No 0-PC $_X$ set can be embedded into two disjoint open subsets so, in particular, a closed 0-PC $_X$ subset of a normal X is necessarily connected. Other than this, even the

^{*} This research was partially supported by an NSF grant.

strong requirement that A be $\operatorname{PC}_X^\infty$ does not impose severe limitations (such as n-connectedness, or local connectedness) on the structure of A itself: in $X=E^3$, bend the tube $\{(x,y,z)|\ x^2+y^2=(1/z)^4, z\geqslant 1\}$ to form a $\sin(1/t)$ -shaped surface S that converges to the line segment $L=\{(x,0,0)|\ 3\leqslant x\leqslant 4\}$ as $z\to\infty$; then the (closed) set $A=S\cup L$ is $\operatorname{PC}_X^\infty$.

The condition PC_X^n is therefore a condition on the embedding of A in X, rather than on the structure of A itself; and if A is the intersection of a descending sequence $\{A_i \mid i=1,2,\ldots\}$ of compact PC_X^n sets, then A itself is PC_X^n since any U(A) contains almost all the A_i . Moreover,

2.2. THEOREM. If A is PC_X^n , then

$$\pi_q(U, A) pprox \pi_q(U) \oplus \pi_{q-1}(A)$$
, $2 \leqslant q \leqslant n$

for every open $U \supset A$.

Proof. Given U, find $W(A) \subset U$ such that $\pi_q(W|U) = 0$ for $0 \leqslant q \leqslant n$. Since the inclusion $i\colon A \to U$ factors through W, we find $\pi_q(A|U) = 0$ for $0 \leqslant q \leqslant n$ so that the exact homotopy sequence of the pair (U,A) breaks up, for $1 \leqslant q \leqslant n$, into a succession of short exact sequences

$$0 \rightarrow \pi_q(U) \stackrel{j}{\rightarrow} \pi_q(U, A) \stackrel{\partial}{\rightarrow} \pi_{q-1}(A) \rightarrow 0$$

 $(\partial$ is the boundary homomorphism, j is that induced by inclusion). Similarly, starting with W, we get the above short exact sequences with W replacing U.

For any fixed $2\leqslant q\leqslant n,$ we therefore have a commutative diagam of short exact sequences

$$0 \rightarrow \pi_{q}(W) \xrightarrow{j} \pi_{q}(W, A) \xrightarrow{g} \pi_{q-1}(A) \rightarrow 0$$

$$\downarrow^{\lambda} \qquad \downarrow^{\mu} \qquad \downarrow^{\text{id}}$$

$$0 \rightarrow \pi_{q}(U) \xrightarrow{g} \pi_{q}(U, A) \xrightarrow{g} \pi_{q-1}(A) \rightarrow 0$$

where λ , μ are induced by inclusion so that λ is the zero homomorphism because $\pi_q(W|U) = 0$. Define $s \colon \pi_{q-1}(A) \to \pi_q(U,A)$ by setting $s(a) = \mu \hat{\sigma}^{-1}(a)$ for each $a \in \pi_{q-1}(A)$. Each s(a) is a unique element of $\pi_q(U,A)$: for, if $\partial \beta = \partial \beta' = a$, then $(\beta - \beta') = j(\gamma)$ for some $\gamma \in \pi_q(W)$ and therefore $\mu(\beta - \beta') = \hat{j}\lambda(\gamma) = 0$. Since s is clearly a homomorphism, and since $\hat{\delta}s = \mathrm{id}$, the bottom short exact sequence splits, and the proof is complete.

Under certain conditions on X, the PC_X^n property of A follows from a simple property of A; for example, it is easy to see ([1], p. 87, [2], p. 239) that if X is an ANR, and if $A \subset X$ is either a closed AR, or the intersection of a descending sequence of compact AR, then A is $\operatorname{PC}_X^\infty$. To establish a somewhat more general such condition, we need the

Proof. Since X is LC^n , the open covering $\mathfrak{U} = \{U, X - A\}$ of X has an open refinement $\{W\}$ such that any two $\{W\}$ -close $(^1)$ maps $f, g \colon P \to X$ of any polytope P, $\dim P \leq n$, are \mathfrak{U} -homotopic $(^2)$. Let $\{W'\}$ be an open star-refinement $(^3)$ of $\{W\}$; we can assume $\{W'\}$ is nbd-finite.

Since A is LC^k , it follows ([4], p. 179) that there is a nbd-finite open covering $\{W''\}$ of X such that

(a) $\{A \cap W''\}$ is a refinement of $\{A \cap W'\}$.

of X, and define

(b) Any partial realization (4) of any polytope K, dim $K \le k+1$, in $\{A \cap W''\}$ extends to a full realization (5) in $\{A \cap W''\}$. Let $\{V'\}$ be an open star-refinement of the open covering $\{W' \cap W''\}$

$$V = \bigcup \{V' | A \cap V' \neq \emptyset\}.$$

Then $A \subset V$; and also $V \subset U$ since each $V' \subset \text{some } W$, and if $A \cap V' \neq \Theta$ then $A \cap W \neq \Theta$ so that $W \subset U$.

Now let $f\colon S^a\to V$ be given, and subdivide S^a simplicially so fine that $f(\overline{\operatorname{St} p})\subset\operatorname{some}\ V'=V'(p)$ ϵ $\{V'\}$ for each closed vertex-star $\overline{\operatorname{St} p}$. For each vertex p, let g(p) be any element of $A\cap V'(p)$; then g is a partial realization of S^a in $\{A\cap W''\}$: for if, $\overline{\sigma}=(p_0,\dots,p_q)$ is any q-simplex of S^a , then

$$f(\overline{\sigma}) \subset \bigcap_{0}^{q} f(\operatorname{St} p_i) \subset \bigcap_{0}^{q} V'(p_i)$$

(2) A direct proof for paracompact spaces X is entirely analogous to that given for metric spaces X in ([2], p. 234) it is also a special case of Theorem 3.2 in the next section.

(*) A refinement $\mathfrak{U}^* = \{U^*\}$ of an open covering \mathfrak{U} is called a star-refinement of \mathfrak{U} if $\bigcup \{U^* \mid U^* \cap U_0^* \neq \emptyset\} \subset \text{some } U \in \mathfrak{U}$ for each $U_0^* \in \mathfrak{U}^*$. By Stone's theorem ([4], p. 168) a space is paracompact if and only if each open covering has an open star-refinement.

(4) Let Y be any space, il an open covering of Y, and P a polytope (not necessarily finite). A partial realization of P in il is a (continuous) map $f\colon Q\to Y$ of some subpolytope $Q\subset P$ that contains the zero-skeleton P^0 of P, such that $f(Q\cap \overline{\sigma})$ is contained in some $U\in \mathbb{N}$ for each closed simplex $\overline{\sigma}$ of P. The realization of P is called full if Q=P.

(*) The proof given in ([2], p. 234) is valid for paracompact spaces X; it is also a special case of Theorem 3.1 in the next section.

⁽¹⁾ If X is any space, and $\mathfrak U$ any open covering, then two maps $f,g\colon R\to X$ of a space R into X are called $\mathfrak U$ -close whenever f(r) and g(r) belong to a common $U\in\mathfrak U$ for each $r\in R$; f and g are $\mathfrak U$ -homotopic if there is a homotopy $H\colon f\simeq g$ such that $H(r,I)\subset \mathrm{some}\ U\in\mathfrak U$ for each $r\in R$.

so, since $\{V'\}$ is a star-refinement,

$$f(\overline{\sigma}) \cup \bigcup_{i=0}^{q} g(p_i) \subset \bigcup_{i=0}^{q} V'(p_i) \subset \text{some } W'_0 \cap W''_0$$

and therefore $\bigcup_{0}^{q} g(p_{i}) \subset A \cap W_{0}^{\prime\prime}$. Since $q \leq k+1$, we find g extends to a full realization of S^{q} in $\{A \cap W'\}$. Any W' containing $g(\overline{\sigma})$ meets the W_{0}^{\prime} above containing $f(\overline{\sigma}) \cup \bigcup_{0}^{q} g(p_{i})$ so that $W' \cup W_{0}^{\prime}$ (therefore also $f(\overline{\sigma}) \cup g(\overline{\sigma})$) lies in a single $W \in \{W\}$ and, since $W \cap A \neq \emptyset$, we have $W \subset U$. Thus, f and g are \mathfrak{U} -homotopic, and the homotopy is actually over U. This completes the proof.

It now follows at once that

2.4. Let X be a paracompact LC^n space and $A \subset X$ a closed LC^k subspace. If $\pi_q(A) = 0$ for some $0 \le q \le \min[n, k+1]$, then A is $q \cdot PC_X$. As previously remarked, 2.4 remains true if A is the intersection of a descending sequence $\{A_i | i=1,2,...\}$ of compact LC^k sets such that

scending sequence $\{A_i | i=1,2,...\}$ of compact LC^k sets such that $\pi_{\ell}(A_i)=0$ for all large i. In particular, if X is LC^n and if A is an n-connected closed LC^{n-1} subset (or the intersection of a descending sequence of such compact sets) then A is PC_X^n .

3. **Decomposition spaces.** In this section, we study upper semi-continuous decompositions of a space X into PC_X^n subsets or, equivalently, continuous closed surjections $p\colon X\to Y$ where each fiber $p^{-1}(y)$ is PC_X^n . We will show that such maps are characterized by a partial realization property (3.1) and also by a homotopy property (3.2); observe that by taking $p=\mathrm{id}$, these results give characterizations of LC^n in paracompact spaces analogous to those in [2], p. 234, [6], p. 265 for metric spaces.

If $p: X \to Y$ and $B \subset Y$, the set $p^{-1}(B) \subset X$ is denoted by \widetilde{B} .

3.1. THEOREM. Let X be arbitrary, Y paracompact, and $p: X \rightarrow Y$ a continuous closed surjection. The following two statements are equivalent:

(a) Each fiber of p is PC_X^n .

(b) For each open covering $\{U\}$ of Y there exists an open refinement $\{V\}$ with the property: Any partial realization of any polytope P, dim $P \leq n+1$, in $\{\widetilde{V}\}$ extends to a full realization in $\{\widetilde{U}\}$.

Proof. (a) \Rightarrow (b). Denote the given covering $\{U\}$ by $\{U^{n+1}\}$ and for each $y \in Y$, let $U^{n+1}(y)$ be a definite set of the open covering $\{U^{n+1}\}$ that contains y. Construct a succession of open coverings $\{U^s\}$, s=n, n-1, ..., 0, as follows:

(n,1) Let $W^{n+1}(\widetilde{y})$ be a neighborhood of $\widetilde{y}=p^{-1}(y)$ such that $\pi_n(W^{n+1}(\widetilde{y})|\ \widetilde{U}^{n+1}(y))=0$.

(n.2) Let $G^{n+1}(y)$ be a nbd of y such that

$$p^{-1}(y) \subseteq p^{-1}(G^{n+1}(y)) \subseteq W^{n+1}(\widetilde{y})$$

(this exists since p is a closed map ([4] p. 86)).

(n,3) Let $\{U^n\}$ be an open star-refinement of

$$\{U^{n+1}(y) \cap G^{n+1}(y') | (y, y') \in Y \times Y\}$$
.

We proceed recursively until s=0: if $\{U^{s+1}\}$ is defined, repeat the above construction using $\{U^{s+1}\}$ and the s-PC_X property of the fibers to get $W^{s+1}(\widetilde{y})$, $G^{s+1}(y)$ and then $\{U^s\}$ as an open star-refinement of the open covering

$$\{U^{s+1}(y) \cap G^{s+1}(y') | (y, y') \in Y \times Y\}.$$

Each $\{U^s\}$ is clearly a refinement of $\{U^{s+1}\}$; we will show that the refinement $\{U^0\}$ of $\{U^{n+1}\}$ has the property stated in the theorem.

Let g be a partial realization of P in $\{\widetilde{U}^0\}$; then $g\colon Q \cup P^0 \to X$ for some subpolytope $Q \subset P$ and $g\left(\overline{\sigma} \cap (Q \cup P^0)\right) \subset \text{some } \widetilde{U}^0$ for each closed simplex $\overline{\sigma}$ of P. We proceed by induction, assuming that for some $0 \leqslant r \leqslant n$, the map g has been extended to a partial realization $g^r\colon Q \cup P^r \to X$ of P in $\{\widetilde{U}^r\}$.

Let $\overline{\sigma}^{r+1}$ be any fixed (r+1)-simplex of P; all the vertices of σ^{r+1} have images lying a single $\widetilde{U}^0 \subset \widetilde{U}^r_0$, and $g^r(\overline{\sigma}^r) \subset \operatorname{some} \widetilde{U}^r = \widetilde{U}^r(\overline{\sigma}^r)$ for each r-face $\overline{\sigma}^r$ of $\overline{\sigma}^{r+1}$. Thus $\widetilde{U}^r_0 \cap \widetilde{U}^r(\overline{\sigma}^r) \neq \emptyset$ for each $\overline{\sigma}^r$ and, since $\{U^r\}$ is a star-refinement of $\{U^{r+1}(y) \cap G^{r+1}(y')\}$, this shows that $\bigcup \{g^r(\overline{\sigma}^r)|\ \overline{\sigma}^r$ a face of $\overline{\sigma}^{r+1}\} \subset \operatorname{some} \widetilde{G}^{r+1}(y) \subset W^{r+1}(\widetilde{y})$; therefore $g^r|\ \overline{\sigma}^{r+1}$ is extendable to a $g^{r+1}\colon \overline{\sigma}^{r+1} \to U^{r+1}(y)$. Extending over each (r+1)-simplex in this manner extends the partial realization g^r to a partial realization $g^{r+1}\colon Q \cup P^{r+1} \to X$ of P in $\{U^{r+1}\}$, completing the inductive step, and the proof.

(b) \Rightarrow (a). Given $y \in Y$, and any open $G \supset p^{-1}(y)$, choose a nbd U(y) such that $\widetilde{y} \subset \widetilde{U} \subset G$ and then a nbd W(y) such that $y \in W \subset \overline{W} \subset U$. Let $\mathfrak{U} = \{U, Y - \overline{W}\}$ and let $\{V\}$ be an open refinement satisfying (b). Choose any $V \in \{V\}$ containing y; then $V \subset U$. For any $0 \leqslant k \leqslant n$, each $f \colon S^k \to \widetilde{V}$ is a partial realization of the ball H^{k+1} in \widetilde{V} , hence extends to a full realization F of H^{k+1} in $\widetilde{\mathfrak{U}}$ and, necessarily, $F(H^{k+1}) \subset \widetilde{U}$. Thus, $p^{-1}(y)$ is PC_X^n and the proof is complete.

The companion characterization by homotopy is

3.2. THEOREM. Let X be arbitrary, Y paracompact, and $p \colon X \rightarrow Y$ a continuous closed surjection. The following two statements are equivalent:

(a) Each fiber of p is PC_X^n .

(b) Each open covering $\{U\}$ of Y has an open refinement $\{W\}$ with the property: For any polytope P, $\dim P \leq n$, any two continuous $f, g \colon P \to X$ that are $\{\widetilde{W}\}$ -close are $\{\widetilde{U}\}$ -homotopic, and a homotopy can be chosen rel any subpolytope Q such that f|Q=g|Q.

Proof. (a) \Rightarrow (b). Let $\{U^*\}$ be a star-refinement of $\{U\}$, and let $\{W\}$ be an open refinement of $\{U^*\}$ satisfying 3.1(b). If $f,g:P\to X$ are $\{\widetilde{W}\}$ -close then $\{f^{-1}(\widetilde{W})\cap g^{-1}(\widetilde{W})|\ W\in \{W\}\}$ is an open covering of P. Subdivide P simplicially so fine that each closed simplex lies in some set of this covering, and take $P\times I$ in the standard simplicial subdivision that introduces no new vertices other than those on $P\times 0$ and $P\times 1$. Let $L=(P\times 0)\cup (Q\times I)\cup P\times 1$ and define $H\colon L\to X$ by $H|P\times 0=f,\ H|P\times 1=g,\ H(g,t)=f(g)=g(g)$ for $(g,t)\in Q\times I$. Then H is a partial realization of $P\times I$ in $\{\widetilde{W}\}$: for, any (n+1)-simplex $\overline{\sigma}$ of $P\times I$ is of the form $\overline{\sigma}=(p_0\times 0,\ldots,p_t\times 0,p_t\times 1,\ldots,p_n\times 1),$ where $\tau=(p_0,\ldots,p_t,\ldots,p_n)$ is n-simplex of P so, because $f(\tau)\cup g(\tau)\subset \text{some }\widetilde{W}$ we find $H(\overline{\sigma}\cap L)\subset \widetilde{W}$. Thus, H extends to a full realization of $P\times I$ in $\{\widetilde{U}^*\}$, and this is easily seen to be a $\{\widetilde{U}\}$ -homotopy of f to g.

(b) \Rightarrow (a). As in 3.1: given y and an open $U \supset y$, choose an open W such that $y \in W \subset \overline{W} \subset U$, and let $\{V\}$ be a refinement of the open covering $\{U, Y - \overline{W}\}$ satisfying (b). If $V \in \{V\}$ contains y, then any $f \colon S^k \to \overline{V}$ ($0 \le k \le n$) is $\{\widetilde{V}\}$ -close to the constant map of S^k to a point of $p^{-1}(y)$ so is null homotopic over \widetilde{U} .

4. Characterization by function spaces. It is convenient to express the results 3.1, 3.2 in terms of function spaces.

The compact-open topology in Y^X will be called the c-topology. For each $f \in Y^X$ and each open covering $\mathfrak U$ of Y, let

$$(f, \mathfrak{U}) = \{g \in Y^X | g \text{ is } \mathfrak{U}\text{-close to } f\};$$

clearly $(f,\mathfrak{B})\subset (f,\mathfrak{U})$ whenever \mathfrak{B} refines $\mathfrak{U}.$ We shall need the following useful $(^6)$

4.1. Lemma. Let X be compact. Then the family of all sets $\{(f,\mathfrak{U})\}$ forms a basis for the c-topology in Y^X .

Proof. Let $(A, V) = \{f \in Y^X | f(A) \subset V\}$; the *c*-topology in Y^X has the family $\{(A, V) | A \text{ compact, } V \text{ open}\}$ as a sub-basis.

(i) Each (f, \mathfrak{U}) is open in the c-topology. Let $g \in (f, \mathfrak{U})$. For each $x \in X$ there is a $U(x) \in \mathfrak{U}$ such that $f(x) \cup g(x) \in U(x)$ so we can find a nbd V(x) of x such that $\overline{V(x)}$ is compact and $f(\overline{V(x)}) \cup g(\overline{V(x)})$

(ii) The $\{(f,\mathfrak{U})\}$ form a basis. Let $f \in G = \bigcap_{1}^{n} (A_i, W_i)$, where G is a basic open set. For each $r=1,\ldots,n$, let \mathfrak{W}_r be the open covering $\{W_r, Y-f(A_r)\}$ of Y. Let $\mathfrak{U}=\{U_1 \cap \ldots \cap U_n | U_r \in \mathfrak{W}_r, 1 \leqslant r \leqslant n\}$; then \mathfrak{U} is an open covering of Y, and we have $f \in (f,\mathfrak{U}) \subset G$: for, let $g \in (f,\mathfrak{U})$ and fix any A_i ; for each $a \in A_i$ there must be a set of \mathfrak{U} containing g(a) and f(a); but since $f(a) \notin Y-f(A_i)$ such a set must be from among those having W_i in the ith place, and all such sets are contained in W_i . Thus, $g(A_i) \subset W_i$ for each $i=1,\ldots,n$ so $(f,\mathfrak{U}) \subset G$. This completes the proof (7).

Using the c-topology in the function spaces, recall that a continuous $p\colon X\to Y$ induces a continuous $p_{\#}\colon X^P\to Y^P$ by setting $p_{\#}(f)=p\circ f$, and that whenever P is (locally) compact, two maps $f,g\colon P\to X$ are homotopic if and only if they belong to the same path-component of X^P ([4], p. 320). With these preliminaries, a function-space formulation of 3.2 is

4.2. Theorem. Let X be arbitrary, Y paracompact, and $p\colon X{\to} Y$ a continuous closed surjection. The following two statements are equivalent:

- (a) Each fiber of p is PC_X^n .
- (b) Let P be a finite polytope, dim $P \leq n$, and let $f \in \mathcal{Y}^P$. Given any $\operatorname{nbd}(f, \mathfrak{U})$ of f, there exists a refinement \mathfrak{B}^* of \mathfrak{U} such that $p_{\pm}^{-1}(f, \mathfrak{B}^*)$ is path-connected in $p_{\pm}^{-1}(f, \mathfrak{U})$.

Proof. (a) \Rightarrow (b). Let \mathfrak{U}^* be a star-refinement of \mathfrak{U} , let \mathfrak{V} satisfy 3.2 relative to \mathfrak{U}^* , and let \mathfrak{V}^* be a star-refinement of \mathfrak{V} . If pg, $pg' \in (f, \mathfrak{V}^*)$, then g, g' are $\widetilde{\mathfrak{V}}$ -close consequently there is a $\widetilde{\mathfrak{U}}^*$ -homotopy $H: g \simeq g'$; since $pH(x, I) \subset \text{some } U_0^*$, $f(x) \cup pH(x, 0) \subset U_1^*$ and $f(x) \cup pH(x, 1) \subset U_2^*$, it follows that $pH(x, 1) \cup f(x) \subset \text{some } U \in \mathfrak{U}$, consequently $p_{\#}^{-1}(f, \mathfrak{V}^*)$ is path-connected in $p_{\#}^{-1}(f, \mathfrak{U})$. (b) \Rightarrow (a) is trivial.

For any $Q \subset P$ and any $g: Q \to X$, let $X^P(Q, g) \subset X^P$ be the (possibly empty) subspace of all extensions of g over P; if $Q = \emptyset$, this set is simply X^P . Theorem 3.1 implies a weak lifting property:

4.3. Let X be arbitrary, Y paracompact, and $p\colon X\to Y$ a continuous closed surjection having each fiber PC_X^n . Then for any finite polytope P, $\dim P\leqslant n+1$, any subpolytope $Q\subset P$, and any $g\colon Q\to X$, the set $p_\#[X^P(Q,g)]$ is dense in $X^P(Q,pg)$.

^(*) If Y is regular, X arbitrary, the topology in $Y^{\mathbf{X}}$ obtained by using the family $\{(f, 1!)\}$ as sub-basis is easily seen to be admissible ([4], p. 274) so that it contains the e-topology.

^{(&#}x27;) The proof shows slightly more: the family $\{(f,\mathfrak{U})|\ f\in F^X$, \mathfrak{U} a finite open covering of Y} forms a basis for the c-topology in Y^X whenever X is compact.

Proof. Let $G: P \rightarrow Y$ be any extension of pg; we are to show each $p_{\pm}^{-1}(G,\mathfrak{U})$ contains an extension of g. Let \mathfrak{U}^* be a star-refinement of \mathfrak{U} . and let $\mathfrak B$ satisfy 3.1 relative to $\mathfrak U^*$. Subdivide P so fine that $G(\overline{\sigma})$ is contained in some $V \in \mathfrak{V}$ for each closed simplex $\overline{\sigma}$ of P. Define $q^0: Q \cup$ $\cup P^0 \to X$ by $g^0 \mid Q = g$ and $g^0(v) \in p^{-1}G(v)$ for each $v \in P^0 - Q$. Then $g^0 \mid Q = g$ is a partial realization of P in \mathfrak{B} , so it extends to a full realization \mathfrak{F} of P in $\widetilde{\mathfrak{U}}^*$, and $p\widetilde{G} \in (G, \mathfrak{U})$.

By imposing an additional condition on Y, these two results immediately give a necessary condition for the existence of surjections such as we are considering:

4.4. THEOREM. Let X be arbitrary, Y paracompact, and $p: X \to Y$ a continuous closed surjection with PC_X^n fibers. If the space $Y^{\hat{S}^k}$ is first countable for some $0 \leqslant k \leqslant n$, then Y^{S^k} is LC^0 and therefore Y is k-LC(and first countable).

Proof. This will follow from the simple

4.5. Lemma. Let Z be a first countable space and let $D \subset Z$ be dense. Assume that for each $z \in Z$ and each nbd U(z) there is a nbd V(z) such that $V \cap D$ is path-connected in U. Then Z is LC^0 .

Proof of Lemma. We show that any two points of V can be joined by a path in U; for this, it suffices to show that each $v \in V$ can be joined to a point of $V \cap D$ by a path in U.

Let $U_1 \supset U_2 \supset ...$ be a countable basis at v. Proceeding inductively, define sets $V_1 \supset V_2 \supset ...$ with $v \in V_i \subset U_i$ as follows: find $V_1(v) \subset U \cap U_1$ such that $V_1 \cap D$ is path connected in $U \cap U_1$; assuming V_1, \dots, V_{n-1} defined, find $V_n(v) \subset V_{n-1} \cap U_n$ such that $V_n \cap D$ is path-connected in $V_{n-1} \cap U_n$. Choose $d_i \in V_i \cap D$; according to the construction, there is for each i=1,2,... a path a_i from d_i to d_{i+1} such that $a_i(I) \subset U_i$. Define $a: I \rightarrow Z$ by

$$a(0) = v$$
, $t = 0$,
$$a(t) = a_n[(n+1)(1-nt)], \quad \frac{1}{n+1} < t \leqslant \frac{1}{n}, \quad n = 1, 2, ...$$

This is clearly continuous at t=0, because of the behaviour of the a_i , and provides a path from v to d_1 lying in U.

Proof of Theorem. According to 4.3, the set $D=p_{\pm}(X^{S^k})$ is dense in $Z=\Upsilon^{S^k}$ and according to 4.2, the remaining requirement of the Lemma is satisfied, because $p_{\#}$ is continuous. Thus, Υ^{S^k} is LC⁰; and this implies, as is well-known, that Y is k-LC: given $y \in Y$ and any nbd U(y), form the open covering $\mathfrak{U} = \{U, Y-y\}$ of Y, and let $c: S^k \to y$ be the constant map; since Y is LCo, there is a refinement B of U such that (c, \mathfrak{B}) is path-connected in (c, \mathfrak{U}) ; so, if $V \in \mathfrak{B}$ is a set containing y, any

 $f: S^k \to V$ is nullhomotopic in U. Finally, Y must be first countable, since it can be embedded as a retract of Y^{S^k} .

Since for compact X, the c-topology in Y^X is metrizable whenever Y is metrizable, 4.4 gives

4.6. Corollary. Let X be arbitrary and p: $X \rightarrow Y$ a continuous closed surjection with PC_X^n fibers. If Y is metrizable, then Y must be LC^n .

In the special case that the fibers are PC_X^n because of 2.4, this result can be improved:

4.7. Let X be paracompact and LC^{n+1} , let Y be metrizable, and let $p: X \to Y$ be a continuous closed surjection with n-connected LCⁿ fibers. Then Y is LC^{n+1} .

Proof. Because the fibers are PC_X^n , it follows from 4.6 that Y is LC^n ; we now show $Y^{S^{n+1}}$ is LC⁰. This will follow from 4.5 by showing that for each $f \in Y^{S^{n+1}}$, each $\text{nbd}(f, \mathfrak{A})$ contains a $\text{nbd}(f, \mathfrak{B})$ such that $p_{\pm}(X^{S^{n+1}}) \cap (f, \mathfrak{B})$ is path-connected in (f, \mathfrak{U}) .

For each $y \in Y$, let $U_y \in \mathcal{U}$ be a set of the covering containing y. It follows easily from 2.3 that for each U_y there is a nbd $V_y \subset U_y$ of y such that any $h: S^{n+1} \to \widetilde{V}_y$ is homotopic in \widetilde{U}_y is an $h': S^{n+1} \to p^{-1}(y)$. Let $\mathfrak{B} = \{V_y | y \in Y\}$ and \mathfrak{D}^* be a star-refinement.

Let Q denote the n-skeleton of S^{n+1} in some simplicial subdivision. Since the fibers are PC_X^n , there is, by 4.2, a nbd $(f|Q,\mathfrak{W})$ such that $p_{\pm}^{-1}(f|Q,\mathfrak{B})$ is path-connected in $p_{\pm}^{-1}(f|Q,\mathfrak{B}^*)$.

Now let $g, g' : S^{n+1} \to X$ be such that $p_{\#}g, p_{\#}g' \in (f, \mathfrak{W})$; then $g \mid Q \simeq g' \mid Q$ by a $\widetilde{\mathfrak{B}}^*$ -homotopy H, so $H[(\sigma^{n+1} \times I)^*]$ lies in some $\widetilde{V}_y \in \widetilde{\mathfrak{B}}$ for each closed (n+1)-simplex σ^{n+1} of S^{n+1} . Since the map $H|(\sigma^{n+1}\times I)$ of an (n+1)sphere into \widetilde{V}_y is deformable over \widetilde{U}_y into the fiber $p^{-1}(y)$, the map $p_{\#}H|(\sigma^{n+1}\times I)$ is null homotopic over $U_y \in \mathfrak{U}$; extending $p_{\#}H$ over each $\sigma^{n+1} \times I$, in this manner, yields the required homotopy of $p_{\#}g$ to $p_{\#}g'$, and completes the proof.

- 5. Homotopy behaviour of p. In this section, we consider the behaviour of p on the homotopy groups. If $p: X \to Y$ and $B \subset Y$, the map $p|p^{-1}(B)$: $p^{-1}(B) \rightarrow B$ is denoted by p^B .
- 5.1. Theorem. Let X be arbitrary, Y paracompact, and $p: X \rightarrow Y$ a continuous closed surjection with PCx fibers. Then for each open (8) set $U \subset Y$, the induced homomorphism p^U_* : $\pi_q(\widetilde{U}) \rightarrow \pi_q(U)$ is monic for $0 \leqslant q \leqslant n$, and the induced homomorphism $p_*: \pi_q(X, \widetilde{U}) \rightarrow \pi_q(Y, U)$ is monic for $1 \leqslant q \leqslant n$.

⁽⁸⁾ Recall that an open subset of a paracompact space may not itself be paracompact.

Proof. We prove the latter assertion, that for the former being similar. Let $\alpha \in \pi_q(X, \widetilde{U}, x_0)$ be represented by $g \colon (V^q, V^q, v_0) \to (X, \widetilde{U}, x_0)$ and assume $p_*(a) = 0$, so that there is a homotopy $H \colon V^q \times I \to Y$ such that $H[V^q \times 0 = pg, H(V^q \times 1) \subset U$ and H(v, t) = H(v, 0) for $(v, t) \in \dot{V}^q \times I$. Define $\widetilde{g} \colon V^q \times 0 \cup \dot{V}^q \times I \to X$ by $\widetilde{g}(v, 0) = \widetilde{g}(v, t) = g(v)$; then $p\widetilde{g} = H[V^q \times 0 \cup \dot{V}^q \times I$ and, given the open covering $\mathfrak{U} = \{U, Y - H(V^q \times 1)\}$, there is by 3.1 an extension $\widetilde{G} \colon V^q \times I \to X$ of \widetilde{g} such that $p\widetilde{G} \in (H, \mathbb{H})$:

In particular, $p_* \colon \pi_i(X) \to \pi_i(Y)$ is monic for $0 \leqslant i \leqslant n$. However, if Y is dominated by a polytope (e.g., belongs to Milnor's [7] category \mathfrak{W}) then this can be improved:

thus, $\widetilde{G}(V^{q} \times 1) \subset \widetilde{U}$ and therefore a = 0.

5.2. Theorem. Let X be arbitrary, Y paracompact, and $p\colon X\to Y$ a continuous closed surjection with PC_X^n fibers. If Y is dominated by a polytope, then $p_*\colon \pi_q(X)\to\pi_q(Y)$ is an isomorphism for $0\leqslant q\leqslant n$, and epic for q=n+1.

Proof. We need show only that p_* is epic. Choose base points $x_0 \in X$ and $y_0 = p(x_0)$ for the homotopy groups. Let P be a dominating polytope, and $\varkappa\colon Y \to P$, $g\colon P \to Y$ such that $g\circ \varkappa\simeq \mathrm{id}$. Let $a\in \pi_q(Y,y_0)$ be represented by $f\colon (S^a,s_0)\to (Y,y_0)$ and choose the covering $\mathfrak{U}=\{\varkappa^{-1}(\mathrm{St}p)|\ p\in P^0\}$ for Y. According to 4.3, there is, provided $q\leqslant n+1$, an $h\colon (S^a,s_0)\to (X,x_0)$ such that $ph\in (f,\mathfrak{U})$. Since $\varkappa f$ and $\varkappa ph$ are $\{\mathrm{St}p\}$ -close, they are ([3], p. 215) also $\{\mathrm{St}p\}$ -homotopic, and consequently homotopic rels₀. Thus $g\varkappa f$ and $g\varkappa ph$ are homotopic and, since $g\varkappa\simeq 1$, we find f homotopic to ph. This completes the proof.

To have the p_*^U isomorphisms for every open $U \subset Y$, rather than for just U = Y, is a strong requirement, for we show

- 5.3. THEOREM. Let X be arbitrary, Y paracompact, and $p\colon X{\to} Y$ a continuous closed surjection with PC_X^n fibers. The following two statements are equivalent:
 - (a) Y is LC^n ,
 - (b) p_*^U : $\pi_q(\widetilde{U}) \approx \pi_q(U)$ for all open $U \subset Y$ and all $0 \leqslant q \leqslant n$.

Proof. (a) \Rightarrow (b). Let $\alpha \in \pi_q(U, u_0)$ be represented by $f \colon (S^a, s_0) \rightarrow (U, u_0)$. Since Y is LC^n , then using the open covering $\mathfrak{U} = \{U, Y - f(S^a)\}$ of Y, there is, by 3.2, an open refinement \mathfrak{B} such that \mathfrak{B} -close maps $(S^a, s) \rightarrow (U, u_0)$ are \mathfrak{U} -homotopics rels. Since (4.3) $p_{\#}(X^{S^a})$ is dense in Y^{S^a} , there is a $g \colon (S^a, s) \rightarrow (\widetilde{U}, x_0)$ with $pg \in (f, \mathfrak{B})$, consequently pg is homotopic to f over U.

(b) = (a). Let $y_0 \in Y$, and let $F = p^{-1}(y_0)$. Because F is PC_X^n , given any $\mathrm{nbd}\ U(y_0)$ there is a $\mathrm{nbd}\ V(y_0) \subset U$ such that $\pi_q(\widetilde{V}|\widetilde{U}) = 0$ for

 $0 \leqslant q \leqslant n$. Letting $i\colon \widetilde{V} \to \widetilde{U}$ and $j\colon V \to U$ be the inclusion maps, we have the commutative diagram

$$\begin{array}{ccc}
\pi_{q}(\widetilde{V}) & \xrightarrow{i_{*}} & \pi_{q}(\widetilde{U}) \\
\downarrow p_{*}^{V} & & \downarrow p_{*}^{U} \\
\pi_{q}(V) & \xrightarrow{j_{*}} & \pi_{q}(U)
\end{array}$$

For $0 \le q \le n$, i_* is the zero homomorphism so, since p_*^U , p_*^V are isomorphisms, j_* is the zero homomorphism. Thus (*), Y is LC* at y_0 .

In the case that Y is metrizable, then (5.3 and 4.6) we have

5.4. Theorem. Let X be arbitrary, Y metrizable, and p: $X \to Y$ a continuous closed surjection with PC_x^N fibers. Then Y is LC^n and therefore p_*^U : $\pi_q(\widetilde{U}) \approx \pi_q(U)$ for every open set $U \subset Y$ and $0 \leqslant q \leqslant n$.

This remains true if Y is paracompact and Y^{S^i} , $0 \le i \le n$, are first countable.

6. Applications. We give here only some immediate applications of the main results.

The following generalization of the result in [8], [9], has also been obtained in [5].

6.1. THEOREM. Let X be a paracompact LC^n space, and $p\colon X\to Y$ a continuous closed surjection in which each fiber is LC^{n-1} and (n-1)-connected. If Y is metrizable, then Y is LC^n and $p_*\colon \pi_i(X)\to \pi_i(Y)$ is an isomorphism for $0\leqslant i\leqslant n-1$ and epic for i=n.

Proof. That Y is LC^n follows from 4.7. Since the fibers are $\operatorname{PC}_X^{n-1}$ then because of 5.3 we need prove only that $p_*\colon \pi_n(X)\to \pi_n(Y)$ is epic. According to 4.7, the space Y^{S^n} is LC^0 so that the path components of Y^{S^n} are open sets; the dense set $p_\#(X^{S^n})$ therefore meets each path-component, so p_* is epic.

If X is a metric space, and $p: X \to Y$ is a continuous closed surjection, then by Michael's theorem ([4], p. 165) the space Y is paracompact and, by the Stone-Hanai theorem ([4], p. 235) Y is metrizable whenever all the fibers are compact. Thus, if X is an ANR and $p: X \to Y$ is a continuous closed surjection with AR fibers, then it follows from 5.2, 5.4 that

(a) If Y is idominated by a polytope, then p_* : $\pi_i(X) \approx \pi_i(Y)$ for all $i \geq 0$ so that p is in fact a homotopy equivalence,

^(*) Observe that, by using the 5-Lemma, it follows immediately from 5.3(b) that also $p_*\colon \pi_q(\widetilde{U},\widetilde{V})\approx \pi_q(U,V)$ for $1\leqslant q\leqslant n$ and all pairs $V\subset U$ of open sets in Y.

and

- (b) If the fibers are compact, then Y is LC^{∞} and p is a weak homotopy equivalence; moreover, if $\dim Y < \infty$, then Y is an ANR and p a homotopy equivalence. These results contain those in ([1], p. 127). We also obtain (compare [10], p. 487)
- 6.2. Let X be paracompact and $A \subset X$ a closed PC_X^n subset. Let $p \colon X \to X/A$ be the projection. If X/A is dominated by a polytope, then $p_* \colon \pi_i(X) \to \pi_i(X/A)$ is an isomorphism for $0 \leqslant i \leqslant n$, and is epic for i = n + 1.

Proof. Since p is a continuous closed surjection, Michael's theorem shows X/A is paracompact so 5.2 is applicable.

Because of 2.2, it follows that under the hypotheses of 6.2, we have $\pi_i(X,A) \approx \pi_i(X/A) \oplus \pi_{i-1}(A)$ for $2 \leq i \leq n$.

We also determine some conditions under which each fiber in a Serre fibration is PC_E^n .

6.3. Let (E, p, B) be a Serre fibration, where E is compact and B is dominated by a polytope. If each fiber F is PCⁿ_E, then each fiber is n-connected.

Proof. Since $\pi_i(F|E)=0$ for $0\leqslant i\leqslant n$ (cf. 2.2) the homotopy sequence of (E,p,B) decomposes into short exact sequences

$$0 \to \pi_i(E) \stackrel{p_*}{\to} \pi_i(B) \to \pi_{i-1}(F) \to 0 \qquad 0 \leqslant i \leqslant n$$

and a long exact sequence ... $\to \pi_{n+1}(E) \stackrel{p_*}{\to} \pi_{n+1}(B) \to \pi_n(F) \to 0$. Because E is compact, p is a closed map so, by 5.2, p_* is an isomorphism for $0 \le i \le n$ and epic for i = n+1; from the exact sequences we find $\pi_i(F) = 0$ for $0 \le i \le n$.

It is trivial to verify that, in a Serre fibration (E, p, B), if B is LC^n and if each fiber F is n-connected, then each fiber F is PC_E^n . Thus,

6.4. Let E be compact, B a polytope and (E, p, B) a Serre fibration. Then every fiber is PC_n^p if and only if every fiber is n-connected.

References

[1] K. Borsuk, Theory of Retracts, Warszawa 1967.

[2] J. Dugundji, Absolute neighborhood retracts and local connectedness in arbitrary metric spaces, Comp. Math. 13 (1958), pp. 229-246.

[3] — A duality property of nerves, Fund. Math. 59 (1966), pp. 213-219.

[4] - Topology, Boston 1966.

[5] G. Koszlowski, A generalization of a theorem of Smale, Notices AMS 15 (1968), p. 560.

[6] K. Kuratowski, Topologie II, Warszawa 1961.

[7] J. Milnor, On space having the homotopy type of a CW-complex, Trans. Am. Math. Soc. 90 (1959), pp. 272-280.

[8] T. M. Price, On decompositions and homotopy groups, Notices AMS 14 (1967), p. 274.

[9] S. Smale, A Vietoris theorem for homotopy, Proc. Am. Math. Soc. 8 (1957), pp. 604-610.

[10] E. H. Spanier, Algebraic Topology, New York 1966.

UNIVERSITY OF SOUTHERN CALIFORNIA

Reçu par la Rédaction le 5. 8. 1968