

Remarks on analytic sets

bx

B. V. Rao (Calcutta)

Let I denote the unit interval, let B, A, L be the σ -algebras on I generated by open sets, analytic sets and Lebesgue measurable sets (or sets measurable w.r.t. any fixed nonatomic probability measure on B) respectively. Let C be the class of all subsets of I and E be any σ -algebra such that

$$A \subset E \subset L$$
.

Let U be any analytic subset of $I \times I$ which is universal w.r.t. the analytic sets of I. As is well-known ([1], p. 368) such sets do exist. The purpose of this note is to prove

THEOREM 1. E is not countably generated.

Theorem 2. $U \notin C \times L$.

(Symbol $C \times L$ stands for the σ -algebra on $I \times I$ generated by sets of the form $X \times Y$ where $X \in C$; $Y \in L$).

Before proving Theorem 1, we shall make a remark. There is no general way of proving that a σ -algebra is not countably generated. The first method available in the literature is a simple cardinality argument which fails here because cardinality of E can be ϵ . The second method is to exhibit a probability measure on E giving zero mass to singletons and taking only two values zero and one. This also fails here, because probability measures on E give rise to the corresponding probability measures on E.

Proof of Theorem 1. If E has a countable generator say $\{A_n; n \ge 1\}$ then consider the Marczewski function on I defined by

$$f(x) = \sum \frac{2\chi_{A_i}(x)}{3^i}$$

with range, say, $X \subset I$. Let B_X be the relativized Borel σ -algebra on X. Clearly f is an isomorphism of (I, E) onto (X, B_X) . If B is a Borel subset

of I and $B \subset X$, then the map f^{-1} , restricted to B, being Borel and one to one, we have, in view of ([1], p. 397) that $f^{-1}(B)$ is a Borel subset of I. Since the Lebesgue measure λ on (I, E) is compact [2] and hence perfect [3] there is a Borel subset B of I with

$$B \subset X$$
 and $\lambda(f^{-1}B) = 1$.

Denoting by Y the set $f^{-1}(B)$ and by E_Y the σ -algebra E restricted to Y and by f_1 the map f restricted to Y, one observes that f_1 is a Borel isomorphism on (Y, E_Y) onto (B, B_B) . As remarked above, B is a Borel subset of I and being clearly uncountable there is a non-Borel analytic set in E_Y whereas every set in B_B is Borel. This contradicts that f_1 is a Borel isomorphism. This proves Theorem 1.

The author is indebted to the referee for suggesting that our Theorem 2 answers a question of S. M. Ulam [4, page 10, lines 20-23].

Proof of Theorem 2. If $U \in C \times L$ then obviously there exist countable number of rectangles $\{E_n \times F_n, n \geqslant 1\}$ such that U is in the σ -algebra generated by these rectangles. Define E to be the σ -algebra on I generated by $\{F_n; n \geqslant 1\}$. Clearly $E \subset L$. Since $U \in C \times E$ and U is universal w.r.t. the analytic subsets of $I; A \subset E$. Since E is countably generated we have a contradiction to Theorem 1. This proves Theorem 2.

The author could not show that "if $A \subset E \subset C$ then E is not countably generated". Observe that if this is established then, $U \notin C \times C$ which answers in the negative the following unsettled question of S. M. Ulam: "Is the product of discrete (class of all subsets) σ -algebras on I; the discrete σ -algebra on the square?"

We conclude with observing that the following proposition, which is not difficult to prove, answers in the negative the above question when I is replaced by a set of cardinality greater than \mathfrak{c} .

Let E be a σ -algebra on a set X. The diagonal of $X \times X$ belong to $E \times E$ if and only if there is a countably generated σ -algebra $D \subset E$ with singletons as atoms. Consequently if $\operatorname{card}(X) > \mathfrak{c}$ then whatever be E, diagonal can not belong to $E \times E$.

The only if part is essentially contained in an exercise in P. R. Halmos's "Measure Theory".

Acknowledgements: Thanks are to Drs. A. Maitra and J. K. Ghosh for the many useful discussions. Thanks are also to Professor C. Ryll-Nardzewski for suggesting many improvements in the original version of the paper.

Added in proof (October, 1969). i) Professor Jan Mycielski has kindly informed us that a weak form of Theorem 2 of this paper has been obtained by Dr. Richard Mansfield by using altogether different and difficult techniques.

ii) Regarding the problem of discrete σ -algebras see the author's paper "On discrete Borel spaces and projective sets" in Bull. Amer. Math. Soc. 75 (1969), pp. 614-617 and also a forthcoming paper of the author in Fund. Math.

References

- [1] C. Kuratowski, Topologie I (édition troisième) Warszawa 1952.
- [2] E. Marczewski, On compact measures, Fund. Math. 40 (1953), pp. (113-124).
- [3] C. Ryll-Nardzewski, On quasi compact measures, Fund. Math. 40 (1953), pp. (125-130).
- [4] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York 1960.

INDIAN STATISTICAL INSTITUTE

Reçu par la Rédaction le 5. 8. 1968