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Isomorphism with a 0(Y) of the maximal ring
of quotients of C(X)*

by
Anthony W. Hager ** (Middletown, Conn.)

Using the R. Johnson-Y. Utumi definition of ,ring of quotients”,
Tine, Gillman, and Lambek have studied the maximal ring of quotients
of 0(X) (the ring of continuous real-valued functions on the completely
regular Hausdorff space X) [2]. A principle result of theirs is that this
ring, denoted Q(X), is isomorphic to the ring of all continuous real-valued
functions on dense open subsets of X, modulo identification of functions
which agree on a dense open seb. Using this realization, we shall prove:
Q(X) is isomorphic to some C(X) iff the isolated points of X form « dense
subset of X (provided no measurable cardinals exist nearby). Some related
problems will be dealt with, also.

In order to prove this theorem, and its relatives, it seems necessary
to know at least a little about how @ (X) can be represented on its space
of maximal ideals. A convenient context is provided by the theory of
p-algebras of Henriksen and Johnson [5]. With this backdrop, the present
proofy proceed quite naturally.

We shall assume a certain familiarity with ¢(X) (as in [3]), and
therefore with the Stone-Oech compactification BX. A sketch of the
background on ¢-algebras and on Q(X) has been included.

p-algebras, We indicate those features of g-algebras which will
be useful.

Let K be a compact space, and let D(K) be the set of continuous
functions f on K to R, the two-point compactification of the reals R,
for which R(f)=f""(R) is dense. Let f,g,heD(K). By definition,
f=g+n it fl»)= g(x)+hiz) for eR(g) A R(h). Sums of elements
of D(K) need not exist in D(K). Similarly, f= g-his defined, and similarly,
products need not exist. But, with the obvious definitions, gvh, gAh,
and rg (r ¢ B) always. exist in D(XK).

* Research partially supported by the National Science Foundation under grants

GP 5793 and GP 7455 at the University of Rochester.
** I'm pleased to thank D. G. Johnson for reading and criticizing this note.
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A g-algebra is an archimedean lattice-ordered algebra over I, with
an identity which is a weak order unit. A homomorphism of @-algebras
is an algebra homomorphism preserving the lattice operations. The kernels
of (p-algebra) homomorphisms are the absolutely convex ring ideals.
The term “p-subalgebra” of D(K) is meant with respect to the operations
in D(XK) discussed above.

1.1 ([5], 2.3). A p-algebra A is isomorphic to a p-subalgebra of D(.AL(A)),
where Mb(4) is the set of mazimal absolutely convew ring ideals of A carrying
the Stone topology. Under this isomorphism, the identity of A becomes the
constant function 1; the copy of 4 “0-1 separates” disjoint closed subsels
of M(4). ‘

In the remainder of this section, and throughout most of the sequel,
a g-algebra A will be identified with its copy in D(.M;(A)).

R(4) = N {R({): fe A} is called the real ideal space of A; it consists
of those M e (4) with A/M = R. There is a natural homomorphism u
(or ua) of 4 into C(R(4)) defined by u(f)=f| R(4).

1.2. u is one-lo-one iff R(A) is-dense in (A4).

This follows readily using the ‘‘separation condition” in 1.1.

When R(4) is dense, 4 is called a ¢-algebra of real-valued functions
(6], § 4). ‘

Consider a continuous map v: ¥ —R(4). Putting +'(f) = f o7, for
feOR(4)) defines s homomorphism 7': O(R(4))—~0(¥), and 7' op is
a homomorphism of 4 into C(Y).

1.3. Let a: A—~B be a homomorphism of ¢-algebras A and B. Then
there is continuous v: R(B)—R(A) for which v’ o ps = up o a.

This is proved easily by mimicking the details in ([3], 10.6), which
concerns the case when A and B are (.

1.4. If the p-algebra A is isomorphic to some C(X), then A is isomorphic
to O(R(4)) by pa.

* This is noted in ([5], § 5); it is immediate from 1.3.

The phrases “isomorphic to some C(¥)” and “isomorphic to C(R(4))”
henceforth will be used interchangably.

A g-algebra 4 is said to be uniformly closed if 4 iy complete in the
metric S

L5. o(f, 9) = sup{|f(@)—g(@)| A 1|: @ e R(f) ~ R(g)}.

(Completeness in p is equivalent to an algebraic condition on 4
(5], 3.1).)- :

It Ais n.ot uniformly closed, the completion in ¢ need not be a ring
([6], 1.8). This partly accounts for the form of the following:

1.6. Le‘t A and B be p-algebras with M(4) = M (B). Suppose B is
the completion of A in o. Then R(A)= R(B): - L
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r Since 4 C B, R(4)D R(B). R(4)C R(B) follows fror the fact that
o(fa, f)=>0 iff f, converges uniformly to f on [} R(fa).
7T @(X).) We consider, for a moment, arbitrary eommutdtive rings with
identity, following ([2], Ch. 1). (The more general situation of modules is
discussed hicely in [1]:) " ‘ . R
Let A be such a ring, and B an overring with the same identity as A,
B is said to be'a ring of quotients of A if for each b ¢ B, no element of B
other than 0 annihilates {s ¢ A: ba e A} by multiplication. With this
definition, A has a uniqueé maximal ring of guotients which contains,
and often properly, the “classical” ring of quotients, which is obtained;
roughly speaking, by formal inversion of all non-zero-divisors of 4 [9]
" Now let-X be a conmpletely regular Hausdorff space, and @(X) the
magimal ring of quotients of €(X). Consider the set |J {¢(V): V is dense
and open in X} modulo the equivalence relation mentioned before. If f
and § are the equivalence classes of f e C(V) and g e 0(V), then f+3 is,
by definition, the equivalence class of he O(V n W) defined by h{®)
= f(#)-+ ¢ (®). The product is defined similarly. It is shown in ([2]; 2.6)
that the ring so obtained is isomorphic to Q(X). It is clear that fA g
and fv§ can be defined in a similar way, and also #f for 7 ¢ B; and all
operations are extensions of the corresponding operations in € (X). Thus,
Q(X) becomes a g-algebra, and a g-algebraic. extension of C(X).
(Another extension of €(X)is obtained by considering | J {O(V): V is
4 dense cozero-set in X} and proceeding as above. [A cozero-seb in X is
a get of the form {r ¢ X: f(z) 5 0}, for some f e U (X).] This is isomorphic
fo the “classical” ring of quotients of ¢(X) ([2], 2.6); direct verification
of this is easy. This ring is @ (X) if each open set in X is & cozero-set, e.g.,
if X is metrizable. But frequently @(X) differs: let X be the one-point
compactification of an uncountable discrete space D; D is the smallest
dense open set in X, so that @(X) = C(D); X has no proper dense cozero-
set, so the “classical” ring of quotients is €(X).) -
- Ultifnately,’ e thall examine homomorphisms’ of Q(X) to a p-algebra
0(Y), and, therefore, we shall want to know: about 6(Q(X)). Much in--
formation ean be obtained from [2]; there i3 considered the’ spate
of maximal 7ing ideals. There is no difference, because each maximal
ring ideal is absolutely convex. A mimic of ([3], 5.5) establishes this.
-2 (Th 8 worth noting that each ring homomorphism of @ (X) ‘to a 0(¥)
which' ‘carties 1 to 1 i§ a g-algebra homomorphism. This is s6 because
gon-negative‘elements (in these rings) are squares, and therefore the order,
and .- the lattice operations, are determined by the multiplication.)
In ([2], 11.15, etc.), it is shown that J6(Q (X )) is (homeomorphic ‘to)
the Stone representation spacé of the complete Boolean algebra of regular
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open subsets of X (or X). This, and the proof of ([4], 3.2) suffice to
conclude that

2.1, A6(Q( X)) is the projective: resolution of BX. That is, A(Q( (x)
is extremally disconnected, and there is a continuous map sz of H{Q(X))
onto X which maps proper closed subsets of M6(Q(X)) onto proper subsets
of BX (i.e., = is “irreducidle”).

(Actually, the information 2.1 is derived more-or- -less directly in ([2),
6.7 and 6.9).)

An extremally disconnected — henceforth, ‘“‘e.d.” — space has, by
definition, the property that open sets have open closure; and, in an e.d.
space, dense subsets, and open subsets, are O*-embedded ([3], 1H and 6M).
It follows that D(K), for K e.d., is a uniformly closed @-algebra ([B],
2.2, efic.). The completion, §(X), of @ (X) in the metric 1.5 is a subset of 1)
(46(@(X))). Tn fact,

2.2. Q(X) = D(4(Q(X))).

(This is a dlsgmsed version of ([2], 5.5). We leave the translation to
the reader.)

Now, with K compact e.d., Jo(D(K))= K (remarked in ([5], 3.9),
and so it follows from 1.6 that & (Q(X)) = J{(D (AL(Q(X)))). We are led,
therefore, to the following considerations.

The real ideals of D(X). In this section, K will be & compact
e.d. space, so that D(K) is a uniformly closed ¢-algebra. (M) denotes
the agsumption that the cardinal of D(K), or equivalently, the cardinal
of K, is non-measurable. (See [3], Ch. 12.) '

3.1. (M) R(D(E)) is the set of isolated points of K.

- Proof. Each isolated point lies in R (D(K)) because R(f)’s are dense.
For the converse, it suffices to show that (M) if p is not isolated in the e.d.
space K, then there is f e O(K) with f(p)= 0 and f positive on a densge
supset of K. Then, inverting f produces the desired function in .D(I).
f is constructed by the (non-trivial) argument in ([3], 1201 1-4). (The
reference is to a proof of Isbell’s theorem that (M) an e.d. P-space is
discrete.)

8.2. (M) the map w: D(K)~ C(R(D(K))) is onto.

Proof. Because of 8.1, R(D (X)) is open in K and therefore ¢*-em-
bedded. So, if f e O(%(D(K))), f extends over the closure of &(D(IK))
with values in E. Assign the value 0 off the closure of & (D (K)). Because
this closure is open, the resulting function is continnous; its image
under x is f.

The following applies immediately to §(X
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3.3. D(K) is a p-algebra of real-valued functions iff D(K) is isomorphie
to some C(X).

Proof. This follows from 3.2 and 1.3. But (M) isn’t needed: if
RK(D(E)) is dense, it is C*-embedded, and this makes p onto.

3.4. Remarks. (a) 3.1 is false without (M). Let K be the Stone-
Cech compactification of a discrete space of measurable cardinal. Then
R(D(K)) is not discrete. See ([3], 12H. 7).

(b) Let ¥ be the one-point compactification of an uncountable
discrete space. ¥ is mnot ed., but D(¥)= 0(Y) is a @-algebra.
R(D(¥)) =¥, and is not discrete.

(e) I don’t know if (M) is needed in 3.2.

(d) Suppose ¥ is a compact space for which D(Y) is a ¢- algebra,
(i.e. each dense cozero-setis C*-embedded ([5], 2.2)). It would be interesting
to have a condition on ¥ equivalent to “D(Y) is isomorphic to some C(Z)”.
This does not automatically follow from “D(Y) is a ¢-algebra of real-
valued functions”. The Baire functions on R is an example; see ([5], 5.1
and 3.5).

The main result. From 3.1, and previous vesults, we see that the
condition that Q(X) be isomorphic to a ((¥) is concerned with the con-
dition that the set of the isolated points of +46{Q (X)) be dense. The latter
is translated into a property of X using the following:

4.1. Tet f be an irreducible closed continuous map of K onto Z (T-spaces).
Then, the isolated points of K are in one-to-ome correspondence with the
isolated points of Z by f; and one set is dense iff the other is.

Proof. If p is isolated in K, then f(K— {p} ) is a proper closed subset
of Z. Evidently, f(K—{p}) excludes only f(p), so {f(p)} i8 open (This
argument is ([8], 11.1).) Next, let # be isolated in Z. Then f ) is open;
we show it is a singleton. If not, there are p, g € &) with p ;é g. Choose
open U containing p but not g, and arrange it that f ) C {&} (by con-
tinuity). But f(K— U)= Z, and this contradicts irreducibility.

Finally, if the isolated points of K are dense, then so are the isolated
points of Z, by continuity. The converse is immediate because f is closed
and irreducible.

4.2. The isolated points of A(Q (X)) are in one-to-one correspondence
with the isolated points of X. One set is dense iff the other is.

Proof. The isolated points of X are precisely those of X (denseness
of X and ([3], 6.9 (d))). Now apply 4.1.

From 4.2, 3.1, 2.2, 1.6, and 1.3, it follows that each homomorphism
of Q(X) into C(Y) is of the form 7’ o u, where u can be regarded as re-
striction of the “funections” in the Fine—Gillman-Lambek realization
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of Q(X) to the set of isolated points of X, and 7 is & continuous map of I
into the set of isolated points of X.

£3. (M) @ Q(X)—~0(R(Q(X))is onto.

Proof. It suffices that each fanetion on the isolated points of J‘Y be
extendible over some dense open subset of X: assign the value 0 off the
closure of the set of isolated points.

Remark. The property of 4.3 is not ghared by all ,,dense” sub-
p-algebras of D(K), % e.d. Let K be the Stone-Cech compactification
of an uncountable discrete space X. upum is an isomorphism. onto 0(X).
Tet A be the sub-g-algebra of functions f with f(X) countable.

4.4, THEOREM. The following are equivalent (M).

(1) Q(X) is a @-algebra of real-valued functions.

Q(X) s a g-algebra of real-valued funclions.

6) The isolated points of X are dense in X.

Proof. (1)<=(2) because R(Q (X)) = R(Q(X)) (1.6, etc.). ( ;
by 3.1 (ete.). (1)«==(3) by 4.3. (2)==(4) by 3.3 (and 2.2). (B)<=(6)
by 4.2. :

We conclude with a related problem.

In ([2], 4.11) it is shown that the Dedekind completion of 0(X) is
(isomorphic to) the subring of Q(X) of all C-bounded functions, ie.,
those fe @(X) such that for some g, ke 0(X), g <f<h

4.5. TEEOREM. (M) Q(X) is the Dedekind completion of C(X) iff X
is discrete.

Proof. If X is discrete, then §(X)= 0(X), and the result follows.

For the converse, let ¢ denote the Dedekind completion of ¢ (X).
If §(X) = ', then R((X)) = R(C’). Thus, using 3.1, R((") is diserete.
Tt is known that R(C') is the projective resolution of X ([7], p. 236).
(vX is the Hewitt realcompactification of X [3].) By 4.1, vX 1§ discrete,
and so X is also (from, say, ([3] 6.9 (d)) and the fact that »X C X).

(Another proof utilizes specific knowledge of the embedding of ¢(X)
into D{A6(Q (X)), namely: 0(X)> f->ff o, where = is the map of 2.1
and f* denotes the Stone extension of f over §X into R ([3], 6.5). Then,
it # is not isolated in X, any p e 7-X&) is not isolated, and p ¢ R(G(X));
If f e @(X) has f(p) = +oo, then f is not (-bounded.)
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