

Isomorphism with a C(Y) of the maximal ring of quotients of C(X)*

bу

Anthony W. Hager ** (Middletown, Conn.)

Using the R. Johnson-Y. Utumi definition of "ring of quotients", Fine, Gillman, and Lambek have studied the maximal ring of quotients of C(X) (the ring of continuous real-valued functions on the completely regular Hausdorff space X) [2]. A principle result of theirs is that this ring, denoted Q(X), is isomorphic to the ring of all continuous real-valued functions on dense open subsets of X, modulo identification of functions which agree on a dense open set. Using this realization, we shall prove: Q(X) is isomorphic to some C(Y) iff the isolated points of X form a dense subset of X (provided no measurable cardinals exist nearby). Some related problems will be dealt with, also.

In order to prove this theorem, and its relatives, it seems necessary to know at least a little about how Q(X) can be represented on its space of maximal ideals. A convenient context is provided by the theory of φ -algebras of Henriksen and Johnson [5]. With this backdrop, the present proofs proceed quite naturally.

We shall assume a certain familiarity with C(X) (as in [3]), and therefore with the Stone-Čech compactification βX . A sketch of the background on φ -algebras and on Q(X) has been included.

 φ -algebras. We indicate those features of φ -algebras which will be useful.

Let K be a compact space, and let D(K) be the set of continuous functions f on K to \overline{R} , the two-point compactification of the reals R, for which $\mathcal{R}(f) = f^{-1}(R)$ is dense. Let $f, g, h \in D(K)$. By definition, f = g + h if f(x) = g(x) + h(x) for $x \in \mathcal{R}(g) \cap \mathcal{R}(h)$. Sums of elements of D(K) need not exist in D(K). Similarly, $f = g \cdot h$ is defined, and similarly, products need not exist. But, with the obvious definitions, $g \vee h$, $g \wedge h$, and rg $(r \in R)$ always exist in D(K).

^{*} Research partially supported by the National Science Foundation under grants GP 5793 and GP 7455 at the University of Rochester.

^{**} I'm pleased to thank D. G. Johnson for reading and criticizing this note.

A φ -algebra is an archimedean lattice-ordered algebra over R, with an identity which is a weak order unit. A homomorphism of φ -algebras is an algebra homomorphism preserving the lattice operations. The kernels of $(\varphi$ -algebra) homomorphisms are the absolutely convex ring ideals. The term " φ -subalgebra" of D(K) is meant with respect to the operations in D(K) discussed above.

1.1 ([5], 2.3). A φ -algebra A is isomorphic to a φ -subalgebra of $D(\mathcal{M}(A))$, where $\mathcal{M}(A)$ is the set of maximal absolutely convex ring ideals of A carrying the Stone topology. Under this isomorphism, the identity of A becomes the constant function 1; the copy of A "0-1 separates" disjoint closed subsets of $\mathcal{M}(A)$.

In the remainder of this section, and throughout most of the sequel, a φ -algebra A will be identified with its copy in $D(\mathcal{M}(A))$.

 $\mathfrak{K}(A) = \bigcap \{ \mathfrak{K}(f) \colon f \in A \}$ is called the *real ideal space of* A; it consists of those $M \in \mathcal{M}(A)$ with A/M = R. There is a natural homomorphism μ (or μ_A) of A into $C(\mathfrak{K}(A))$ defined by $\mu(f) = f \mid \mathfrak{K}(A)$.

1.2. μ is one-to-one iff $\mathcal{R}(A)$ is dense in $\mathcal{M}(A)$.

This follows readily using the "separation condition" in 1.1.

When $\mathcal{R}(A)$ is dense, A is called a φ -algebra of real-valued functions ([5], § 4).

Consider a continuous map $\tau\colon Y\to\mathcal{R}(A)$. Putting $\tau'(f)=f\circ\tau$, for $f\in C(\mathcal{R}(A))$ defines a homomorphism $\tau'\colon C(\mathcal{R}(A))\to C(Y)$, and $\tau'\circ\mu$ is a homomorphism of A into C(Y).

1.3. Let $a: A \rightarrow B$ be a homomorphism of φ -algebras A and B. Then there is continuous $\tau: \Re(B) \rightarrow \Re(A)$ for which $\tau' \circ \mu_A = \mu_B \circ \alpha$.

This is proved easily by mimicking the details in ([3], 10.6), which concerns the case when A and B are C's.

1.4. If the φ -algebra A is isomorphic to some C(Y), then A is isomorphic to $C(\mathcal{R}(A))$ by μ_A .

This is noted in ([5], § 5); it is immediate from 1.3.

The phrases "isomorphic to some C(X)" and "isomorphic to $C(\mathcal{R}(A))$ " henceforth will be used interchangably.

A φ -algebra A is said to be $uniformly\ closed$ if A is complete in the metric

1.5. $\varrho(f,g) = \sup\{|f(x)-g(x)| \land 1|: x \in \mathcal{R}(f) \cap \mathcal{R}(g)\}.$

(Completeness in ϱ is equivalent to an algebraic condition on A ([5], 3.1).)

If A is not uniformly closed, the completion in ϱ need not be a ring ([6], 1.8). This partly accounts for the form of the following:

1.6. Let A and B be φ -algebras with $\mathcal{M}(A) = \mathcal{M}(B)$. Suppose B is the completion of A in ϱ . Then $\Re(A) = \Re(B)$.

Since $A \subset B$, $\mathcal{R}(A) \supset \mathcal{R}(B)$. $\mathcal{R}(A) \subset \mathcal{R}(B)$ follows from the fact that $\varrho(f_n, f) \to 0$ iff f_n converges uniformly to f on $\bigcap \mathcal{R}(f_n)$.

Q(X). We consider, for a moment, arbitrary commutative rings with identity, following ([2], Ch. 1). (The more general situation of modules is discussed nicely in [1].)

Let A be such a ring, and B an overring with the same identity as A. B is said to be a ring of quotients of A if for each $b \in B$, no element of B other than 0 annihilates $\{a \in A: ba \in A\}$ by multiplication. With this definition, A has a unique maximal ring of quotients which contains, and often properly, the "classical" ring of quotients, which is obtained, roughly speaking, by formal inversion of all non-zero-divisors of A [9].

Now let X be a completely regular Hausdorff space, and Q(X) the maximal ring of quotients of C(X). Consider the set $\bigcup \{C(V)\colon V \text{ is dense}\}$ and open in $X\}$ modulo the equivalence relation mentioned before. If \hat{f} and \hat{g} are the equivalence classes of $f\in C(V)$ and $g\in C(W)$, then $\hat{f}+\hat{g}$ is, by definition, the equivalence class of $h\in C(V\cap W)$ defined by h(x)=f(x)+g(x). The product is defined similarly. It is shown in ([2], 2.6) that the ring so obtained is isomorphic to Q(X). It is clear that $\hat{f}\wedge\hat{g}$ and $\hat{f}\vee\hat{g}$ can be defined in a similar way, and also \hat{rf} for $r\in R$; and all operations are extensions of the corresponding operations in C(X). Thus, Q(X) becomes a φ -algebra, and a φ -algebraic extension of C(X).

(Another extension of C(X) is obtained by considering $\bigcup \{C(V): V \text{ is a dense cozero-set in } X\}$ and proceeding as above. [A cozero-set in X is a set of the form $\{x \in X: f(x) \neq 0\}$, for some $f \in C(X)$.] This is isomorphic to the "classical" ring of quotients of C(X) ([2], 2.6); direct verification of this is easy. This ring is Q(X) if each open set in X is a cozero-set, e.g., if X is metrizable. But frequently Q(X) differs: let X be the one-point compactification of an uncountable discrete space D; D is the smallest dense open set in X, so that Q(X) = C(D); X has no proper dense cozero-set, so the "classical" ring of quotients is C(X).)

Ultimately, we shall examine homomorphisms of Q(X) to a φ -algebra C(Y), and, therefore, we shall want to know about $\mathcal{M}(Q(X))$. Much information can be obtained from [2]; there is considered the space of maximal ring ideals. There is no difference, because each maximal ring ideal is absolutely convex. A mimic of ([3], 5.5) establishes this. (It is worth noting that each ring homomorphism of Q(X) to a C(Y) which carries 1 to 1 is a φ -algebra homomorphism. This is so because non-negative elements (in these rings) are squares, and therefore the order, and the lattice operations, are determined by the multiplication.)

In ([2], 11.15, etc.), it is shown that $\mathcal{M}(Q(X))$ is (homeomorphic to) the Stone representation space of the complete Boolean algebra of regular

open subsets of βX (or X). This, and the proof of ([4], 3.2) suffice to conclude that

2.1. $\mathcal{M}(Q(X))$ is the projective resolution of βX . That is, $\mathcal{M}(Q(X))$ is extremally disconnected, and there is a continuous map π of $\mathcal{M}(Q(X))$ onto βX which maps proper closed subsets of $\mathcal{M}(Q(X))$ onto proper subsets of βX (i.e., π is "irreducible").

(Actually, the information 2.1 is derived more-or-less directly in ([2], 6.7 and 6.9).)

An extremally disconnected — henceforth, "e.d." — space has, by definition, the property that open sets have open closure; and, in an e.d. space, dense subsets, and open subsets, are C^* -embedded ([3], 1H and 6M). It follows that D(K), for K e.d., is a uniformly closed φ -algebra ([5], 2.2, etc.). The completion, $\bar{Q}(X)$, of Q(X) in the metric 1.5 is a subset of $D(\mathcal{M}(Q(X)))$. In fact,

2.2.
$$\bar{Q}(X) = D(\mathcal{M}(Q(X)))$$
.

(This is a disguised version of ([2], 5.5). We leave the translation to the reader.)

Now, with K compact e.d., $\mathcal{M}(D(K)) = K$ (remarked in ([5], 3.9), and so it follows from 1.6 that $\mathcal{R}(Q(X)) = \mathcal{R}(D(\mathcal{M}(Q(X))))$. We are led, therefore, to the following considerations.

The real ideals of D(K). In this section, K will be a compact e.d. space, so that D(K) is a uniformly closed φ -algebra. (M) denotes the assumption that the cardinal of D(K), or equivalently, the cardinal of K, is non-measurable. (See [3], Ch. 12.)

3.1. (M)
$$\Re(D(K))$$
 is the set of isolated points of K.

Proof. Each isolated point lies in $\mathcal{R}(D(K))$ because $\mathcal{R}(f)$'s are dense. For the converse, it suffices to show that (M) if p is not isolated in the e.d. space K, then there is $f \in C(K)$ with f(p) = 0 and f positive on a dense subset of K. Then, inverting f produces the desired function in D(K). f is constructed by the (non-trivial) argument in ([3], 12H. 1-4). (The reference is to a proof of Isbell's theorem that (M) an e.d. P-space is discrete.)

3.2. (M) the map $\mu: D(K) \rightarrow C(\mathcal{R}(D(K)))$ is onto.

Proof. Because of 3.1, $\Re(D(K))$ is open in K and therefore C^* -embedded. So, if $f \in \mathcal{C}(\Re(D(K)))$, f extends over the closure of $\Re(D(K))$ with values in \overline{R} . Assign the value 0 off the closure of $\Re(D(K))$. Because this closure is open, the resulting function is continuous; its image under μ is f.

The following applies immediately to $\bar{Q}(X)$.

3.3. D(K) is a φ -algebra of real-valued functions iff D(K) is isomorphic to some C(Y).

Proof. This follows from 3.2 and 1.3. But (M) isn't needed: if $\mathcal{R}(D(K))$ is dense, it is C^* -embedded, and this makes μ onto.

- 3.4. Remarks. (a) 3.1 is false without (M). Let K be the Stone-Čech compactification of a discrete space of measurable cardinal. Then $\mathfrak{R}(D(K))$ is not discrete. See ([3], 12H.7).
- (b) Let Y be the one-point compactification of an uncountable discrete space. Y is not e.d., but D(Y) = C(Y) is a φ -algebra. $\mathcal{R}(D(Y)) = Y$, and is not discrete.
 - (c) I don't know if (M) is needed in 3.2.
- (d) Suppose Y is a compact space for which D(Y) is a φ -algebra (i.e. each dense cozero-set is C^* -embedded ([5], 2.2)). It would be interesting to have a condition on Y equivalent to "D(Y) is isomorphic to some C(Z)". This does not automatically follow from "D(Y) is a φ -algebra of real-valued functions". The Baire functions on R is an example; see ([5], 5.1 and 3.5).

The main result. From 3.1, and previous results, we see that the condition that Q(X) be isomorphic to a C(Y) is concerned with the condition that the set of the isolated points of $\mathcal{M}(Q(X))$ be dense. The latter is translated into a property of X using the following:

4.1. Let f be an irreducible closed continuous map of K onto Z (T_1 -spaces). Then, the isolated points of K are in one-to-one correspondence with the isolated points of Z by f; and one set is dense iff the other is.

Proof. If p is isolated in K, then $f(K-\{p\})$ is a proper closed subset of Z. Evidently, $f(K-\{p\})$ excludes only f(p), so $\{f(p)\}$ is open. (This argument is ([8], 11.1).) Next, let x be isolated in Z. Then $f^{-1}(x)$ is open; we show it is a singleton. If not, there are p, $q \in f^{-1}(x)$ with $p \neq q$. Choose open U containing p but not q, and arrange it that $f(U) \subset \{x\}$ (by continuity). But f(K-U) = Z, and this contradicts irreducibility.

Finally, if the isolated points of K are dense, then so are the isolated points of Z, by continuity. The converse is immediate because f is closed and irreducible.

4.2. The isolated points of $\mathcal{M}(Q(X))$ are in one-to-one correspondence with the isolated points of X. One set is dense iff the other is.

Proof. The isolated points of βX are precisely those of X (denseness of X and ([3], 6.9 (d))). Now apply 4.1.

From 4.2, 3.1, 2.2, 1.6, and 1.3, it follows that each homomorphism of Q(X) into C(Y) is of the form $\tau' \circ \mu$, where μ can be regarded as restriction of the "functions" in the Fine-Gillman-Lambek realization

of Q(X) to the set of isolated points of X, and τ is a continuous map of Y into the set of isolated points of X.

4.3. (M) $\mu: Q(X) \rightarrow C(\Re(Q(X)))is$ onto.

Proof. It suffices that each function on the isolated points of X be extendible over some dense open subset of X: assign the value 0 off the closure of the set of isolated points.

Remark. The property of 4.3 is not shared by all "dense" sub- φ -algebras of D(K), K e.d. Let K be the Stone-Čech compactification of an uncountable discrete space X. $\mu_{D(K)}$ is an isomorphism onto C(X). Let A be the sub- φ -algebra of functions f with f(X) countable.

- 4.4. Theorem. The following are equivalent (M).
- (1) Q(X) is a φ -algebra of real-valued functions.
- (2) $\bar{Q}(X)$ is a φ -algebra of real-valued functions.
- (3) Q(X) is isomorphic to some C(Y).
- (4) $\bar{Q}(X)$ is isomorphic to some C(Y).
- (5) The isolated points of $\mathcal{M}(Q(X))$ are dense in $\mathcal{M}(Q(X))$.
- (6) The isolated points of X are dense in X.

Proof. (1) \Leftrightarrow (2) because $\Re(Q(X)) = \Re(\bar{Q}(X))$ (1.6, etc.). (2) \Leftrightarrow (5) by 3.1 (etc.). (1) \Leftrightarrow (3) by 4.3. (2) \Leftrightarrow (4) by 3.3 (and 2.2). (5) \Leftrightarrow (6) by 4.2.

We conclude with a related problem.

In ([2], 4.11) it is shown that the Dedekind completion of C(X) is (isomorphic to) the subring of $\overline{Q}(X)$ of all C-bounded functions, i.e., those $f \in \overline{Q}(X)$ such that for some $g, h \in C(X)$, $g \leq f \leq h$.

4.5. Theorem. (M) $\bar{Q}(\boldsymbol{X})$ is the Dedekind completion of $C(\boldsymbol{X})$ iff \boldsymbol{X} is discrete.

Proof. If X is discrete, then $\bar{Q}(X) = C(X)$, and the result follows.

For the converse, let C' denote the Dedekind completion of C(X). If $\overline{Q}(X) = C'$, then $\mathcal{R}(\overline{Q}(X)) = \mathcal{R}(C')$. Thus, using 3.1, $\mathcal{R}(C')$ is discrete. It is known that $\mathcal{R}(C')$ is the projective resolution of vX ([7], p. 236). (vX is the Hewitt realcompactification of X [3].) By 4.1, vX is discrete, and so X is also (from, say, ([3] 6.9 (d)) and the fact that $vX \subset \beta X$).

(Another proof utilizes specific knowledge of the embedding of C(X) into $D(\mathcal{M}(Q(X)))$, namely: $C(X) \circ f \to f^{\beta} \circ \pi$, where π is the map of 2.1 and f^{β} denotes the Stone extension of f over βX into \overline{R} ([3], 6.5). Then, if x is not isolated in \dot{X} , any $p \in \pi^{-1}(x)$ is not isolated, and $p \notin \mathcal{R}(\overline{Q}(X))$. If $f \in \overline{Q}(X)$ has $f(p) = +\infty$, then f is not C-bounded.)

References

- [1] G. D. Findlay and J. Lambek, A generalized ring of quotients I, II, Canad. Math. Bull. 1 (1958), pp. 77-85 and 155-167.
- [2] N. J. Fine, L. Gillman, and J. Lambek, Rings of quotients of rings of functions, Montreal 1966.
 - [3] L. Gillman and M. Jerison, Rings of continuous functions, Princeton 1960.
- [4] Andrew M. Gleason, Projective topological spaces, Ill. J. Math. 2 (1958), pp. 482-489.
- [5] M. Henriksen and D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebra, Fund. Math. 50 (1961), pp. 73-94.
- [6] J. R. Isbell, Algebras of uniformly continuous functions, Ann. of Math. 68 (1958), pp. 96-125.
- [7] J. E. Mack and D. G. Johnson, The Dedekind completion of $\mathcal{C}(X)$, Pac. J. Math. 20 (1967), pp. 231-243.
- [8] V. I. Ponomarev, On spaces co-absolute with metric spaces, Russian Math. Surveys (London Math. Soc. translations) 21 (1966), pp. 87-114.
 - [9] O. Zariski and P. Samuel, Commutative algebra, Vol. I, Princeton 1958.

WESLEYAN UNIVERSITY

Reçu par la Rédaction le 16. 1. 1968