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Introduction. A subset P of we is determinate if, in the sense
of [5] the game G,(P) is determined. The assumption that every projective
set is determinate implies that every projective set is Lebesgue measurable
(see [6]) and leads to a complete solution to the problem of reduction
and separation prineciples in the classical and effective projective hi-
erarchies [1], [4]. Because if these and other consequences it would e
pleasant to have a proof that every projective set is determinate. The
best available result is that every F,; is determinate [2]. It is not provable
in Zermelo-Fraenkel set theory that every analytic (¥) set is determi-
nate [5]. (})

We assume the existence of a measurable cardinal and prove that
every analytic set is determinate. Our proof is fairly simple and makes
a very direct use of the large cardinal assumption (we present it in terms
of a Ramsey cardinal) and the fact that open games are determined.
We believe that larger cardinals will yield a generalization of our proof
to all projective sets. The assumption that measurable cardinals exist
is known not to imply even that all 43 sets are determinate. (This follows
from [1], [4] and work of Silver.)

§ 1. Definitions. (For more information on the analytical hierarchy
see {7], [8]; on infinite games see [5]; on large cardinals see [10], [11].)

Lét w be the set of all natural numbers. If f: w->4, the function f is
defined by setting f(n) equal to the sequence (f(0),f(1),...,f(n—1)>
of the firgt n values of f. Let Seq be the set of all finite sequences of natural
nunmbers. Let n —%, be some enumeration of Seq with the property that %,
hag length < n. The Kleene-Brouwer ordering of Seq is defined by

f(m) is a proper extension of g(n),
f(m) < (n)«>]or at the least p for which f(p) = g(p),
f(p)<g(p).

(*) Harvey Friedman (unpublished) has shown that the determinateness of Borel sets
cannot be proved in Zermelo set theory. Whether it can be proved in Zermelo-Fraenkel
set theory remains open.
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Let E(i ; j, k) be a relation in Seq® and let f and ¢ map @ into w.
A sequence %(n) is secured with respect to f, g, and R if

(8w < ) B(f(m), Fim), B(m)) .

A fundamental fact is that (h)('&n)R(}’(n), g(n), n) holds if and only
if the Kleene-Brouwer ordering of the sequences unsecured with respect
to f, g, and B is a well-ordering.

Let » be an uncountable cardinal number. Let =™ be the set of all
subsets of » of cardinality n. Let F be a set such that, if F' e F, there
is an n << @ such that F: #™M—>w. X Cx is a homogeneous set for F i,
for each F' e & with F: »"™ +o» and elements a and b of ™ which are
subsets of X, F(a)= F(b). If « is an ordinal number, »->(a)=" means
that, for every countable F, there is a homogeneous set for F of order

type a. = is-a Ramsey cardinal if »-—(x)=". Every measurable cardinal

is Ramsey.

Let A and B be sets and let € C A” x B”. The (Gale-Stewart) infinite
game defined by 4, B, and ( is given as follows: Players I and II move
alternately, choosing elements of 4 and B respectively at each turn.
In this way functions f: w—+4 and ¢: w-—B are produced. I wins if
{f, 9> «C. I has a winning strategy if there is a function which, given
the first » plays of II, gives an (n--1)st play for I in such a manner that T
wins whatever II plays. A game is determined if either I or IT has a winning
strategy., Let 4 = B = w. The game defined by 4, B, and C is analytic
(%) if there is a relation R({,§,k) in Seq® such that

= {<f, o> (@B) () R(f(n), §(n), h(n))}

(i.e., if ¢ is the projection of a closed set in (w®)® under the product
topology.) The game is Borel if some R satisfies the condition above and
furthermore there is a countable ordinal ¢ such that for no f and g is the
Kleene-Brouwer ordering of sequences unsecured with respect to f, g,
and Seq’—R a well-ordering of order type > a.

§ 2. The determinateness of analytic sets.
THEOREM. (a) If (Hwx)[x—(w)~"] every analytic game is determined.
(b) If (Hx)(a < w)[%—>(c)<"] every Borel game is determined.
Proof. Only (a) will be proved, as the prove of (b) is similar. Let
% —>(w,)“*. Let R CSeq® I and II, moving alternately, produce functions
fr w0 and ¢: w—>w. II wins if
() (&n) B (f(n), §(n), k() .

Call this Game 1. We consider a second game (Game 2). I picks f: w—»o
and II picks not only ¢: o—o but also ¢: w—>x (At stage n, I selects
the ordered pair (g(n), G(n)).) Via the enumeration kn, @G induces a map
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G Seq—x. Il wing Game 2 if G*(%) = 0 for all & secured with respect
to f, g, and B and G* preserves the Kleene-Brouwer ordering on the
unsecured sequences.
LEMMA 1. Game 2 is determined.

Proof. This is the Gale-Stewart result for open games [3]. If T has
no winning strategy, IT makes the least plays at each move such that I
still has no winning strategy. Since IT wins provided that he has not lost
by some finite stage, this strategy wins for II. (There is a concealed use
of the Axiom of Choice in this proof which can be eliminated.)

Lemma 2. If IT has « winning strategy for Game 2, IT has a winning
sirategy for Game 1.

Proof. If II wins Game 2, the Kleene-Brouwer ordering on the
unsecured sequences is a well-ordering. (The converse of Lemma 2 can be
proved without assuming x--(w,)=” but only that » is uncountable.)

Levma 3. If T has a winning strategy for Game 2, I has a winning
strategy for Game 1.

Proof. Let f(n)= f*j(n), @(n)) be a winning strategy for I for
Game 2. Let f(n) zmd g(n) be a,ny finite sequences. Let ki, ..., ki, for
i; < n be the sequences unsecured with respect to f’, ¢’, and R for any
f', ¢ agreeing with f(n), §(n) respectively. (Since k; has length < j, its
being secured depends only on f(j) and g(j).) Liet @ ¢ »1. There is a unique
sequence @ (n) such that G(p) = 0 if &y is secured and G* maps {ki,, ..., ki)
into @ so as to preserve the Kleene-Brouwer ordering. We define

: W™ by Ff(n),g(n) )=f**(,¢7(n), @('I’b))
where G(n) is the sequence defined above.

Let F = {Fy, sny F(n), §(n) eSeq}. Let X be a homogeneous seb

for 7 order type w,. We define a strategy f* for I for Game 1 inductively by

f*(g_('"’)) = Ff(n),g'(n)(Q)
where f(n) is the result of applying f* to the first » plays g(p) and @ e »™

Ly, iy

" is any subset of X. If f* is not a winning strategy, there is a play ¢ such

that, for the play f given by f*, the Kleene-Brouwer ordering of the
sequences unsecured with respect to f, ¢, and R is & well-ordering. Let &
be such that G(n) = 0 for &, secured and G* maps the unsecured sequences
in an order preserving manner into X. f is then the play according to f**
against ¢ and @, and so we have a contradiction.

§ 3. Further results. Combining our argument with the methods
of [11], we can prove that, if (Hw)[x->(w)="], then every Z} game has
a A; winning strategy. (We owe this observation to Solovay.)


GUEST


290 D. A. Martin

For sets 4 and B, give A”x B”x «” the preduct topology, where
4, B, and o are given the discrete topology. Let ¢'C A®°x B” be the
projection of a closed set in A”X B”X ® Our argument can be used
to show that the game defined by 4, B, and C is determined, on the
assumption that a Ramsey cardinal larger than the cardinals of 4 and
B exists.

In [5], using a theorem of Davis [2], Mycielski shows that, if every
analytic game is determined, then every uncountable CA (M) set has
a perfect subset. Our theorem thus gives a new and very different proof
of a result of Solovay [12] and Mansfield: If (Hx)[ —~(w,)"“] then every
uncountable CA set has a perfect subset.

By a theorem of Shoenfield [8], the assertion that all Borel games
are determined relativizes to L, the universe of constructible sets. Hence
we have that, if (Hx)(a << wy)[x ->(a)=“], then “all Borel games are de-
termined” holds in L. We should note that Silver has shown that
()@ < ,)[%—(a)="] relativizes to L.

§ 4. What games are determined? We believe that the best
way of approaching this problem is to see what games one can prove
to be determined using plausible large cardinal assumptions. Nevertheless,
some guesses may prove useful.

Addison and Moschovakis [1] suggest that definability may be the
crucial property which guarantees determinateness. Their ‘“Axiom of
Definable Determinateness’ asserts that, if A= B = » and C is ordinal
definable from a member of »°, then the game defined by 4, B, and C
is determined. A problem with this axiom is that there is little hope at
present of proving it from large cardinal assumptions or of using anything
like its full strength in deducing consequences (in both cases, because
of the unmanageable “ordinal definable’). A weaker proposition suggested
by Takeuti and by Solovay, which may not have these defects, is that
the Axiom of Determinateness holds in the smallest transitive class
containing all ordinals and all subsets of w and satisfying the axioms of
set theory.

Another approach is to consider games of arbitrary length. For any -

ordinal e, sets 4, B, and 0 C A”x B® define a game of length 2a in the
obvious way. (See § 7 of [5].) The proposition that all games of length 2
are determined is equivalent to the Axiom of Choice [5]. Give 4 and B
the discrete topology and A%x B® the product topology. If C is open,
the game determined by A, B, and C is an open game of length 2a. The
proposition that all open games of every length are determined is in-
consistent. BEven if A = B = o, the Axiom of Choice can be used to con-
struct an undetermined open game of length w»,. However, it apparently
i8 posgible that every open game of length << w, with 4 = B = o is de-

icm®
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termined. Liet P» be the proposition that all open games of length w-n
where A = B = o are determined. It is easy to show that, for n< w,
Pny1 is equivalent to the assertion that all X sets are determinate. This
suggests that length may well be a sufficient compensation for what we
lose when we restrict ourselves to open games.
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