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Proof. Sinee f(x) is BVG-o on [a,b], we can express the interval
as the umion of a countable family of closed sets Ty, [a,b] = ;‘ Fy, on

each of which f(z) is BV-o. Congider the set F, where i is any positive
integer, By Theorem 3.1, there is a function gu(») in calss U such lthat;
gi(2) is BV-w on [a, b] and gi(z) = f(x) for all e F. .Deuo.te‘ by F; the
set of points of F; where the w-derivative of gi(z) exists flmi?ely. Then,
by Theorem 1.2, |F;—Fil,=0. Let B; denote the set of points of I
where the - density of § —F; is zero. Clearly F'; and 8 —T; are w-separat-
ed. So by Theorem 1.1, |Fi—ZEi,= 0. We have F,—-.Ei: (Fy—TF+
+(Fi—B). So |F;—FEi|, = 0. Let o be any point of H;. Since gi(x) = f()
on SF; and the w-derivative of gi(@) exists finitely at a, it follows that
(ap)fala) exists finitely. Since « is arbitrary, (ap)fe(#) exists finitely at
each point of E;. Write H = .ZEi' Then, at each point of H, (ap)fa(x)
exists finitely. Now [, b]—E C {Z(m—E;). So w*([a,b]—B) < ;a)*(Ff—
—E;) = 0. This proves the Theorem.

I am grateful to Dr. P. C. Bhakta for his kind help and suggestions
in the preparation of the paper.
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Structure spaces of lattices
by
J. R. Isbell and J. T. Morse (Cleveland, Ohio)

Introduction. This paper gives a simpler proof of the functoriality
of the structure space of maximal I-ideals of an f-ring with wunit. Like
the previous proof [3], this one depends (when analyzed) on a different,
visibly functorial construction that turns out to yield the maximal ideal
space. Both constructions generalize to distributive lattices with base
point. Hence the maximal ideal space of a unitary f-ring is determined
by the underlying lattice. This was previously known for commutative
semisimple unitary f-rings [6].

Kaplansky’s original proof that the lattice of continuous functions
C(X) on a compact Hausdorff space X determines X [4], and its generaliza-
tions until now, have used ad hoc constructions to wring the space from
the lattice. After an ad hoc beginning (the quickest), we exhibit the following
natural structure. A based distributive lattice I has a T, space =n(L) of
prime ideals containing. 0. The present construction, and Kaplansky’s,
form the finest quotient space (L) in which the closure of every point
is collapsed to a point. The more radical treatment of [3] yields a compact
Hausdortf space #(L), which, unlike & and x, is functorial for a category
of lattice homomorphisms containing the unitary f-ring homomorphisms.
Obvious mappings run (L) —x%(L)—B(L). The easiest way to establish
coincidence of #(L) and B(L) (and a space of prime ideals) is to find a sub-
space of m(L) continuously cross-sectioning (L) —p(L) and mapping
surjectively to x(L); that is what the maximal ideal space of a unitary
J-ring does, and also the maximal ideal space of an abelian l-group with
strong order unit [3]. A continuous cross-section is not enough (for a vector
lattice). We find a sufficient additional condition, for abelian l-groups,
to the effect that group elements positive at a point are non-negative
on a B(I)-neighborhood.

1. Maximal ideal spaces. Let J((4) be the space of maximal
i-ideals of a unitary f-ring. (It is compact Hausdortf [2]; compact by the
usual maximality argument, Hausdorff by a simple argnment due to
Gillman [1} depending on the fact that for M e M6(A), A/M is totally
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ordered.) An I-ideal is primary if it is contained in a unique maximal
I-ideal.

The only new results in this section are 1.2 and 1.5.

11. If h: A—B is a unitary homomorphism of wnilary f-rings and
M e J6(B), then B (L) is primary.

Proof. The image 4’ of A in B/M is totally ordered unitary. So
of any two [-ideals in it, one contains the other; 4’ has a unique maximal
I-ideal.

1.1 gives us a function A6(h): A6(B)->M(A), taking M to the maximal
ideal containing h™'(M).

For M € M:(4), among the primary ideals contained in 3 (the Iargest
is M, and) there is a smallest, G:(M) [2]. (Below we need its description
from [2].)

1.2. In M(4), if M, contains the intersection of {G(M,): J e A} then
it contains the intersection of {M,}.

Proof. If M, does not contain (") My, then there is ¢ in (M M; such
that ¢> 0 (mod M,). Since 4/M has no proper I-ideal, some multiple
of ¢ exceeds 2 (mod My). The positive part (u—1)" = (1—u)" is still not
in Moy; but since 1—u > 0 (mod M;), (1—u)” e G(IM;) ([2], 5.8).

1.3. TeeoREM. If h: A—~B is a wunitary homomorphism of unitary
f-rings, then Mo(h): M6(B)—Jb(A) is continuous. A6 is Sfunctorial.

Proof. If a set {M;} in 4(B) has a limit point M,, then h~(M,)
containg () A7HBH) DN G(.M,(h)(MA)); by 1.2, A(h)(M,) contains
M H6(R)(M;). Thus (k) preserves limit points. For a composition hg,

Ho(g) Jo (h) (M) D g7 Ao (R) (M) D g 7B (M) = (hg) (M) ,

80 it i3 AG(hg)(M).

To show that the lattice structure of 4 determines J6(A4), first, it
suffices to consider the based lattice (4, >, 0); for any other based lattice
(4, >, a) is isomorphic by a translation. (The introduction of 0 is a trivial
departure from the bagic argument of Kaplansky [4], intended rather
for Section 2 than for the present problem.) Lattice ideals containing 0
will be called Iz-ideals; the ring I-ideals may be distinguished as Ir-ideals.
Prime lz-ideals are defined in the lattice sense (zAy in I implies @ or ¥
in I), and so are prime Ir-ideals J. Thus A/J is totally ordered, but may
have proper zero divisors.

1.4. (Pierce) Buvery prime lz-ideal of an f-ring contains a prime
Ir-ideal.

Pierce stated the result: for a sublattice I consisting of non-negative
non-zero elements, there is a homomorphism upon a totally ordered
ring C taking L into C—{0} [5].
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In particular, & prime lz-ideal of a unitary f-ring A contains a germinal
(lr-) ideal. It cannot contain two distinet germinal ideals G(M,), G(BL,);
for G(M;) is not contained in M,, whence the image of G(M,) in 4/M,
is all of A/M,, and G(M,) is cofinal modulo G(MM,).

Every lr-ideal is an intersection of prime Ir-ideals since the quotient
(f-) ring is a subdirect product of totally ordered rings. The intersection
of the prime lz-ideals containing germinal & is accordingly @~ = {u: x+ « Gy,
The germinal ideals @, &, in two prime lz-ideals P,, P, are the same if
and only if P,vP, is not all of A. For if @ # G, G5 V@ is already all
of A; if G == @, neither the image of P, nor the image of P, in 4/G, is
cofinal, so the image of P,v P, is not. Thus the ideals G~ are the inter-
sections of the equivalence classes of prime Ilz-ideals under the relation
“P,vP, # AV, and are determined by the lattice and 0.

One gets the correct topology on this set of intersections by defining @~
to be a limit point of {G3} if M @7 is contained in some prime lz-ideal
containing Gy, For if the maximal lr-ideal M, contains () Ma, M; con-
taing () M3 D) 677 if not, M, does not contain () G4 (by 1.2), so [ &
is cofinal modulo M, and not contained in a prime lz-ideal containing Gy.

1.5. TaeoreM. The laitice structure of a unitary f-rving A determines
Mo(A).

2. General lattices. For any based distributive lattice L, the
prime lz-ideals with the hull-kernel topology form a T, space m(L)
(topological, because the ideals are prime. Distributivity will be needed
for B(L); for =(L), one may as well assume distributivity since in any
case the distributive reflection of L would give the same space.) It is
already clear from the proof of 1.5 that (there) n(4) determined J:(A);
for the equivalence relation P,vP, % 4 is non-disjointness of the closures
in =(4), and the topology is the guotient topology.

The construction generalizes as follows. Let the K-classes of prime
ideals of a based lattice L be the equivalence classes for the smallest
equivalence relation ~ guch that P~ when PC@Q. A K-class ¢ has
@ kernel ideal &(c); define ¢, to be a limit point of {¢:} if () k(ey) is con-
tained in some member of ¢,. Then the K-classes form a topological
space x(L), the quotient space of #(L), by the finest partition into unions
of closures of points. x» is functorial for the narrow category of homo-
morphisms upon cofinal subsets, as iz =, and the quotient mappings
v: 7(L)—+>x»(L) constitute a natural transformation.

The parallel construction of the first four pages of [3] generalizes
a8 easily. The rest of this paper assumes knowledge of [3].

In distributive I with 0, the polar sets

Jt= {m: for all jeJ, wAj< 0}
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are lz-ideals. For left segments S and 7, we have
(B A TS AT EARAT C {0}
sinece SATC 8 ~ T. Thus
(8 AT HAE@ ~TYEASC T ~ T = {0},

80
(S'LJ'I"\TJ"L)/\(SF\T)'LCS'L F\SJ"L= {0}-’

whence 811 ~ T+t = (§ ~ T)*L. In particular, the distributive law
In([JuE}=(Ind)uI~KE)*

holds for polar sets. It follows easily that the polar sets form a complete
Boolean algebra. We conclude as in [3] that L has a wniform structure
space B(L), a compact Hausdorff space provided with a mnatural dense
continuous mapping w: = (L)-> (L), Then w must be constant on closures
of points, and it induces continuous #: x»(L)—B(L) such that v = w.
B is functorial for a larger category of homomorphisms than = and x,
for those h: L—L’ such that A(L) is not contained in the ideal join of
two non-supplementary polar ideals (p. 67 of [3]). For. example, on unitary
f-rings, it suffices if h takes the value 1.

We say no more of general lattices. For an abelian I-group @, there
appear to be two or more other structure spaces present; f(@) exactly
as defined in [3], and the T, space &(G) of prime I-group ideals. (u(®)
denotes the completely regular subspace of minimal prime ideals.) In
this setting, of zero f-rings, 1.4 can be sharpened; there is a largest I- group
ideal 7(I) contained in & prime Iz-ideal I, and it is prime. Largest, because
2|zl, 2ly| in I implies ||+ |y| in I; prime, clearly. Without difficulty
one sees that for J in A(@), ¢(J)=J~ is the smallest prime Iz-ideal in
r=1{J), and we have a retraction 7: #(G@)-> (@) with coretraction . Since
¢(J) is smallest, v factors across 7 by s: u(G)—>»(G). s is still a quotient
mapping, of the same description as v. Similarly (but for the simpler
conclusion) the correspondences like » and ¢ between the two types of
polar ideals are mutually inverse and identify the two uniform structure
spaces of @. Let @ = ts: u(@)—p(@).

If one can find a continuous cross-section f: f(@)>E(G) (W =1 on
B(@), then f(B(6") and sf(8(@)) are, of course, homeomorphic with (G).
Theorems 4 and b of [3] establish such cross-sections by the space of
maximal I-group ideals, if @ has a strong order unit, and by the space
of maximal I-ring ideals, if @ is an f-ring with a dominant element. In
the former cage it is trivial that sf (ﬂ(G)) is all of %(@); in the latter case
the argument of 1.5 applies.

Recalling the nature of the uniform ideals ¥ ¢ #(@) and the mapping %
(viz. %(P) C 2P), we can supplement this information. Call a cross-section
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J: B(@)—>p(G) strong if @ > 0 (mod f(¥)) implies that for some J e,
2> 0 (mod J).

2.1. For an abelian l-group @, if & has a sltrong continuous cross-
section then t: %(G)—B(@) is a homeomorphism.

Proof. Given a strong cross-section f, any prime lz-ideal P must
be bounded above modulo fuw(P), for if P had elements p >  (mod fuw(P))
for arbitrary @, p = o (modJ) and JC P would yield # ¢ P. Hence if
w(P) = w(Q), both P and @ are bounded modulo fw(P), and they are
in the same K-class. So ¢ is one-to-one. Tf there iy a continuous cross-
section of @, ¢ is homeomorphic,

These cross-section arguments apply over any subspace of f(G) on
which the cross-sections exist.

We conclude with four counterexamples.

2.2. In 2.1, “continuous’ cannot be omitted.

Proof sketch. Let V be a lexicographically ordered real vector
gpace on the basis ¢, < ¢, < ... Let X consist of the non-negative rationals
which have the form m or m-s~!, m and n integral, with the natural
topology and order- Among the V-valued functions: on X note those f:
which have the value ¢; outside the open (i +1)"* neighborhoods of integers
and vanish inside; note that fi., > ¢f: for all scalar ¢. Let @ consist of
those locally constant V-valued functions on X which are finally equal
to a finite linear combination of the f.

B(@) is just the one-point compactification of X. For, if fi= g-+h,
one of g and & is non-zero on all but a compact part of support of fi; thus
of two supplementary polar ideals, the common zeros of the members
of one must form a bounded set. To construct a strong cross-section,
take the ideals M, of functions vanishing at # and Mo of functions finally
zero. So ¢ is one-to-one. But in #(¢), co is not a limit point of the integers;
the kernel of the K -class at any integer contains each f, but each member
of the K-class at oo is finally bounded.

2.3. The restriction s|u(@) need not be a quotient map.

Proof. Take the same @, and note that the minimal prime ideal
at any point » of X « {oo} is unique and is M. f; is in every minimal
prime ideal except those at m--3} and abt oo; in particular, the (inverse)
set of all m+4 is closed in wp(@), but its image is not.

2.4. Im 2.1, “strong” cannot be omitted.

The details are much as in 2.2. Use the same V, let X = [0, 1], and
take the functions f = 3 fi(a) e: with f; real-valued continuous and constani
on [i~1,1]. There are no supplementary pairs of polar ideals, and §(Q)
is a single point; but there are two K -classes, living at 0 and elsewhere.
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2.5. The Kaplansky space »(&) of an abelian l-group G need not be
a T, space.

Do 2.4 on two halves of a cirele.
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Intreduction *

In his short papers [8], [9], [10] and some talks, Lawvere hag presented
& new approach to the problem of the algebraization of first order Logic
in which elementary theories become categories. It is the purpose of thig
paper to deseribe the exact relationship that the new approach bears
to the older one constituted by the theory of polyadic and cylindrie
algebras. We hope thus to call attention to Lawvere’s important contribu-
tion to Algebraic Logic. (Throughout the paper, we shall mean by
“polyadic algebra”, locally finite polyadie algebra with equality and
a fixed infinite set of variables. “Cylindrie algebra” has a similarly
restricted meaning).

(*) This paper is an amended version of a paper read at the conferemce on the

Construction of Models for Axiomatio Systems in Warsaw, August 26-September 1,
1068,
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