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2.5. The Kaplansky space »(&) of an abelian l-group G need not be
a T, space.

Do 2.4 on two halves of a cirele.
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Intreduction *

In his short papers [8], [9], [10] and some talks, Lawvere hag presented
& new approach to the problem of the algebraization of first order Logic
in which elementary theories become categories. It is the purpose of thig
paper to deseribe the exact relationship that the new approach bears
to the older one constituted by the theory of polyadic and cylindrie
algebras. We hope thus to call attention to Lawvere’s important contribu-
tion to Algebraic Logic. (Throughout the paper, we shall mean by
“polyadic algebra”, locally finite polyadie algebra with equality and
a fixed infinite set of variables. “Cylindrie algebra” has a similarly
restricted meaning).

(*) This paper is an amended version of a paper read at the conferemce on the

Construction of Models for Axiomatio Systems in Warsaw, August 26-September 1,
1068,
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We express ourselves in categorical terms. Two main facts are
established.

Fact 1 (Theorem 3.1) states that the category G of elementary
theories and the category § whose objects are pairs (P, D) where P is
a polyadic algebra and D a set of operations of P which is admissible
in g certain sense (see end of Section 0) are equivalent provided an axiom
(see T4 before Theorem 0.5) is added to the definition of theory to
eliminate the repetitions among morphisms A"->A. Tt follows (Corollary
3.2) that the category of polyadie algebras is equivalent to the full
subeategory of B whose objects are the theories in which, moreover, every
definable operation is present.

Fact 2 asserts that the semantics functors which assign to an ele-
mentary theory its category of models and to a pair (P, D), the category
of 2-valued representations of P are equivalent (modulo the equivalence
of  and ). This can perhaps in part be infered indirectly from Lawvere’s
statements in [8] and from the fact that polyadic and cylindric algebras
are known (see, for instance, Henkin~Targki [7] and Daigneault [1], [3])
to be equivalent to ordinary elementary theories. We give here though,
a direct and complete account of these equivalences except for leaving
oub a rather large number of rather straightforward verifications.

Except for a Master’s thesis [4] now being written by Donais, a student
of ours, Lawvere’s work on this subject has not yet, to our knowledge,
received 2 full exposition. Hence, in the first part of Section 0, we find

“it necessary to recall the definitions and results of Lawvere in somewhat
greater detail than in [8], [9], [10], but we leave out the proofs. The second
part of Section 0 recalls the definition of & eylindric algebra and discusses
briefly in polyadic terms the question of propositional variables and
their quantifications which plays an essential role in Lawvere’s approach.
Fact 1 is established in Sections I, IT and III. Functors 6 ": §-% and
0: B—>F are described in Sections I and II respectively and the fact
that they are reciprocal equivalences is proved in Section ITI. Finally
Fact 2 is discussed in the cloging Section IV. (1)

0. Preliminaries

Except when otherwise indicated we shall write funetion symbols
on the right of their arguments. Accordingly the product of functions
or of morphisms will follow the so called diagrammatic notation by which
a product such as gy means intentionally: first ¢ then .

(1) We are thankful to Dana Schlomiuk who raised a question which led to the

discovery of a mistake.in a previous version of this paper where it was wrongly asserted
that the category B is equivalent to that of polyadic algebras.
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Elementary theories. We recall the (sinaplified) definition of
‘‘elementary theory” as given by Lawvere in [9]. Such a theory is essen-
tially & small category T verifying certain conditions. More precisely
it is a 5-tuple (T, 4, L,V , F) where T is a category, A, L are distinguished
objects of T and V,F are distingnished morphisms of T such that the
conditions (L0) up to (L3), to be defined below, are satisfied. Here is
the first condition:

(L0) Finite categorial products exist in 7. In particular, the product
of an empty set of objects exists and is noted 1; it has the property that
for any X € [T| (the set of objects of T') there exists one and only one
morphism X 1. |

If X and Y are objects in T and X XY is their product we shall
denote by pr(X x ¥ -X), and sometimes by Px, the projection of X x ¥
on X. Strictly speaking, the categorical product consists of the object
X x ¥ together with px and py. A special notation will be used for the ith
projection A™ A which we shall eall v;, (¢ < n). The choice of the letter v
is in view of the fact that these projections will be related to the individual
variables vy, Uy, Vg, .. If @2 ¥ Xy (i = 1,2) are two morphisms (in 7
we denote by {g, ¢,> the unique morphism ¥ —X, x X,, whose existence
is asserted by the definition of product, such that Qi = {P1, PoyPx;- We
shall use the following notations

Vin == (’Uw, ey Vin)
Vin == {Viny +ory Vic10Vit1,my -y Vnn) .
The first of these retains the first ¢ “components”’ whereas the second

one forgets the ith component.

The next condition is:

(L1) V and F are morphisms 17 guch that, if we define, for each
X e|T), Vx=X>151 and Fx= X->15I, the maps <lx,Vx> and
Ax, Fx) from X to X %I constitute the (categorical) coproduct of two
“copies of X,

In short this means that X x L = X4 X. More exactly it meansg
that, if g;: XY (i=1,2) are two morphisms, there exists a unique
morphism y: XX L->X such that {1x,Vx)p = ¢ and Ax, Fxdy = @,.

The equation X xIL = X+X generalizes to an equation X xL*
= 2%. X where the right member is the coproduct of 2% “copies of X7,
k being a positive integer. To malke this statement precise we introduce
notations which we will retain throughout. Let {ex| 1 < i < 2*} be a fixed
enumeration of 2", the set of all functions from the et [1, k] of all integers j
such that 1 < j <k, to 2 = {0, 1}. For each such function ¢ and object X
of T we define a function

ex: [1, k]-{Vx, Fx}
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such that, for each je[1, k], (jlex= Vx if (jle =1, and (j)e;: Fy if
(j)e = 0. Hence for each e ¢2¥ and X ¢|T|, we have a morphism

= (Wex, .., (B ex>: X>LF.
The precise meaning of the equation X xIL*F=9F. X is the fo]‘lowing
statement which is proved by induction on %k and which is equivalent
to (L1):

TrEOREM 0.1. The family of 2% morphisms

{(Lx, >: X>X xIM 02"}
8 a coproduct.
(Caution: 2 is used, depending on the context, to denote a set of functions
and a natural number).

If X =1, this means that {{(1)e, ..., (k)e>: 1L e €2%} is a co-
product. In particular, if ¥ = 2, we can define, for instance, a morphism
A: I*-L as the unique map such that the following diagram is commuta-
tive:

LxL

V.7 (F,F)

Vo (P V)

This corresponds to the usual truth-table for the conjonction .

If C is & category and X, Y « |G| the class of objects of G, we shall
denote by C(X, Y) the class of morphisms X+ in €. ¥ X is an object
of the theory, T(X, L) becomes & Boolean algebra if, for instance, one
defines the intersection Ax by the equation

P ldx gp = {1, P> A

where, for ¢ =1, 2, p;: XL and the right member is a composite of
morphisms in B. This assignment of Boolean algebra structures to the
T(X, L) is functorial in the sense that it makes the cofunctor I(—,L):
T—>Ens, the category of sets, which assigns the set T(X, L) to X and

@ ©
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multiplication of the elements of T(Y, L) on the left by ¢ to ¢: XY,
factor through the category % of Boolean algebras. This means that

TEEOREM 0.2. If ¢: XX, the map ¢*: I(Y,L)»>T(X,L) which
assigns gy to y: Y=L is a homomorphism of Boolean algebras.

This follows simply from the equation P<Y1y o> = Py, ePd.

We can now state the next axiom:

(L2) For each y: X—Y and ¢: XL (in T) there exists @,[p]: YL
such that for all v: YL

Hipltry i#f glx gy

where tx is the order relation of T(X yL) and similarly for ¥.

It can be shown that there exists at most one such function .

Finally here comes the last axiom:

(L3) Every object of B hags a unique representation in the form A®x L*
where n and k are finite non negative integers.

Perhaps the reason for stating (L3) last is that the important category
Ens verifies all axioms (except being small!) and (L3). There L= 2,
A is any non-void set, 1 is a singleton, ¥V maps 1 on the element 1 of 2
and F maps it on 0. Moreover, if a map with 2 as its codomain is identified
with the subset of its domain of which it is the characteristic funection,
€[] is simply the image of ¢ under y i.e. an element ye Y is in Hfp]
iff there ewists w e p such that y = (v)y.

Let X, ¥ and k be fixed. Bach y: X xIL*—~Y determines a sequence
(w)é= ((W) Oy vy () 627\7) where

(9)6: = x, dhixdyp: X>T.
If ¢ = e, we shall sometimes write &, instead of d;. Conversely, by (L1),
to each sequence ¢ = (¢,...,pw) of maps XY, there corresponds
a map (p)e: X xL* Y such that (péi=giforalli (1<i<2¥. Y = L,
this (p)e can be expressed in terms of ¢ by an expression reminiscent
of the disjunctive normal form of a propositional formula. For this we
introduce some notations. If p is an element of a Boolean algebra we
agree to write p' =p and p'=p’. For ¢=1, ...,k we let p; be the ith
projection X x L*~L and for e « 2" the basic conjunction corresponding
to ¢ is
Oonj(e) = p{™ A... ApP* .

(Bventually the p; may denote other “propositional variables”.)
THEOREM 0.3.

) (p)s =V {Conj(ew) dpxed 1< i< 2%

where Px = pr(_X XL"l—)X)_

Fundamenta Mathematicae, T. LXVI . 21
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Proof. (p)e is the unique w: X xI*»L such that ()6 = g,
#=1, ..., 2%, Therefore it suffices to check that the right member of (1)

hag this property i.e.
Uz, x> V {Oonjlow) Apxpil 1< i <2} =g, .

This follows immediately upon remembering that multiplication on the
left preserves Boolean operations since one easily computes that

Ax, Gedopi™ =Vx it endf) = eadd)
=Fx it e()) = eal))
and
<lx, 6ﬁx>px ES lX . QED

There is no disadvantage in assuming here that all theories have
the same objects, the same A4, and the same L, and we shall generally
do this. A morphism of theories W: T—T" is a product preserving functor
(hence is identity on objects and (vin) W = i, such that (V) W =7V,
() W=F" and which preserves quantification i.e.

(T Le) W = HwloW]

where the notation is self explanatory. It follows in, particular that, for
X ¢ |T|, the restriction of W to T(X,L) is a Boolean homomorphism
into T'(X, L). The elementary theories together with their morphisms
form a category .

A model of a theory T is a product preserving functor }: T— Ens
such that (4)M i3 a non empty set, (L)M = 2, and if @: X—~L and
7t XY, (E[p])M is the characteristic function of the subset of (M
which is the image under (y)M of the subset of (X)M of which (p) M is
the characteristic function. [No harm is done but not much is gained by
requiring further that (1) be the 1 ¢2 and that (V)M be the function
(“true”) which maps 1 onto 1 and (F)M the function (“false”) which
maps 1 onto 0. This is just standardisation of notations]. It follows that M
pregerves the coproducts ({lx,Vx), {lx,Fxd). This is true because of
the requirement (L) M = 2 and the validity of the equation X x 2 = X +X
in BEuns.

The adequacy of any kind of axiomatisation of first order Logic
must be established by some “completeness theorem”. Lawvere has
outlined his in [9]:

TapoREM 0.4. For any theory T and ¢: 1L in T such that =¥
there emists a model M, of T such that ()M, = “true”.

For expediency’s sake we shall use this theorem in our proof of the
equivalence of G with the category ¢ in Sections I-ITT. However, if its
use were dispensed with there, the work of Section IV would reduce
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Theorema 0.4 to the representation theorem for polyadic algebras and
ultimately to the ordinary completeness theorem for first-order Logic.

The category © has arbitrary products. Tf {Ty| keXK} is a family
of theories, say, all with the same objects, their product is a theory T
with the same objeets and such that for any X and ¥, T (X, ¥) is the ordi-
nary cartesian product [k] Tw(X, Y) of sets. Composition of morphisms is

done componentwise. A morphism of T' is noted g and the projection
T—Ty maps ITpx onto ¢x. The completeness theorem can be reformulated
as Theorem 0.5 below provided we add the axiom:

(L) For all n >0 and f, g: A" 4, if fs£g then <f, >FV, # Van
where d = {1.4,14.

This means that if f and g have the same interpretation in every
model of T’ then f = g.

THEOREM 0.5. A theory admits an imbedding into a direct product of
theories each of which admits a faithful model.

Peolyadic and cylindric algebras. For accounts of the elements
of the theory of polyadic and cylindric algebras one may consult Hal-
mos [6], Henkin and Tarski [7] and Daigneault [3]. According to Galler [5]
the concepts of polyadic and cylindric algebras in the restricted sense
in which we understand them are equivalent and we ghall use indifferently
either term. We shall assume known the elements of the theory including
such notions as those of constant, term, operation, predicate and equality.
Some of our unpublished work with Léon LeBlane gimplifies substantially
the treatment of Halmos [6] in what regard these notions. We shall be
content here with recalling the definition of quantifier and of cylindrie
algebra. We assume that the set of (individual) variables I = {v,, vy, 05,...}
is denumerably infinite. A quantifier on a Boolean algebra B is a map ®
of B into itself such that

(Q1) EI(O) =0,
(Q) p < H(p),
(Qo) H(pAtg) = H(p)AU(g),

for all p, ¢ e B. A cylindric algebra is a Boolean algebra P together with,
for each variable v;, a quantifier (Hv;) on P, and, for each pair (v, vy)
of variables, a distinguighed element B (v, »;) of P such that

(C1) (Eoq) (Huy) = (Hoy)(Hoy),

(02) E(’Ug, vg) == 1,

(C3) E(’W, o) = (Hog) [B (vs, vi) A B (v;, vx)],
(C4) (Huv)[p AE (v, vi)]A(Hwi)[p' A B (i, v5)] = 0
21*
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if % ¢ {¢, ). The ‘“‘diagonal elements” B(vi, v;) constitute the ‘“‘equality”
of the algebra. The algebra P is locally finite if for aql p € P there are
only finitely many ¢ such that (Hv:) (p) #p. A po}yafhc homomorphism
f: Py—>P, is assumed to preserve equality. Polyadic algebras and homo-
morphisms form a category I . ]
I'pH X i & non empty set, the Boolean algebras of all funetions Xt ->.2
depending on only finitely many elements of I becomes a polyadlc
algebra Cx with the quantifiers and equality defined by the equations:
* [(Ho)gl(@) = V {g@) yr=a; i  j+#1}
and

(Blos,o)](@) =1 iff @y=a; where o= (m)eX .

The representation theorem for polyadic algebras; which take.s l.ieu of
tcompleteness theorem” for this approach to first order Logic is the
following

TEEOREM 0.6. For any polyadic algebra P and any qeP such that
q # 0, there ewists a non empty set X and a 2-valued representation f: P—>Cx
such that (¢)f = 1. ‘

If 4 is an element of P with support {u, ..., s}, We ghall write

g = (Y oeny Un) = (W) .

This notation will tacitly be generalized o the cage of terms and to cases
where there are “propositional variables”, in a sense to be presgntly
defined, in addition to individual variables. Moreover we will sometimes
write

S (Uiftyy ovy Un/Un) X -

2 (WL, ooy uy)  for

An extension of a polyadic algebra P by k ‘“propositional variables”
is an extension P, = P(py, ..., Px) generated by P together with % closed
elements p,, ..., Px in such a way that for any polyadic homomorphis-m
f: PP, and any map e: {py, ..., px}—>P, there exists a (necessarily
unique) Boolean homomorphism g: P,->P, such that the restriction. of ¢
to P is f and (py)g = (ps)e for i =1, ..., k.

TaEoREM 0.7. For any P and T there emists an estension by k proposi-
tional variables Py, ..., pr uniguely determined to within equivalence. Iis
generic element can be written uniquely as

(%) V {Conj(e) Ags] 1 <i< 2%

where gz € P. In order for an ewtension P(py, ..., pr) of P by adjunciion

of & closed clements to be an extension by the k propositional a)(wiablis
Pry oy Pr it suffices (and 48, of course, mecessary) thai for i=1,..,2%

icm
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there ewists o Boolean homomorphism g: P(p,, ..., px)~>P which is identity
on P and such that for j=1,..,%, (p))g = (§)ew.

Proof. Let i be a Boolean algebra freely generated by p1y ..y P
It can be considered as a polyadic algebra (with equality) with trivial
polyadic structure. It is easy to verify that the tensor product P® 2y
ag defined in Daigneault [2] has the required property. As a Boolean
algebra, P® Z is the free product of P and X;. On the other hand it
is easy to show that any extension of P by closed elements pi¢ which
verifies the condition termed sufficient in the statement of the theorem
must admit a unique representation (%) for its generic element. This
fact serves to establish the equivalence of any two such extensions. Q.E.D.

We shall retain throughout the notations X3 and P® 5, and shall
denote by S(¢ypy, ..., pr/pr) the homomorphism P® Zp—>P which is
identity on P and maps ps onto g; ¢ P ® Iy, Although not polyadic (unless
the ¢; are closed), this operator commutes with (Hv;) if the ¢; are in-
dependent of v;, and therefore, it can be applied to operations of P ® Zx
through their reduction’to monovalent predicates.

We will denote by X the union of the Z; and by P®Z. that of the
PRy T is freely generated by {p,, p,, ...}.

It e P&y, by, ..., In are terms of PRI, and ¢, ..., qx elements
of P2y, the result S(#y/v,, ..., ¢x/px)q of the simultaneous substitution
of the # for the »; and the ¢; for the p; in ¢ is defined as

B(taftiys ey tnftn) 8(@aP1y ovv s GolPE) 8 (Unf0y, vy tnfn) g

where uy, ..., us are distinet (individual) variables not in a common
support of the ¢, the g; and ¢. The operator can be applied to terms of
PRIy also.

If f: P,—»P, is a polyadic homomorphism, it extends uniquely to
a homomorphism P,®Zo—>P,®Z still denoted by f and which leaves
the p; fixed.

Let P be a polyadic algebra, k a positive integer and consider an
extengion P®Zy of P by %k propositional variables p, ..., px. Bach
ve P@Z; determines a sequence (p)d= ()4, ..., (p)dk) of ‘elements
of P where

()¢ = S((L)ea/py, -.., (k) eax/pr)y .

Convergely each sequence ¢ = (@ ..., k) of elements of P determines
a unique element (p)e of P® Ik such that (p)sd = ¢. We have

@) (p)e =\ {Conj(em) Ags| 1< i< 2.

That the right member of this equation has the property required of
()& can easily be checked directly. The uniqueness comes from the fact
that any element of P ® Zx can be written unigqnely in the form of the
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right:, member of (2) from which it is seen that if p 7% 0 then (y)d; = 0
for at least one 4. A similar (g, 6)-correspondance can be established
between #-operations of P® Xy and 2"-sequences of »n-operations of P
using the corresponding monovalent (n -+-1)-predicates.

We will wish to quantify over propositional variables. The basic
Boolean fact is the following.

TEEOREM 0.8. If P is a Boolean algebra, P® Zw is the free product
(d.c. the coproduct) of P and Ze and H is a subset of {Ps, Pay Ds, ...} then
a quantifier (WH) is defined on P® X by the equation

(EH) () = V {S(a)pl a2}

where 8(c) is the endomorphism of PR 2 into iiself which ewtends the map
into P® Ze which sends ps ¢ H onto (pi)a and pi ¢ H onto itself and which
is identity on P.

Note that the set to which the supremum sign applies, i3 finite .

gince y depends on only finitely many elements p;. In case H = {py, ..., pr}
the formula is

(@pyy ooy PR ) = V {) 8] 1< i< 2%},

In case P is a polyadic algebra, propositional quantification commutes
with individual quantification and with the ecanonical extension to
P,®Zs of a polyadic homomorphism P,—P,. )

In any polyadic algebra P, to every n-term t, there corresponds
in an obvious way an m-term %, for every m > n. Although closely
related, ¢, and #» must be distinguished. The correspondance between i,
and t, is the same as the one between a function of » variables and the
same function considered as a function of m variables in which the m—n
last variables play a silent role. Every variable »; can be considered as
an n-term for » > ¢ which is denoted simply by »; or, if necessary, by
(v:, n). A set D of n-terms of a polyadic algebra p is said to be admissible if

(i) if D contains an n-term, it contains the corresponding m-term
for each m > n;

(ii) every variable is in D;

(iii) for every k¥ >1 and m,n >0, every sequence ¢ = (@i, ..., Pak)
of n-terms in D, every sequence (t, ..., tx) of m-terms in D, every sequence
g1y ---y qx) of elements of support {vy, ..., vm} in P, the m-term of P

B(8/01y vy tafOn; @ufP1s -, Qx[Pr)(@E) i3 in D

The set (P)Max of all n-terms of P is admissible. Bvery set of
n-terms of P generates an admissible set of #-terms. The set (P)Min
generated by the void set of n-terms or, equivalently, by the set of
individual variables, will as a rule be different from (P) Max. In the

icm
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case of the algebra (x, the n-ary operations @ on X corresponding to
the n-terms in (Cx)Min have the property that (@4 ...y 2n)Q where
(#1 <oy @) € X" is one of the @4. This can be verified by “induction” on
(Cx)Min. As some operations on X fail to have this property as soon
as X has more than one element, we have, under that hypothesis,
(Cx)Min & (Ox) Max. Also, if D is admissible, the subset of 1 made up
of the elements of D which are not constants is admissible.

We consider the category § whose objects are pairs (P, D) where P
is a polyadic algebra and D is an admissibles et of operations of P. A, morph-
ism f: (P, D)-(P’',D') of such pairs is a polyadic homomorphism
(preserving equality) such that for any @ e D, the image @f of @ under f
is in D. In Theorem 3.1 the categories ¢ and B will be shown to be
equivalent.

I. The funector 6% §->T

We first let (P, D) be an object of § and associate to it an elementary
theory T = (P, D)6™". The objects of T are the ““words” or formal ex-
pressions A"L* where n and % range over the non mnegative integers. The
word A°L® is also noted 1. The elements of T(A"L*, L) are the elements g
of P®Zy supported by {v] i< m}. More exactly they are the triples
(q,n, k). The elements of T(A™L*, A) are the n-terms (i.e. the {v, ..., va}-
terms) of P® Xy of the form (py, ..., pa)e Where ;e D for i=1,...,2%
More exactly again, they are the triples (¢, n, k). For any objects X = A"L*
and ¥ = A™L" T(X, Y) consists of the sequences

P = (1) o0y Pm; Y, .oy ¢P) = (@15 ¢'N)

where pie (X, 4) and ¢ eT(X,L). In particular T(X,1) consists
of the single (empty and unnamed) map X-1. T(1, 4) is the set of
constants of P in D and T'(1, L) is its set of closed elements. Composition
of maps in 7' is defined as follows. Let y: ¥ —~Z where Z = A°L" and

W= (Pry ey Pu3 9D, oy 90)
Then PP =2 == {1y ey Zs3 X0y oory ™).
%= B(@fVy, -, pufOm; GOy, ov s PP pr)yt

and similarly for 4@ and 4% in place of g and ;.
We have y;¢ T(X, L) i.e. (31)0; ¢ D because D is admissible and the
fact that (y:)dy is

B(10ifv1; ov s 9 bsfvm; ¢D8[p1, ., PMS4fpn)ps
and y; = (9dy, ..., ps0ax)e With ;6 € D for all 4,34, 1.
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We now verify Lawvere’s axioms. Note first that each wvariable
considered as an n-term of P@ 2%, for » > ¢ and any k yields a map
A"L*>A. Similarly p; yields maps A"L*~L for each n and all k> j.
We leave out the verification that T is a category. To check (L0) and (L3)
it suffices to see that (A"”L"; U1y vy Vmj Py ooy Pa) 1S & product. This
means that if X = A"L%, ¢z X>4, (i=1,..,m) and ¢¥: X~
(j=1, .., h), there is p: X>A™L" such that g:=gv; and ¢ = gp,.
Ag for this, we must take ¢ = (ps; ), we can write A"L* — A" x L*.

The V of T'is the 1 of P and the F of T' is the 0 of P. For X = A" xI*,
1x = (vs; ps). We have Vx = (1,7, %) where the 1 is that of P.

In order to verify axiom (Ll) ie. ({Ix,Vx), dx,Fx), XxL) is
& coproduct it suffices to consider two maps ¢: X—>¥ and @ X>Y
where Y is either 4 or L and to find y: X x LY such that {1x, Vxdw=g,
and {lx,Fx)y = g,. Say we look at the case ¥ = L. We have

Az, Vxd = 0yy vy Unj Dyy ooy Dy 1D
and

Axy Fx) = {0y, s Unj Doy oy Pk, 0D

where we should write (ve,n,k), (ps,n, k), (1,n,k); (0,n,k) in place
of v¢, p¢, 1, and 0. Therefore

Az, Vop = 8A/pr+)y and

Az, Fxdy = S(0/prs1)y

and it suffices to set y = (Pr414p,) V (Phs14¢y), which means that, in
the & notation for the algebra Pr—= P®ZX; and the variable D1,
= (g1, ps)e. The case ¥ = A ig similar using the reduction of n-ary
operations to monovalent (n--1)-predicates in polyadic algebra.

Next we prepare the ground for the verification of (L:2). First we
note that the Boolean algebra structure of 7(X,L) where X — A™L*
coincides with that of the {y, ..., v.}- compression of P® X;. To prove
this let ¢4, ¢, € T(X, L) and let, say, Ay denote the intersection in T (Y, L)
for any object ¥ while A will denote the intersection in P® Z.,. It is easy
to see from the definition of Az that Ay = p,Ap, and therefore by the

definition of Ax and the definition of composition of maps in (P)§7?,

Gdxqy = {1, > A = 0Ag -

Let g: P®Zx~>Cz be a 2-valued representation. If @ in PRI
is supported by {v, ..., v} We write (¢) g, for the corresponding predicate
Z>2 ([1], p. 87). If X = A"XTL* and Y= A™xI" are objects of
T=(P,D)67 and ¢ = {ps; p"y: X > we obtain a function o Z"x
2*>Z™x 2" thus. An element of Z"x 2* can be noted (2, €) where
2= (21, ..., 2n) € 2" and ¢ € 27, We set (2, )y — (2)[(¢)8:]gn and simi-
larly for ¢, and ¥ = (gff; g%,
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Now we look at quantification. Let y: X -7, p: X>Ly, x = {5 4D,
We let U = (Uy, ..., 4s) and a = (a, ..., ax) be sequences of new individual
and propositional variables respectively and we set by definition

(1) B} = B (w, @) {plu, )4 A B, o), v 4 A [0, a) sl
=1 F=1

We must check that for all y: ¥Y->I

(2) Hlp] by okx yy

where Fx, for ingtance is the order relation of the {01, ..., vn} - compression
of P® Zy. By the representation theorem for polyadic algebrasg it suffices
to do that in any 2-valued representation. ¢, » and y determine functions
¢¥, y* and »¥* ag above. Denoting, for instance, by ¥ the subset of
Z" x 2% of which #¥ is the characteristic function we gee that in PRI,
(2) reduces to the obvious set-theoretic equation

(3) g C () 1

Indeed, the idea behind definition (1) is that, thinking of y: X ¥ as
a function”between sets and of ¢ as a subset of X , H,[¢] should be the
image of ¢ under y and therefore an element (V45 eees OVmy Poy ooy pn) Of ¥
should be in ®,[¢] iff there exists an element (u, ey liny Gy ey ) Of @
mapped onto (vs, p;) by x. This terminates the definition of the functor 6~
on objects of . We still have to define 67" on morphisms.

Let f: (Py, D;)>(P,, D,) be a morphism of § and let T; — (P, Dy) 677,
t=1,2 be the corresponding elementary theories. As noted before f
extends canonically to a homomorphism P,®Z.—+P,®%. still denoted
by f and maps a J-term ¢ of P,®Z, on a J-term (@) f of P,®Ze for any
finite J C I. If @ = <{pi; ¢'D) e T\(X, ¥) we setb by definition

@671 = eaf; (@Nf> .

It is immediate from the definitions that if ( O~ T —T, is defined
to be identity on objects, (f)6" is a morphism -6£"6 and 6~ §-> is
a functor. The fact that (f)6™' preserves, quantification uses the fact
that f preserves it.

iff

(%) oyt C o

-

II. The fundctor 0: G-9

Let T be an elementary theory. We ghall define an object ()6
= ((1)6", (T) 6”) of 5. In T, multiplication on the left by s = {V1ny ooey Vin)
determines a homomorphism of Boolean algebras

(1) T(A%, L)>T (4", L)
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by virtue of Theorem 0.2. Since Dby = Gm (j < ¢<n) we have there
a linearly directed system of Boolean algebras and monomorphisms.
It is indeed easy to see that the map (1) must be a monomorphism from
the fact that s, is an epimorphism. We let the Boolean algebra (T)¢
be the direct limit of this system. This is simply the union of these algebras
upon identifying T(4", L) with the subalgebra of T(4A""", L) which is
its image under the map induced by ¥nn+1. More precisely, an element
of (I)0" is an equivalence class § of morphisms ¢: A®>L, and §=g,
where, say, ¢;: AL and n, > n, iff g, = dun,.

We may similarly construct a larger algebra (T)0;, for each positive
integer %k, by replacing in the present discussion, 4™ by A" xL*. As we
shall see later this leads to a polyadic algebra of the form (7)0'® Z.

Next we endow the Boolean algebra (') 6’ (or more generally, (7'(6})
with a polyadic structure. Let us begin with the question of substitutions.
It is enough to consider finite substitutions o’ ¢ I*. We denote by the
same letter an element of I7 and the mapping of the set of positive integers
that it determines so that (vs)a’ = vir. Note that if a: [1,n]-[1,m]
is any funcfion, it induces a morphism &: A™->A™ defined by
& = {Vaym, .., Ynaymy. Now, for o’ finite in I* and g (7T) 0, to define S(a')g
we select n and g e g such that ¢: A"—~L and o' lives on [1, ] i.e. ({)a’ =i
for all > n, and we let-a: [1, n]->[1,n] have the same effect on [1,n]
as o’. We let, by definition, 8(c’)7 be the equivalence class of Tg. An
easy caleulation shows that §(a')7 is well-defined and it follows from
Theorem 0.2 that § is a homomorphism of the semigroup I into the
semigroup of endomorphisms of (T')6.

The definition of the predicate “equality” E in (T)#6 is based on the
idea that in any set 4 the equality relation is the image under d — Auy1ad:
A—A4% of the set A itself. Accordingly we define

B(vy, vy) = "zV 4
where now A is the distinguished object of 7. The definition of B for
other variables can now be given simply as

E(vi, v5) = 8(vifvy, 03{03) B (vy y) .

Turning now to quantification we first note a simple logical fact.
If ¢ is an element of a polyadic algebra supported by {vy, ..., v:} and
J = {on,, ..., vs,} is a subset of {v, ..., Un}, and wy, ..., uy are other distinet
variables, then

(2) C(HT) g = E gy ooy Un) (g (% ooy Un) A A {B(ue, v5)] i€ K}]

where K =[1,n]—{n;,...,m}. On the other hand if g: A"~>L is
a morphism of T and we let & = {m,, May coey My—ry a0 a: [1, n—7]—>
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~[1,n] be defined by ({)a=m; we have T = Dy ooy Vmppmy a0d
H;[q]: A™ "L must be thought of as the set of (V19 oy Pney) In A" on
which some element of ¢ is mapped by . This suggests exactly (2) except
for a change of variables. For the expression (2) depends on v,y ..., vp,,_,
instead of vy, ..., v.,. Therefore, if ¢: A™~L, we set by definition,

(3) (8J)7 = dzq] -

The direct verification that quantification is well-defined and that
the axioms for cylindrical algebras C1-O4 are satistied is arduous but
if we allow ourselves to use Lawvere’s completeness theorem they boil
down to some easy set-theoretic computations. For ingtance, to show
that (&J)7 is well-defined let g,: A™—>L, n < n'

=¢ le ¢ =dmyq,
K =[1,07—{n, ..., m}

such that (7)o’ = mq.

We must see that

(4) O CH[g] = TNz Fnnrq] .

A8 Dpw@ = T'Vy—p -, it suffices to see that

= {Myy ey Moy}, 'z [1, n —r]—=>[1,n]

(6) B rav—rTzlq] = Tz Bnn ql -

Since, as noted before (Theorem 0.5), it follows from Lawvere’s comple-
teness theorem, that 7 can be embedded in a direct product of theories
each of which is a subcategory of Ens and in each of which I — 2, we
may assume here that T' is such a subcategory of Ens. Then replacing ¢
by the subset of A of which it is the characteristic function we see that
(5) means that

(6) 6n—r,n’—r—IE(Q) = ’&"("‘3%’*7(4)) .

This equation is easily verified.

The verification of H(vs,v)) = 1 leads quickly to the obvious set-
theoretic equation <vi, vy (4) = A™ where 4 C A4* iy the relation of
equality on 4. It can also be done fairly easily directly. For the verification
of @, s, C3 and C4, we need the fact already noted that in a model M
of T, (Ar}M is the infimum in the Boolean algebra 2 so that when we
pass from characteristic functions to sets 4 in thoge axioms is interpreted
ag intersection of sets. Therefore these verifications in the present context
are close to what they are for cylindrical set algebras.

We will need the following theorem which discloses the reason for
introducing (') 0%.
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TumoreM 2.1. The polyadic algebra (T)0; has the form (T)6'® 5,
where Xy is freely generated by py, ..., Pr (ps being the equivalence class of
the 4th projection Lk—>L).

Proof: The statement of the theorem tacitly identifies (7)6’ with
its image in (7) 6% under a polyadic monomorphism which maps g e (7) &,
where ¢: AL, onto the class of pr(A"ka—>A")q It follows from
Theorem 0.3, that, after thiz identification, the algebra (T')0; is an ex-
tension of (T) 6’ by the elements p,, ..., pr. That the p; are closed elements
is immediate from the definition of guantification in (7)6; where for
a: {1,n]-[1, m], @ would now denote
which is & map A™XL*>A"xI*.

\,pAmﬂ(m)m’ ==y pA""v(nu)m’ 1Lk>

To prove the theorem it suffices (Theorem 0.7) to define, for each 4 e[1, 2*],
a polyadic homomorphism &: (T) 6%~ (T) 6’ such that for each j = 1,...,k
(p5)61=(j)esr and (§)6;= g for Ge(T)0'. The generic element of (T) 6,‘
has the form % where y: A®XL*->L. We define 0 by the equation (y)d;

= (p) & where the & on the right has the meaning defined earlier. The
required conditions can readily be verified. Q.E.D.

We observe that the (e, 6)-formalism for the maps A" xIL*~L of T
corresponds by 6% to the (e, 6)-formalism for the extension (T)#} of the
polyadic algebra (I)6’ by the propositional variables p, ..., px.

We note that the Boolean homomorphism

B(@psy -, PrlpE): (T)6%>(T) 0

where ¢s: A™~>L and p; has the same meaning ag in the theorem, maps
¥ ¢ (T)6; onto the equivalence class of (Las, @y, ..., pr>y.

In order to define (7)6”, the distingunished set of terms of (7)¢’,
we agsociate to every morphism ¢: A">A of T and n-term i of (T)0’
and welet (T) 6 be the set of all such f. First we have the following theorem
in accordance with the well-known idea by which an n-ary operation
determines an (n-1)-ary predicate monovalent in its last variable.

THEOREM 2.2. The map which assigns to 1: A"—A, @ A™>L
defined by the equation

Pt = Opnt1ly VnsrmsryTaVa
is an injection of T (A", A) into the set of the morphisms @: A" L which
are monovalent in their last variable i.e.

s n,u+1[?’] =Van

and
T(A™*, L).

Ont1nt2PA BniaUnions2d@ < OnirnralniontdTaVa  in
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We leave out the proof of the theorem which is in any case an. imme-
diate consequence of the completeness Theorem 0.5. That the above
injection may fail to be surjective is the reason for which G is equivalent
to § and not simply to 9.

Similarly we have an injection of T(A™XIL*, A) into the set of
morphisms #: 4™ X L*->A monovalent in their lagt individual variable.
Such a monovalent morphism determines a monovalent (n +1)-ary
predicate and hence an n-term of (T)6j. The n-term corresponding to
the morphism ¢; we call . If F is the equality of (T) ¢, E (%, vns1) is the
equivalence class of

<pA"+1an,n+l ¢ pA"“’”n+l,n+1> HdVA

where P ., = pr(d™M < I*— A™Mh, Equivalently ? can be characterized
by the condition that if ¢: A™ xL*+L and n < m, 8(iv,)7 is the equiva-
lence class of

<<p4m nm 1 1m>!pLh>q

where p,, = pr(d™ x L*-L").

That the set (7)6" is admissible follows from the fact that

(i) if ¢: A®>4 and m > n the m-term determined by  is Bamt

(ii) (v1, ) = vin; and

(iii) for every k > 0, every sequence ¢ = (g1, ..., pu) of
morphisms A" A4 in T, every sequence ({, ..., s) of morphisms A™—>A
in T, every sequence (g, ..., ¢¢) of morphisms 4™—I in 7T, the m-term
associated to

1, m,n=

Sty ey tas Gy ooy D (Pry woes )80 A" > A" XIF >4

B(&fvy, vy Tnfon; Tfp1, vy TPEN (Pry iy Par)e

2.1 and the

That (g ey Poi) & = (Fay -r) Ppe)e Tollows from Theorem

remarks at the end of the last paragraph.

To ‘define 0 on morphisms let W: T,~T, be a morphism of §. Then
(W)6: (T1,)6" >(T,) 0" is defined by the equation (7)[(W)6]= (g)W. That
(W) 6 is a well-defined polyadic homomorphism is a short and easy verifica-
tion. Moreover if ¢: 4”4 then (})[(W)6]= ()W and therefore, (W)6
is a morphism of §. If, similarly we define (T)6} as {f| t: A"X L*~>4}
and (TI)0x = ((T) 0%, (T') 6%), the same equation can be used to complete
the definition of 6 as a functor B—~7.
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Il. Reciprocity of the constructions ¢ and o

We shall prove the following

TeEOREM 3.1. The funciors 0: BT and 67': $>B are reciprocal
equivalences.

This means that we must (see, for instance, Mitchell {12], pp. 52
and 61) define for each theory T and object (P, D) of ¥ isomorphisms

Rp: T—(T)066™
and L
S,y (Py D)—(P,D)6770

in such & way that for any morphisms W: T -1, and f: (P, D) ->(P,, D,)
in B and ¥ respectively the following two diagrams commute:

R

(T)06™"
(1) w (wyoe—1
T, ™ (T)ee
(P, D) Se.n (P,D)67%6
(2) f (o8
¥
(Py, D) o (Py, D) 676

Definition ot Ry. There is no loss of generality in assuming that
T and (T)606™" have the same objects and that Rr leaves objects fixed.
We define the effect of Rr on morphisms in stages. Beginning with
morphismg g: XL, for an arbitrary X = A™xI¥, we define Ry so that
it maps T(X,L) bijectively onto [(T)06™" (X, L). Although this will
turn out to be the case, we do not have at this stage to show that this
bijection is an isomorphism of Boolean algebras. The definition is simple:
(9)Br = g or, more exactly (g,n,%). The verifications are immediate.
Next we wish to define Ry on T(X, 4). Let (t)Rr = i, or, more exactly
(,n, k). The fact that # is a morphism of (T)66™ follows from the
definition of 67" and of 6". To complete the definition of Br, let

9= <pi; ¢z A"X L¥ > A™ x I¥. By definition (¢) Rr = {(pe) Re; (¢9) Br).

Therefore Rr maps the set of morphisms of T biuniquely onto
the set of morphisms of (7)66™ and preserves domains and codomains.
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To show that Rr is an isomorphism of categories the only thing left is
the verification that Rr preserves the composition of morphisms. We
are easily reduced to the case of a pair of morphisms ¢;: X ¥, p: ¥->2
where Z is either 4 or L. In the latter case, that Rr preserves the com-
position means that

(pp) Br = S{gy Brfvy, .., gmBrfvm; 9ORe[p, , ..., ¢MRe|pn) (pEr)

where ¥ = A” x L". The left member is gp. The right member reduces
to this after a computation based on the formulas established above.

Finally the commutativity of diagram (1) must be checked. For
objects this is obvious. Let ¢p: X —Y in T, ¢ = (gi, ¢". Then [(¢)W].Rz,
= (piW; gPW> in (T)96™>. On the other hand [(¢)Rr](W)66~" also
easily reduces to that expression.

Definition of Spp. If ¢e¢P is supported by {o,.., o} we
set (¢)Se,py = (¢, n,0). Remember that (g,n,0) is then a morphism
of (P)¢7". That Sppy is well-defined and bijective is easy to show.
That 8(7,py preserves the Boolean structure follows from the fact already
shown that (P67 (4™, L) has the same Boolean structure as the {v, ,...,0.}-
compression of P. That S¢p p) preserves the transformation endomorphisms
8(a) and quantification must be computed. The reader will miss little
if he does it, say, for (Huv,)q(v,, v,). Bquality is then preserved by virtue
of the uniqueness of equality in a polyadic algebra. The fact that dia-
gram (2) commutes is obvious.

The category ' of polyadic algebras can be imbedded as a full sub-
category of ¢ by either of two functors MIN and MAX, trivial on morphisms
and otherwise defined by the equations

(P)MIN = (P, (P)Min) and (P)MAX = (P, (P) Max).

The following corollary is immediate from the definition of 67

COROLLARY 3.2. MAX 07" is an isomorphism of &' onto the full sub-
category of G whose objects T have the property of being definably complete
i.e. the map t gy of T(A", A) into the set of morphisms A" I monovalent
in their last variable is surjective.

IV. The semantics functors om § and ©
To avoid set-theoretic difficulties we shall assume the existence of

an inaccessible cardinal and hence of a Grothendieck universe. The
categories G, ¥, Ens will henceforth be restricted to contain only objects
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in that universe. Following Lawvere [10], [11] we consider the category U
whose objects are all functors U: C->Ens where C is a small category
although not necessarily in the above universe. (As defined, U is a class.
We could require that C lies in a larger Grothendieck universe if we
assumed the existence of a second inaccessible cardinal. Then U would
again be a set.) If Ui: Ci—Emns for ¢ = 1, 2 are objects in U, a morphism
U,—U, is a functor C,—»C, such that U;= (C,—~0C,) U,.

We wish to show that the 2-valued representations of a polyadic
algebra P correspond to the models of the associated theory (P)6™ no
matter what set D of terms we distinguish in P. For convenience we will
therefore henceforth denote by B the category of definably complete
theories and write 67 instead of MAX 6%, and 7 instead of 7’. The idea
is to eliminate the unnecessary duplications in our original B and 9. More
precisely, what we will do is to define two contravariant “semantics”
functors

Sem: §—>U and SEM: T->U

and show that Sem and 6™ SEM are naturally equivalent functors. The
functor SEM is defined by Lawvere [8], [10]. It associates to a theory T,
not only, as used to be the case in model theory, the set of all models
of T, but the category (7)AM of all models of T endowed with the
underlying set fumctor Uz. More explicitely, the objects of (T)A- are
the models M of T, its morphisms are the natural transformations
between models, and (M) Ur= (4)M. The action of SEM on morphisms
is ag follows: if W: Ty—T, is a morphism of B, (W)SEM: Up,—Ur,
is the functor (W)SEM: (Ty)dt—(Ty)A which maps M e [(T) M| onto
(W)M: T,—-Ens.

Similarly, the functor Sem associates to the polyadic algebra P the
functor Up: (P)R —~Ens where (P)R is the category of 2-valued representa-
tions f of P. More explicitely, the objects of (P)R are the 2-valued repre-
sentations f: P—+Cx of P (X ¢ [Bns|), (f) Up = X and a morphism fi=Tfe,
where fi: P—0Ox, (i=1,2) are objects of (P)R, is a polyadic mono-
morphism ¢: [(P)fi](X,)->0Ox, such that fig=7F,. The domain of g is
the subalgebra of Cx, generated by (P)f, and all constants &, of Ox,,
#; being the constant associated to =, ¢ X;. If P is the polyadic algebra
agsociated to an ordinary elementary theory and f,, f, the representations
associated to two models of that theory, then such a g corresponds to
an elementary monomorphism between these models ([1], p. 124).
(9)Up maps =, € X, on the element @, < X, such that &, = (Z,) g.

A natural equivalence of 67 SEM onto Sem is a function @ which
aggociates to every object P of § an isomorphism ¢@p: (P)07' SEM >
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(P) Sem in such a way that for every polyadic homomorphism f: P,->P,

2
the following diagram commutes

(P) (67" SBM) — oo —— > (P,) Sem
(1) {(NH(6~1 SEM) (7} Sem
A v
(Po) (67 SEM) (P Sem

@py
{[12], p. 59). Such a ®p is an isomorphism of categories (PO~ M (P)R
such that @,U,= U, ,.

We first define @7 on objects g: P -»Cx. The model M of T — P)et
associated to ¢ is defined by the conditions:

()
(i) if (g, n): A"XL*>TL in T, ie. ¢ is an element of P® X with
support {vy, ..., vz},

(50, e)[(Qi %)M] = (mli ey ) [S((vl)e/l’h; ey (k)@/]’lc)ﬂ!]n
where (2, ¢) ¢ X x 2%, and, for any element ¢, of P with support {vy,
(¢1)gn is the function X"->2 determined by (9,)g as before;

(iii) & condition similar to (ii) for the morphisms ¢: 4™ xL*>4;
(iv) if generally, ¢ = (ps; ¢/,

(P) M = (o) M; (9N M) .

Next we define @p on objects M of (T)A where T — (P)6™" as
before. The representation g of P associated to M is defined by the
condition:

if g € P has support {v,, ..., v}, and o ¢ X’ where I — {V1, Vg Vg, .o}

(@) (o] = (@0r --r» D0,) [(g, ) D] .

The correspondance thus established between M and ¢ is strictly one-one.
We leave out the straightforward verifications of this fact as well as
that, M and g as defined above, are indeed a model of T and a representa-
tion: of P respectively.

Finally we define ®7" on morphisms of (P)R. Let g: fi —+f» where
fit P—~0Ox, (i=1,2) be a morphism in (P)R. Let M:= (f;)@p" and
t = (g)Pp'. To any object ¥ = A"xIL* of T, t associates a map

tr: XTx 2% 5 XP w2,

(A" XIM)M = X" x 2%

ey Un}y

Fundamenta Mathematicae, T. LXVI
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For Y = L, this map is 1,. As the thing works componentwise, it fuff.ices

to look at the case ¥ = A. The function {.4: X;—~X, is (g) Up by definition.
We leave out the definition of @» on morphisms of (T) At and, again,

the remaining verifications that &7 (or Pp) is one-one on morphisms z.md

preserves their composition, and that the diagram (1) is commutative.
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The new interval topology on lattice products *
by
Frieda Koster Holley (Ithaca, N.Y)

Although the interval, ideal [3], and new interval [2] topologies all
give the topology of the real line, only the latter two give the topology
of the plane. That is, the ideal or new interval topology of the plane
(ordered coordinate-wise) is equivalent to the product of the ideal or
new interval topologies of the real line. It is reasonable to agsk whether
this property holds in the case of a finite product of chains or, more
generally, a finite product of lattices.

Alo and Frink ([1], Theorem 2) proved that the ideal topology of
a finite product of lattices is equivalent to the product of the ideal topolo-
gies of these lattices. However, for the new interval topology, they were
forced to restrict the lattices to chaing ([1], Theorem 9).

In this paper we show by means of a counterexample that the new
interval topology on the finite product of lattices is not equal to the
product of the new interval topology on the lattices. First, however,
we prove two theorems that give conditions upon the individual lattices
that insure the equivalence of the two topologies. These theorems, besides
being of interest in themselves, give insight into the counterexample.

1. Definitions. The product order 1L, of an arbitrary number
aed
of lattices is defined coordinate-wige: ‘

(80) < (ba) if and only if a, << b, for all a.
[L L, is a lattice: under this order:

(@e)V(ba) = (42VDa) BN (Gg)A (Ba) = (Gah ba)

where v (A) ig the lattice supremum (infimum).

The interval topology is defined by taking as subbagic. closed sets
the closed rays [«, 4 co) = {#| # >> a} and (—o00, b] = {#| @ < b}. Clearly
the intervals [a,b] = {z| e < o < b} are closed in this topology.

* While writing this article, the author was sponsored by an NSF Traineeship
from the University of New Mexico.
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