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For Y = L, this map is 1,. As the thing works componentwise, it fuff.ices

to look at the case ¥ = A. The function {.4: X;—~X, is (g) Up by definition.
We leave out the definition of @» on morphisms of (T) At and, again,

the remaining verifications that &7 (or Pp) is one-one on morphisms z.md

preserves their composition, and that the diagram (1) is commutative.
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The new interval topology on lattice products *
by
Frieda Koster Holley (Ithaca, N.Y)

Although the interval, ideal [3], and new interval [2] topologies all
give the topology of the real line, only the latter two give the topology
of the plane. That is, the ideal or new interval topology of the plane
(ordered coordinate-wise) is equivalent to the product of the ideal or
new interval topologies of the real line. It is reasonable to agsk whether
this property holds in the case of a finite product of chains or, more
generally, a finite product of lattices.

Alo and Frink ([1], Theorem 2) proved that the ideal topology of
a finite product of lattices is equivalent to the product of the ideal topolo-
gies of these lattices. However, for the new interval topology, they were
forced to restrict the lattices to chaing ([1], Theorem 9).

In this paper we show by means of a counterexample that the new
interval topology on the finite product of lattices is not equal to the
product of the new interval topology on the lattices. First, however,
we prove two theorems that give conditions upon the individual lattices
that insure the equivalence of the two topologies. These theorems, besides
being of interest in themselves, give insight into the counterexample.

1. Definitions. The product order 1L, of an arbitrary number
aed
of lattices is defined coordinate-wige: ‘

(80) < (ba) if and only if a, << b, for all a.
[L L, is a lattice: under this order:

(@e)V(ba) = (42VDa) BN (Gg)A (Ba) = (Gah ba)

where v (A) ig the lattice supremum (infimum).

The interval topology is defined by taking as subbagic. closed sets
the closed rays [«, 4 co) = {#| # >> a} and (—o00, b] = {#| @ < b}. Clearly
the intervals [a,b] = {z| e < o < b} are closed in this topology.

* While writing this article, the author was sponsored by an NSF Traineeship
from the University of New Mexico.
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The new interval topology is derived by first defining the closed
bounded sets as arbitrary intersections of finite unions of closed inter-
vals [a,b]. Thus, a closed bounded set B = ﬂ (U[M, bi]) where n, is

aed =1

finite for all a. Closed sets in the new interval topology are defined to
be exactly those sets whose intersection with every closed bounded set
is a closed bounded set. As Alo and Frink pointed out ([1], p. 1011),
this is equivalent to requiring that a set be closed if and only if its in-
tersection with every closed interval [a@, b] is a closed bounded set.

Because the order relation on a lattice is antisymmetric, the new
interval topology is clearly T;. Therefore, if F ~ [a,b] is finite for all
closed intervals [a, b], F is closed in the new interval topology.

2. Theorems. To simplify the notation in the following theorems,
they are proved for the product of two lattices. The generalization to
a finite number is obvious.

Alo and Frink ([1], Theorem 8) have proved that if L is the direct
product of any number of lattices L;, then every set ' of L which is closed
in the cartesian product of the new interval topologies of the latitices Iy
is also a closed set in the new interval topology of L. Therefore, to show
that the two topologies are equivalent, it will suffice to show that
every set closed in the new interval topology is closed in the product
topology.

THEOREM 1. Lef the new inferval topologies of both of the lattices L
and M satisfy the first amiom of countability. Then, if F is closed in the
new interval topology of L X M, F' is closed in the product of the new interval
topologies of L and M.

Proof. The product of the new interval topologies is first countable
since the new interval topologies of I and M are first countable. Let
(a,d) be in the closure of F' with respect to the product topology. We
will show that (a, b) e F. By the first axiom of countability, there exists
a sequence {(@n,ba)ln—y CF which converges in the product topology
to (@, b). If the sequence has only a finite number of distinet elements,
then we are done. Therefore we assume that the sequence has an infinite
number of distinct elements. Let 4 = {an}n-1 and let B = {b,}nes. Either 4
or B has an infinite number of distinct elements. Assume that 4 does
and that a¢ 4 (if a4, use A—{a}). We now show that there exists
¢, d el such that A ~ [¢, d] is infinite. If for all ¢, d, (¢, d] ~ A were
finite, then 4 would be closed. Now {(@., bs)} converges to (a, b), which
implies that {an}p-1 converges to . This last fact together with the fact
that 4 is closed implies that a e d. A contradiction. Therefore, there
exists ¢,d such that infinitely many . e[c, d]. Denote the subsequence
of {(@n, bn)} Cle, d] X M by {(an, bu)}ne1 = 1. Let B’ = {b}}oes .

icm®
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Case 1: B’ has an infinite number of distinet elements. As before,
we assume b ¢ B'. By the same reasoning as above, there exists ¢,fe M
such that infinitely many members of B’ are contained in [e, f]. Let I
denote the interval [e, d}x[e,f], and let {(a, bn)}ne1 denote the sub-
sequence of {(an, bx)} which is contained in I. F' was assumed to be closed

k22
in the new interval topology of LxX M, s0 F n I = f \ (Lj [p¢, gi]) Where n,

is finite for all a. This implies that {(am, b))l CF~IC U [pe, qi]

for all a. Since », is finite, there exists an m < n, such that a subsequence
of {(an,by)} is contained in [Pm, gn). This subsequence converges to
(e, b) in the product topology, and [Pm, ¢m] is closed in that topology

g
(actually in both topologies); therefore (a, b) € [Pm, gn] C | [P4, ¢¢J. This
i=1

Mg
is true for all «, hence (a,by e (IUJ[ps, q])=F~ICPF.
a€d i=1

Case 2: B’ has a finite number of distinet elements.

Let e= A {bn}, f=V {bn}. Letting (an, bn) = (an, bn), the same
reasoning can be applied.

COROLLARY 2. Let the new interval topologies of both of the lattices L
and M satisfy the first axiom of countability. Then the product of the new
interval topologies of L and M 4s equivalent to the new interval topology
of Lx M.

Proof. Theorem 1 and Alo and Frink [1], Theorem 8.

The following theorem and corolla,ry are necessary for the proof
of Theorem 5.

THEOREM 3. Let L be a lattice with the new interval topology. Let
a, b eL such that a < b. Then the relative topology on [a, b] is equal to the
new interval topology on [a, b] which is in turn equal to the interval toplogy
on [a, b].

Proof. Since [a, b] is a lattice with a greatest and a least element,
the new interval topology on [a, b] is equal to the interval topology
of [a,b] by the first half of Theorem 1 of Birkhoff [2]. A subbasis for
the closed sets of this topology is {[a, #], [#, b]] a < z < b}. Since [a, ),
[z, b] are closed in L, the interval topology is clearly contained in the
relative topology.

Let F be closed in L. F' ~n [a, b] is closed in the relative topology.
By definition of the new interval topology,

F o a, 8] = () (U [, ba)
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But
F ~fa,b]=F ~[a,b] ~{a,d]

= (U tar, 8] [, 81 = (U Faes D) a0

ﬂ U[%bt]ﬁ[a b)) = ﬂ U[aNa binb]) .

The sets [a:Va, biAb] are closed in the interval topology, and since arbi-
trary intersections of finite unions of closed sets are closed, F' ~ [a, b]
is closed in the interval topology of [a,b]. Thus the relative topology
on [a,b] is contained in the interval topology.

CoROLLARY 4. Let L and M be lattices. Let [a,b], [c, d] be closed
intervals in L, M, respectively. The relative topology on [a, b]x [¢, d] as
a subset of L x M where L x M has the new interval topology is equal to the
product of the relative topologies on [a, b] and [c, d] where both L and M
have the new interval topology.

Proof. By Theorem 3, the relative topology on [a, b] x [, d] is
equal to the interval topology on [a, b]x[e¢,d]. Alo and Frink ([1],
Theorem 3) proved that the interval topology on [a, b] X [¢, d] is equal
to the product of the interval topologies of [a, b] and [¢, d]. Using Theo-
rem 3 on [a, b] and [¢, d] again, the proof is complete.

The following theorem implies Theorem 9 of Alo and Frink [1].

THEOREM 5. Let the new interval topologiés of the lattices L, and L,
have the property that for all e Lq:

(1) there ewists a b such that a < 2 < b,

(2) there emists an open set G in the new 'mte'rval topology on L; such
that 2 €@ C {a, bl.

Then if F' is closed in the new interval topolc)gy of Ly X Lp, F s closed
in the product of the mew interval topologies of I, and L,.

Proof. Let F be closed in the new interval topology of L; xL,. Let
@ = (#y, ;) ¢ . By hypothesis, there exist as, by, i =1,2, such that
a¢ < ¥ < by, and there exist open sets @ in the new interval topology
of L; such that @; € G C [aq, bs] for i =1, 2. Let

J = [ay, by] X [@z, bs] = [(ay, @), (by, by)] -

F ~J i3 closed in the relative topology of J. By Corollary 4, the relative
topology of J is equal to the product of the relative topologies on [4, b;]
and [a,, b,], and so F' ~ J is closed in the product of the relative topologies.
Now x ¢ J —(F ~ J) implies that there exists an open set @ in the product
of the relative topologies such that # ¢ & CJ —(F ~ J). It may be assumed
that & is a basic open set. G= G{x . G = @Y~ [a, b where G}
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is open in the new interval topology of L;, and @; e Gf for i = 1, 2. Now
Gin@Gi=G{ "G [a,b]l=6{n G fori=1,3. Moreover, G7, G¢ are
both open in the new interval topology on IL;, which implies that G4 ~ &
is open in the new interval topology on I; for i=1,2. In addition
wi e G~ Gy, § =1, 2. Therefore &= (2, 5,) € (G4 ~ G4) X (G ~ Go) C G x
XG=GCJI—FnJ). (GinG)x(G;~G) is open in the product of
the new interval topologies on L, and L,. It is disjoint from F and con-
tains #. As this iy true for all z ¢ 7', the complement of F' is open in the
product topology, which finishes the proof.

COROLLARY 6. Let the new interval topologies of the lattices L, and L,
satisfy the conditions of Theorem 5. Then the new interval topology of Ly x L,
i equivalent to the product of the new interval topologies of L, and L,.

Proof. Theorem 5 and Alo and Frink [1], Theorem 8.

3. Counterexample. In the following example, the new interval
topology of L x M does not equal the product of the new interval topologies
of I and M.

Let 4 be the lattice of finite subsets of real numbers, including the
empty set @, ordered by inclusion. Let L = A”, where N is the get of
natural numbers. L is a lattice with the product order. Let M be the
bounded (not necessarily continuous) functions on [0,1] where f<g
if and only if f(z) < ¢g(=) for all a.

By Theorem 1 we know that at leagt one of our lattices must not be
first countable under its new interval topology. The proof of Lemma 2
in the following yields the information which gives an easy proof that
the lattice M is not first countable.

Similarly, by Theorem 5, one of the lattices must have a point which
has no bounded neighborhood. Lemma 2 also implies that no nelghborhood .
of the function identically 0 in M is bounded.

Indeed, the lattice M was chosen precisely because it has these
properties. The lattice L was chosen because it permitted the construction
of a set ¥ such that every bounded interval in L x M contained only
a finite number of members of #.

Because the product topology is contained in the topology of the
product ([1], Theorem 8), we must exhibit a set F which is closed in the
new interval topology on the product but not in the product of the new
interval topologies. To construct ¥, we need

By={feM| f(t) =0, t Ft, b, ...,tu; flls)=m, i=1,2,..,0}.

A funetion in B, will be denoted by fn. Now, to f» € B, we associate a unique
element ¥(fy) in L as described below. Since the ecardinality of the single-
tons in A and the cardinality of B, are both equal to the continuum,
each fn € B, can be associated with a unique singleton in 4. Define ¥(fs)
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to be the sequence ‘which consists of the empty set except at the nth
position and at the mth position it is the singleton associated with f,.

Let B = {(Z(f), fol| fu e Ba). Let F = D;F,,. Then

(1) F s closed in the new interval topology.

We show that F ~ I is finite' or any closed interval I. Let I = [(a, f),
(b, 9)1=[a, 0] x[f,q]. If (IP f'ﬂ'/’fn) eI, then ¥(fs) e[a, b] and fn <[f, g].

(a) As g is bounded, there exists a natural number m such that
g < m (where x denotes the constant function whose value is ). This
m
implies that [f,g] ~ By =@ for n > m. Thus B~ I C | Fx.
n=1
(b) Recall that L is a countable product of A’s. If ¥(f;) is contained
in [a@,b], then [¥(f)]ie[as, b:]. But any given closed interval [as, by]
in A contains at most a finite number of singletons. Therefore there are
only a finite number of f; e B; whose images ¥(f;) ¢ [a, b]. Thus for all i,
Fi~ I is finite.

(¢) By (&) FAIC)F,, hence F~IC |)(FxrI). By (b) each
n=1 n=1

Fn~1is a finite set, and therefore F' ~ I is a finite set.
(2) F' is mot closed in the product topology.
Lemma 1. If @ is an open set in the mew interval topology on L which

contains (D), the sequence which is identically the empty set, then @ must
contain V(Bp) for all but a finite number of n.

Proof. We will show that if P is a closed set in the new interval
topology on L such that for infinitely many #’s P ~ ¥(By) # @, then
(@) e P. Let P be as described. For each n such that P ~ 1I’(Bn) # 0,
pick exactly one element g, ¢ B, such that ¥(gn) € P. Let S be the set of
all the ¥(gn)’s. Let b= \/ §; since in any one coordinate i only one
[¥( gn)]H&@ b exists and is in L. Since P is closed, P ~ [(@),b]

=N Ulfaz, ¢i]) where n, is finite for all a. Therefore P ~ [(@),b]
a€, 1=

g
c fU1 [ai, ci] for all a. By the definition of b, S&_C_ [(@), b]; moreover, § CP.

Ty
,0]C U [as, ¢1]. Because n, is finite, there exists

an m < n, such that at least two (in fact an infinite number) of members
of 8 are in [am, ¢yl

Therefore § C P ~ [(D)

P(gr) € [am, Cn]
yj(fl) €[an, Cm]

implies that (am)p =9, p # k,

implies that (aw), =@, p=1.

icm
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But k 5= I. Hence (an)= (4). Therefore (3) e [an, ¢u] C Uu [as, ¢;). This
=1

g
is true for all a, which implies that (0)e (7 (| [as,¢]) = P ~[(©), b] C P.
aed i=1

Lemma 2. If G is an open set in the new interval topology on M which
contains the constant function 0, then G ~ By 5= @ for all n.

Proof. We will show that a closed set in 13, which contains all
of B, for some n must contain 0. Let @ be a closed set such that By C @
for some fixed gq. For f e By, let 7(f) = {f| f(t) = ¢}. There exists at least
2 countably infinite number of elements in B, — call those elements f7,
— such that v(f) ~ ¢(f') = B, j # 4. Sinee @ is closed in the

~[0,q]= ﬂ (Cj [hi, ks]) where the =,
-1 C@n[0,q]

C U [k, k:]. As n, is finite, there exists an m < 7, such that at least two
i=1

new interval topology on M, @
are fmlte for all «. Now f’ [0, q] for all j. Therefore {5
(in fact infinitely many) of the fj’s are contained in [Agy, km].
f € [hm, k] implies that hy(t) < 0 for ¢ ¢z(f),
f* € [hm, kn) implies that hy(t) < 0 for t¢z(fY.

But 7(f') ~7(f’) = @. Therefore hyn <0 On the other hand, f’
€[y, k] implies that 0 < k,. Hence 0 € [hy, kn). This is true for all a,

thus 0 e@(g[m, k) =Q ~[0,41CQ.

Note. The proof of Lemma 2 shows that every open set containing 0
must contain all but a finite number of elements from B,. Suppose .there
existed a countable base Un, n =1, 2, ..., for the open sets containing 0.

Clearly
N U=/()Us, and [ U={0},
Uopen n=1 Uopen
0eU 0eU

since the space is 7,. Thus

By= (M~ [\ U)rn By = (M—(3 Un)~ B,

Uopon n=1
€U
[ (M ~Un)] ~ By = U (By—TUn).-
n=1 n=

But B, — Uy is finite for every =, and therefore the last union is countable.
A contradiction.

PROPOSITION. (@), 0} is not in F, yei it is in the closure of F in the
product of the new interval topologies on L and M. This proves (2).
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Proof. Any set open in the product topology which contains (@), 0)
must contain a set of the form G x H where () e G and 0 ¢ H and G and H
are open in the new interval topologies on L and M respectively. By
Lemma 1, & contains ¥(B,) for all but a finite number of n. Suppose
that @ contains ¥(B;). By Lemma 2, B; ~ H 5= . Let f; e By ~ H, then
P(fi)eG and (P(fy),f;) e GxH. Yet (¥(fy),f;) «F. Hence (GxH)n
~TF #@. Every open set containing ((0),0) must contain a member
of F, which implies that ((@),0) is in the closure of F.
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On the modular relation in atomistic lattices

by
M. F. Janowitz* (Amherst, Mass,)

1. Introduction. 8. Maeda [6] and [7] as well as R. Wille [9]
have recently investigated various types of atomistic lattices. Basically,
‘Wille was concerned with upper continuous atomistic lattices equipped
with some type of closure operator, while Maeda investigated modular
and dual moédular pairs in ‘atomistic lattices. Our goal here is to extend
and to some degree attempt to unify these two theories.

In an effort to make the paper fairly self-contained, we introduce

-our. basic terminology arid prove a few preliminary theorems in.§2.In § 3

we introduce the concept of a finite-statisch lattice and extend Wille’s
theory [9] to this class of lattice. In § 4 we discuss modularity in atomistic
lattices, and relate the work of §. Maeda to that of Wille. Finally, in § 5
we list a few open gquestions.

2. Basic terminology. As much as possible our terminology
and notation will follow that of Wille [9]. A noteable exception, however,
is that rather than using Wille’s symbolism, we will use the symbols v
and ~ to denote set union and set intersection.

DEFINITION 2.1. A lattice L with 0is called atomistic if every element-
of L is the join of a family of atoms. ‘

DEFINITION 2.2. A non-empty subset T of a lattice L is called
increasing (see [9], Definition 1.3, p. 5) if 4,y ¢ T' implies the existence
of an element z of T such that #Vy < 2. In symbols, the notation ]
will denote the fact that {x.} is an increasing subset with join «. If Z.|@
and w Ayloay for all y eI, then {w.} is called a continuous increasing
subset of L.

In a lattice with atoms, let o denote the set of atoms dominated
by #. The next lemama then provides a useful characterization of con-
tinuous increasing subsets of an atomistic lattice.

Levma 2.3. Let a]@ in an atomistic lattice L. Then {zg} s continuous
if and only if aw= | Jp(amp).

* Regearch supported in part by NSF Grant GP-9005.
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