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Remarks on Anderson’s paper
“On topological infinite deficiency”

by
H. Torunczyk (Warszawa)

Suppose that the topological space X is the product of &, copies of
an interval J which is either closed or open. A closed subset 4 of X is
said to be of infinite deficiency (briefly: deficient) in X if there exists
a homeomorphism » of X onto itself such that, for infinitely many 3,
the natural projections =;h(4) are (at most) one-point sets in the in-
terior of J.

The sets of infinite deficiency have been systematically investigated
by R. D. Anderson in [1], [3]. The importance of these sets lies in their
topological negligibility property (see condition (g) of Theorem 1 in this
paper) and the property of extending homeomorphisms (here: Theorem 5);
both properties have been established in their final form by Anderson,
but the pioneer work in this respect was done by Klee ([9], [10]). For
other results concerning negligibility see also [5], [6], [7], {8]. The theory
of deficient sets can easily be transferred to the case of separable infinite-
dimensional Fréchet spaces.

The present paper is a contribution to the theory of infinite deficiency.
In Section 1 we establish some topological characterizations of sets of
infinite deficiency. One of them (condition (ii) in Theorem 2), applied
to F, sets rather than to closed sets, gives a characterization of
o-deficient sets, i.e. of countable unions of deficient sets. This class of
sets, being a natural generalization of deficient sets, is discussed in Sec-
tion 2 (*). Finally, in Section 3 we establish a theorem on extending homeo-
morphisms to the pair: Hilbert cube @ and its pseudointerior s, which
is an analogue of the above-mentioned theorem of Anderson, dealing
with a single space X which is either @ or s.

Our results are derived from two theorems of Anderson, which are
stated explicitly as Theorem 1 in Section 1 and Theorem 5 in Section 3.

(*) Added in proof. o-deficient sets (sets of type Z,) and their relations to
problems of negligibility have been studied by R. D. Anderson and his colaborators,
see, e.g. [5].
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0. Preliminaries. By N we denote the set of non-negative in-
tegers. Greek letters: a, 8,y denote non- -void subsets of N. We define
al = N\a. For every topologlc&l space Z and every a C N we denote
by Z* the product P Z, with Z, = Z, endowed with the usual product

nea
topology. By =, we denote the natural projection i Z¥ >z Q =1V
(I =[—1,1)) is the Hilbert cube, and s= (—1, 1Y its pseudointerior.
We eonsider @ and s with the standard metric

d(z,y) Vz nl-”n Yal -
neN
Let (Z, o) be a metric space and ¥ a topological space. By g we shall
denote the metric o(f, 9) = sug g(f(y), g(y)) defined on the set of con-
yE

tinuous functions from Y into Z. By Z* we shall denote the same set
endowed with the compact-open topology. For any subset K CZ we
shall denote by G(Z, K) the set of all the homeomorphisms of the pair
((HZ , K) onto itself (called autohomeomorphisms of the pair (Z, K)); @(2)
= G(%, Z) (the set of all autohomeomorphisms of the space Z). By
¢ e G(Z) we denote any identity map. Unless otherwise stated the spaces
G(9,s) and G(Q) will be considered with the metric d.

We shall use the following lemma.

LemmA 1. For any complete metric space (Z, o), the space (G(Z), P)
with metric ¥, given by:

g =a(f,9)+ef 97

8 also a complete metric space. If the space (Z, o) is compact, the metrics ¥
and ¢ induces the same topology on G(Z).

An easy proof is left to the reader.

Let X be either @ or s. A closed subset K of X is called straight
if either K is empty or if there exists an infinite set a such that m(K)
is a subset of s consisting of a single point. We say that K C X is of infinite
deficiency if there exists an fe G(X) such that f(K) is straight.

Sets of infinite deficiency will be also called briefly deficient; count-
able unions of deficient sets will be called o-deficient.

We say that closed subset K of an infinite-dimensional separable
Fréchet space F' is of infinite deficiency if there exists an fe G(F) such
that f(K) is a subset of a closed linear subspace of infinite linear deficiency.

A subset K of a topological space ¥ has property Z in Y if K is closed
and, for any non-void, open and homotopically trivial set U, U\K is
also non-void and homotopically trivial.
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1. Characterization of sets of infinite deficiency. Anderson’s
results for the sets of infinite deficiency can be summarized as follows.

TrmoreM 1. Let K be a -closed subset of the Hilbert cube Q and let
M = K ~s. Then the following conditions are equivalent:

(a) K has infinite deficiency in @Q;

(b) there ewists an fe G(Q,s) such that f(K) is siraight in Q;

(e) K has property Z in Q;

(d) there emists am fe G(Q) such that f(S\K)= s;

(e) there ewists an fe G(Q) such that f(s v K) = s;

(£) M has infinite deficiency in the space s;

(g) for every subset U C s which is open relative to s there is an f € G(s)
such that f(U) = O\M and f(z) = for x < \U;

(h) for every subset U C s which is open relative to s the sets UNM and U
are homeomorphic;

(j) M has property Z in s;

k) for every homeomorphism f of s onto a Fréchet space F the image
(M) has infinite deficiency in F.

The above results can be found in [3] (not a.lways explicitly) except (g),
which is a corollary ¢f Theorem 9.2 of [4]. The last fouwr conditions can
also be regarded as characterizations of deficient subsets of the space s.
This follows from the fact that every closed subset of the space s can be
represented in a form K ~ s where K is the closure relative to @ of the
given set. Let us note also that ta.kmg, in the condition (e), f= ¢, we
find that every compact subset of s has infinite deficiency both with
respect to s and with respect to @. Similarly, by (d), every compact subset
of the pseudoboundary @\s has infinite deficiency in @.

Now, using the above theorem, we shall prove an additional char-
acterization of sets of infinite deficiency.

THEoREM 2. Suppose that X s cither Q or s and K is a closed subsel
of X. Then the following conditions are equivalent:

(a) K has infinite deficiency in X.

(i) There exists a homotopy h: X x [0, 11> X such that hO: e and
X))~ K =@ for te(0,1]. -

(ii) For every n e N, the set {feX1 1 f(I") n K = @} 1is dense in x7,

(iil) For every metric space (Z, g) including X as iis retract, there is
a retraction r: Zﬂ:X such that r~Y(K)= K.

Proof. (a) = (i).

1. X = . By Theorem 1 (d), there exists an feG(Q) such that

F(\K) = s. The homotopy h(z,?) = f~ ( x=t-f (:t;)) satisties (i); moreover
we have h(sx[0,1])Cs.
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2. X = s. By Theorem 1, K is of infinite deficiency in @. Consequently,
there exists a suitable homotopy h: @ x[0,1]->@ such that h(@) ~ K
=@ for te(0,1], hyb=-¢ and h(sx[0, 1])Cs. The homotopy hlsxgpy
satisfies (i).

(i) = (ii) obvious.

(ii) = (a). By the equivalence of (i) and (f) of Theorem 1 it is sufficient
to demonstrate that K has property Z in X. Thus, let U be open, non-
void and homotopically trivial, and let f: 6I"—U\K. By assumption,
f has an extension F: I"-U. Let us note that the number

¢ = min[a(F(I"), \T), &(f(eI"), K]

is positive; consequently, there exists a mapping H ¢ s™ such that d(I' , H)
<e¢and H(I") n K= @. Then h= H[oI": 8I"~U\K is homotopically
trivial and homotopic to f (the homotopy is given by e.g. G(z, t) = tf(x) +
+{1—t)h(»)). This implies that also f: aI"->U\K is homotopically
trivial.

(i) = (iil). Let f be a retraction Z onto X. We put r(2) = uof(2))
% e Z, where u(2) = min (1, e(z, X)).

(iil) = (i). We put Z = X x [0, 1]; let » be a retraction which satisfies
condition (iii). We define hy(z) as r(wx, t).

Conditions (i) and (iii) have been introduced by W. Kuperberg in
connection with the study of stable points. The equivalence (i) <= (iif)
has also been established by W. Kuperberg. Clearly, Theorem 2 holds
true for any separable Fréchet space F. The following sufficient con-
ditions for being of infinite deficiency are consequences of Theorem 2.

CorOLLARY 1. Let K bé a closed subsed of X (X = Q or ) such that
for every finite o,z | (K) ¢ X. Then K is deficient in X.

Proof. We shall show that condition (ii) of Theorem 2 is satisfied.
Let fe X™ and &> 0. Let us choose a finite set o such that DoM<,

We define g e I by "
(79) (3) = (7af) (@); (7, 9) (@) =0a, wel”,

where @ e X\w,,(K). Then g(I") ~n K = @ and d(f, g) < e.

CoROLLARY 2. Suppose thai F' is a separable, infinite-dimensional
Eréchet space, @ an invariant metric on F and v,: F—T a sequence of pro-
Jections such that for every w e, o(w,wa(m)\0. Let By = va(F). If K is
a closed subset of F' such that K ~ { | By = @, then K 4s of infinite deficiency
in 7. ey

Proof. Let f «F" and ¢> 0. Since the sequence of functions )
= g(f(w), -rlf(w)) is decreasing, by the Dini theorem there exists a & ¢ N

On Andersow’s paper “On topological infinite deficiency” 397

such that o(f,7f) < e for 1 > k. The map g = 7;f satisfies
gIMA"E=0 and 3(f,9)<s.

Remark. The class of subsets of @ satisfying the assumption of
Corollary 1 coincides with the class of weakly thin sets in the sense of
Anderson [1], and the statement of Corollary 1 concerning @ is a con-
sequence of [1], Section 3.

2. Characterization of o-deticient sets. Since X admits
a complete metric, the Baire category theorem together with condition (ii)
in Theorem 2 gives the following characterization of o-deficient sets:

ProPOSITION 1. Let X be either @ or s and let K be an F, subset of X.
Then K is o-deficient in X if and only if for any ne N the set {f e X7
f(I*) ~n K = @} is dense in X"

CorROLLARY 3. Let K be a o-deficient subset of X. Then K is deficient
in X if and only if K is closed in X.

Proof. It is a consequence of Proposition 1 and Theorem 2. This
result has been established by R. D. Anderson.

In order to obtain further characterizations of o-deficient sets, we
shall need the following lemma.

LeMMA 2. Suppose that ¢ > 0 and M, M,, M, are deficient subsets
of @ such that My~ M,=@. Then, there exists an fe G(Q,s) such that
f(M) ~My=0 and fla, = ¢, d(f, €) < e.

Proof. According to Corollary 2, the set L= M, v M, v M, is of
infinite deficiency. Hence, there is a g ¢ G(Q, s) such that ¢ (L) is straight,
say,

() L)=a, aes,T==,.

Let 6 be a positive number such that d(x, y) < 6 implies d (g—l(m) s g‘l(y))
< e. Clearly, there exists an isotopy ki, t [0, 1] of @ with the following
properties: hy e G(Q, ), d(h,e)<s for te[0,1], hy=¢ and h(a)+ a
for te(0,1]. Let g, be given by the formulas:

%J.(!h(m)) =7, (®), (Tab) (@) = huw(z)

where % (%) = min(l, d{m\(3), (nalg)(M,,))).
We put f= g7'g:g.
THEOREM 3. Let K be a subset of Q of type F,. Then the following
conditions are equivalent.
(iv) K 48 a o-deficient set.
(v) For any o-deficient set L, there emists an fe G(Q) such that
fE)~nL=9.
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( i) There evists an f e G(Q) such that f(XK)Cs.
vii) There ewists an f e G(Q) such that FUE) CO\s.
V].ll) For every o-compact subset L of the pseudointerior s, there ewists
an e G(Q, s) such that f(K)~ L= Q.
Proof. (iv)implies (v). Suppose that K = ngNKn y L= nl; {N Ly, where K,

and L, are deficient. By Lemma 2, for any pair ¢, j ¢ N, the set {f¢ G(Q)
f(Ki) ~L; =@} is open and dense in G(Q). Since @G(Q) is complete-‘
memiyable (Lemma 1), the clagsical Baire theorem shows that the set
{f«@(Q): f(K) L=} is non-empty.

(v) implieg (vi), This follows from the fact that @\s is o- deficient
(the countable union of end-slices, each of which is deficient).

(vi) implies (vii). Let ai 4= 0,1, ..., be infinite pair-wise disjoint
subsets of N such that .Lljvaiz N. Let f, e G(Q) be such that f,(K)Cs.

Since K is of type F,, we conclude that there are compact sets K, Cs,
n e N, such that
J(E) = ) Ki.
€N
For each ¢ € N the set m,(K¢) is a compact subset of s. Hence, by Theorem 1,
(d) <= (e), there are g; e G(Q) such that

gilma( K1) CQ\s, for each ie .

The cartesian product of the maps g:, i.e. the map ¢« G(Q) defined by
the condition m,g = gi, takes f,(K) to the pseudo-boundary. Hence
f= gf: satisfies statement (vii).

(vii) implies (iv). Let f be as in (vii). Then f(K) is an F, subset of
the pseudoboundary, and therefore is ¢-deficient. But this implies that K
itself is o-deficient.

(iv) implies (viil). For each @,y ¢ (—1, 1), let us write

)

and let o = g. Then it is eagy to see Lhat each g, i a complete metric
for the gpace (—1, 1)* compatible with the produect topology of this space.
Hence, using Lemma. 1, we conclude that the set G(Q,s) turns into
a complete metric space under the metric

0d, y) = Z 27" mm( Itan X — mnz Yn

Nnea

= a(f, )+, g7V 42 fioy g10)F0(FR" 5 gisY) -

Using the classical Baire theorem, we reduce the proof of our implica-
tion to that of the following
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Leyma 3. If M is a deficient set in Q and L is a compact set of s, then
the set A = {fe@(Q,s): f(M) L=} is a dense open subset of G(Q, s)
in the topology induced by the metric .

Proof. It is obvious that A is open. To prove that it is also dense,
assume that we are given an &> 0 and an h ¢ G(Q, s). Pick a finite set
aC N with 327" < ¢f8, ie.

néa

1) 0L <¢f8.

Denote by R the collection of all sets R C¢ which are of the form
(2) R =iIE’ﬁ[ai, bx I, where fDa, f<ng, ~l<m<b<l.
We claim that there are D, D; e R such that

(3) BNI)Cint D;, Rh(D)CD.

In fact, let K be the intersection of all the sets R ¢ R such that
17HL) C int R. Then h(K) is a compact subset of s, and therefore there
is a set DeR with %(K)Cint D, i.e. K Ch Y(int D). By the standard
compactness argument we can pick a finite collection of sets Ry, ..., R;
in ® such that »~"(L)Cint B; for ¢ <j and R, ~ ...~ R; C k™ '(int D).
Then the set D together with D, = R, ~ ... ~ R; satisfies conditions (3).

Let us now continue the proof of the lemma. By (2) we have D = T x
xI? J', where D is a finite-dimensional closed cube contained in the cube
int I, B < w,. The function g is uniformly continuous on T xT. Hence
there is a 8, > 0 such that, for any @, y « D, the condition 3, 2™ "|ws—yn| < 6;

n G
implies

o(®, y) = o5y, my) + 051 (7,12, 7,1 ) < [84¢f8 = ¢]4,
and therefore
(4) d(x,y) <6, 1implies o(x,y)<e/d4 for w,yeD.
Similarly, there is a d,> 0 such that
(5)- d(z,y)<<d, implies o(w,y)<e/d for =,yeDy,
and, moreover, such that
(6) d(m,y) <06, implies d(h(z),h(y))<é for all ,y¢Q.

By Theorem 2, condition (i), the set 8D, has property Z with respect
to D, regarded as a Hilbert cube. Hence, by Lemma 2 (applied to
M, = h"NL), M, =D, and M, = M ~ D), there is a g ¢ G(Dy, int D, ~ )
such that

(1 ag,0)<&, g D)~ (MAD)=0 and glw,=e¢.
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Extending g as identity beyond D,, we may assume without loss of
generality that ge G(Q,s) and g is supported on D;.

We define f= kg~ By (7), f(M) ~L= 0. Hence to complete the
proof of the lemma, we have to show that w(f, h)-<s Observe
that the condition f(#) s k(z) implies x e D;; thus by (3) we find
that f(») # h(x) implies h(z) e D and f(»)eD. Hence, using the
estimation d(g,e) < &, in (7) and conditions (6), (B), (4), we conclude
that each of the numbers d(f, k), d(f™, ™), 8(fis, bs)y 0(f5", his?) is
less than /4. Whence y(f, h) < e.

Proof of the implication (viii) = (iv). Suppose that K is an I, set
in Q satisfying (viii). Let, for each » e N,

(%) BEy= {wes: mx) =0 for all 4> n}.

Bach F, is a countable union of compact sets in s.,Hence, by (viii), there
is an fe @G(Q, s) such that f(K) ~ { B, =@. Representing f(K) as f(K)
neN
= | J K, a countable union of compact sets, we find that each set K; ~ ¢

1eN
satisfies the assumption of Corollary 1 (m ,(K:~s)¢0 for each finite
a C N). Thus K; ~ s is deficient in s for each ¢ ¢ N. Hence, by Theorem 1,
the sets K; are deficient in @, and therefore both f(K) and K are o-de-
ficient.

COROLLARY 3. There ewists am autohomeomorphism fe G(Q) which
takes the pseudoboundary of Q into the pseudointerior (cf. [3], Theorem 11.1).

Proof. @\s is clearly of type F,. Hence the statement follows from
the implication (vii) = (vi).

THEEOREM 4. Let K be a F,-subset of the space s. Then the following
conditions are equivalent.

(ix) K is o-deficient in s.

(x) For every subset L of s which is a countable union of compact sets
there exists an fe G(s) such that f(K) L= @.

Proof. (ix) = (x). Let K = 'UNKi where Ky are deficient sets. The

. 1€
sets K are of infinite deficiency in @ (Theorem 1); thus the condition (viii)
of Theorem 3 gives the existence of h ¢ 3(Q, s) such that h(|J Ky) ~L = @.

1€N

We put f= hl,.

(x) = (ix). Let K = 'UNL“ where L; are closed in s, and let fe G(s)

1€

be such that f(X) ~ \J B, = @, where B, are given by (%). Then f(Li)
teN

satisfies the assumption of Corollary 1 and consequently ig deficient in s.
We conclude that Ls is deficient in s, and K is a o-deficient set.
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4. Extensions of homeomorphisms between deficient sets.
The following theorem is proved in [3]:

THEOREM 5. Let K, and K, be deficient subsets of X (X is @ or S),
and let f: Ko—n—thg be a homeomorphism. Then, there ewists an fe G(X)
such that Flg, = f. In the case where K, and K, are compact subsets of s,
the autohomeomorphism F cam be chosen from the set G(Q, s).

The second part of the theorem can be extended as follows.

TueorEM 6. Let K; and K, be deficient subset of Q and let f be a homeo-
morphism between the pairs (K, Ky ~8) and (Hy, Ko ~5). Then there
ewists an I e G(Q, s) such that F|g, = f.

Proof 1. We consider the case I, = K,. By Theorcm 1 (e), there
exists a ge@(Q) such that g(s o I;)=s. According to Theorem 5,
the homeomorphism & = gfg~—': g(K,)—g(K,) can be extended to
a He@(Q,s). Clearly, F = g-1Hy gives the desired extension.

2. We pass to the general case. Applying Lemma 2 with M, = K,,
M;=K,, M= we conclude that there exists an he G(Q,s) such
that A(K,) ~ K, =0. Let K,=h(K,) and K =K, v K,. According
to 1°, the homeomorphism f;: K—K given by

f@) = fh:(m) ,  wely,
kK (x), zekK,

can be extended to an I e G(Q,s). F#FlheG(Q, s) is the desired
autohomeomorphism.
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