

References

- [1] R. Ger and M. Kuczma, On the boundedness and continuity of convex functions and additive functions, Aequationes Math., to appear.
- [2] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press 1934.
- [3] M. Kuczma, Note on convex functions, Ann. Univ. Sci. Budapest., Sect. Math. 2 (1959), pp. 25-26.
- [4] the review of the paper: M. R. Mehdi, On convex functions, Zentralblatt für Math. 125 (1966), pp. 63-64.
- [5] S. Marcus, Généralisation, aux fonctions de plusieurs variables, des théorèmes de Alexander Ostrowski et de Masuo Hukuhara concernant les fonctions convexes (J), J. Math. Soc. Japan 11 (1959), pp. 171-176.
- [6] A. Ostrowski, Über die Funktionalgleichung der Exponential-funktion und verwandte Funktionalgleichungen, Jber. Deutsch. Math. Verein. 38 (1929), pp. 54-62.
- [7] H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), pp. 93-104.

Reçu par la Rédaction le 15. 11. 1968

Remarks on Anderson's paper "On topological infinite deficiency"

by

H. Toruńczyk (Warszawa)

Suppose that the topological space X is the product of κ_0 copies of an interval J which is either closed or open. A closed subset A of X is said to be of *infinite deficiency* (briefly: *deficient*) in X if there exists a homeomorphism h of X onto itself such that, for infinitely many i, the natural projections $\pi_i h(A)$ are (at most) one-point sets in the interior of J.

The sets of infinite deficiency have been systematically investigated by R. D. Anderson in [1], [3]. The importance of these sets lies in their topological negligibility property (see condition (g) of Theorem 1 in this paper) and the property of extending homeomorphisms (here: Theorem 5); both properties have been established in their final form by Anderson, but the pioneer work in this respect was done by Klee ([9], [10]). For other results concerning negligibility see also [5], [6], [7], [8]. The theory of deficient sets can easily be transferred to the case of separable infinite-dimensional Fréchet spaces.

The present paper is a contribution to the theory of infinite deficiency. In Section 1 we establish some topological characterizations of sets of infinite deficiency. One of them (condition (ii) in Theorem 2), applied to F_{σ} sets rather than to closed sets, gives a characterization of σ -deficient sets, i.e. of countable unions of deficient sets. This class of sets, being a natural generalization of deficient sets, is discussed in Section 2 (1). Finally, in Section 3 we establish a theorem on extending homeomorphisms to the pair: Hilbert cube Q and its pseudointerior s, which is an analogue of the above-mentioned theorem of Anderson, dealing with a single space X which is either Q or s.

Our results are derived from two theorems of Anderson, which are stated explicitly as Theorem 1 in Section 1 and Theorem 5 in Section 3.

⁽¹⁾ Added in proof. σ -deficient sets (sets of type Z_{σ}) and their relations to problems of negligibility have been studied by R. D. Anderson and his colaborators, see, e.g. [5].

I want to express my gratitude to dr. Cz. Bessaga for valuable discussion and help during the preparation of this paper.

0. Preliminaries. By N we denote the set of non-negative integers. Greek letters: α, β, γ denote non-void subsets of N. We define $a^{\perp} = N \setminus \alpha$. For every topological space Z and every $a \subset N$ we denote by Z^a the product $P \in Z_n$ with $Z_n = Z$, endowed with the usual product topology. By π_a we denote the natural projection $\pi_a \colon Z^N \to Z^a$. $Q = I^N \colon (I = [-1, 1])$ is the Hilbert cube, and $s = (-1, 1)^N$ its pseudointerior. We consider Q and s with the standard metric

$$d(x, y) = \sum_{n \in N} 2^{-n} |x_n - y_n|.$$

Let (Z,ϱ) be a metric space and Y a topological space. By $\overline{\varrho}$ we shall denote the metric $\overline{\varrho}(f,g)=\sup_{y\in Y}\varrho(f(y),g(y))$ defined on the set of continuous functions from Y into Z. By Z^Y we shall denote the same set endowed with the compact-open topology. For any subset $K\subset Z$ we shall denote by G(Z,K) the set of all the homeomorphisms of the pair (Z,K) onto itself (called autohomeomorphisms of the pair (Z,K)); $G(Z)\stackrel{\mathrm{df}}{=} G(Z,Z)$ (the set of all autohomeomorphisms of the space Z). By $e\in G(Z)$ we denote any identity map. Unless otherwise stated the spaces G(Q,s) and G(Q) will be considered with the metric \overline{d} .

We shall use the following lemma.

LEMMA 1. For any complete metric space (Z, ϱ) , the space $(G(Z), \Psi)$ with metric Ψ , given by:

$$\Psi(f,g) = \overline{\varrho}(f,g) + \overline{\varrho}(f^{-1},g^{-1})$$

is also a complete metric space. If the space (Z, ϱ) is compact, the metrics Ψ and $\bar{\varrho}$ induces the same topology on G(Z).

An easy proof is left to the reader.

Let X be either Q or s. A closed subset K of X is called straight if either K is empty or if there exists an infinite set α such that $\pi_{\alpha}(K)$ is a subset of s consisting of a single point. We say that $K \subset X$ is of infinite deficiency if there exists an $f \in G(X)$ such that f(K) is straight.

Sets of infinite deficiency will be also called briefly deficient; countable unions of deficient sets will be called σ -deficient.

We say that closed subset K of an infinite-dimensional separable Fréchet space F is of *infinite deficiency* if there exists an $f \in G(F)$ such that f(K) is a subset of a closed linear subspace of infinite linear deficiency.

A subset K of a topological space Y has property Z in Y if K is closed and, for any non-void, open and homotopically trivial set U, $U \setminus K$ is also non-void and homotopically trivial.

1. Characterization of sets of infinite deficiency. Anderson's results for the sets of infinite deficiency can be summarized as follows.

THEOREM 1. Let K be a closed subset of the Hilbert cube Q and let $M=K\cap s$. Then the following conditions are equivalent:

- (a) K has infinite deficiency in Q;
- (b) there exists an $f \in G(Q, s)$ such that f(K) is straight in Q;
- (c) K has property Z in Q;
- (d) there exists an $f \in G(Q)$ such that $f(s \setminus K) = s$;
- (e) there exists an $f \in G(Q)$ such that $f(s \cup K) = s$;
- (f) M has infinite deficiency in the space s;
- (g) for every subset $U \subset s$ which is open relative to s there is an $f \in G(s)$ such that $f(U) = U \setminus M$ and f(x) = x for $x \in s \setminus U$;
- (h) for every subset $U \subset s$ which is open relative to s the sets $U \setminus M$ and U are homeomorphic;
 - (j) M has property Z in s;
- (k) for every homeomorphism f of s onto a Fréchet space F the image (M) has infinite deficiency in F.

The above results can be found in [3] (not always explicitly) except (g), which is a corollary of Theorem 9.2 of [4]. The last four conditions can also be regarded as characterizations of deficient subsets of the space s. This follows from the fact that every closed subset of the space s can be represented in a form $K \cap s$ where K is the closure relative to Q of the given set. Let us note also that taking, in the condition (e), f = e, we find that every compact subset of s has infinite deficiency both with respect to s and with respect to Q. Similarly, by (d), every compact subset of the pseudoboundary $Q \setminus s$ has infinite deficiency in Q.

Now, using the above theorem, we shall prove an additional characterization of sets of infinite deficiency.

THEOREM 2. Suppose that X is either Q or s and K is a closed subset of X. Then the following conditions are equivalent:

- (a) K has infinite deficiency in X.
- (i) There exists a homotopy $h: X \times [0,1] \rightarrow X$ such that $h_0 = e$ and $h_t(X) \cap K = \emptyset$ for $t \in (0,1]$.
 - (ii) For every $n \in N$, the set $\{f \in X^{I^n}: f(I^n) \cap K = \emptyset\}$ is dense in X^{I^n} .
- (iii) For every metric space (Z, ϱ) including X as its retract, there is a retraction $r: Z \xrightarrow{\text{onto}} X$ such that $r^{-1}(K) = K$.

Proof. (a) \Rightarrow (i).

1. X = Q. By Theorem 1 (d), there exists an $f \in G(Q)$ such that $f(s \setminus X) = s$. The homotopy $h(x, t) = f^{-1}((1-t) \cdot f(x))$ satisfies (i); moreover we have $h(s \times [0, 1]) \subset s$.

- 2. X=s. By Theorem 1, \overline{K} is of infinite deficiency in Q. Consequently, there exists a suitable homotopy $h\colon Q\times [0\,,1]\to Q$ such that $h_t(Q)\cap \overline{K}=\emptyset$ for $t\in (0\,,1],\ h_0=e$ and $h(s\times [0\,,1])\subset s$. The homotopy $h|_{s\times [0,1]}$ satisfies (i).
 - (i) ⇒ (ii) obvious.
- (ii) \Rightarrow (a). By the equivalence of (i) and (f) of Theorem 1 it is sufficient to demonstrate that K has property Z in X. Thus, let U be open, nonvoid and homotopically trivial, and let $f \colon \partial I^n \to U \setminus K$. By assumption, f has an extension $F \colon I^n \to U$. Let us note that the number

$$\varepsilon = \min \left[d\left(F(I^n), s \setminus U \right), d\left(f(\partial I^n), K \right) \right]$$

is positive; consequently, there exists a mapping $H \in s^{I^n}$ such that $\overline{d}(F, H) < \varepsilon$ and $H(I^n) \cap K = \emptyset$. Then $h = H|\partial I^n : \partial I^n \to U \setminus K$ is homotopically trivial and homotopic to f (the homotopy is given by e.g. G(x, t) = tf(x) + +(1-t)h(x)). This implies that also $f : \partial I^n \to U \setminus K$ is homotopically trivial.

- (i) \Rightarrow (iii). Let f be a retraction Z onto X. We put $r(z) = h_{u(z)}(f(z))$, $z \in Z$, where $u(z) = \min\{1, \varrho(z, X)\}$.
- (iii) \Rightarrow (i). We put $Z = X \times [0, 1]$; let r be a retraction which satisfies condition (iii). We define $h_t(x)$ as r(x, t).

Conditions (i) and (iii) have been introduced by W. Kuperberg in connection with the study of stable points. The equivalence (i) \Leftrightarrow (iii) has also been established by W. Kuperberg. Clearly, Theorem 2 holds true for any separable Fréchet space F. The following sufficient conditions for being of infinite deficiency are consequences of Theorem 2.

COROLLARY 1. Let K be a closed subsed of X (X=Q or s) such that for every finite $a, \pi_{a^{\perp}}(K) \neq X$. Then K is deficient in X.

Proof. We shall show that condition (ii) of Theorem 2 is satisfied. Let $f \in X^{I^n}$ and $\varepsilon > 0$. Let us choose a finite set α such that $\sum_{n \in \alpha} 2^{-n} < \varepsilon$. We define $g \in I^{I^n}$ by

$$(\pi_a g)(x) = (\pi_a f)(x); \ (\pi_{a\perp} g)(x) = a, \quad x \in I^n,$$

where $a \in X \setminus \pi_{a^{\perp}}(K)$. Then $g(I^n) \cap K = \emptyset$ and $\bar{d}(f, g) < \varepsilon$.

COROLLARY 2. Suppose that F is a separable, infinite-dimensional Fréchet space, ϱ an invariant metric on F and $\tau_n \colon F \to F$ a sequence of projections such that for every $x \in F$, $\varrho(x, \tau_n(x)) \searrow 0$. Let $E_n = \tau_n(F)$. If K is a closed subset of F such that $K \cap \bigcup_{n \in N} E_n = \emptyset$, then K is of infinite deficiency in F.

Proof. Let $f \in F^{I^n}$ and $\varepsilon > 0$. Since the sequence of functions $\varphi_l(x) = \varrho(f(x), \tau_l f(x))$ is decreasing, by the Dini theorem there exists a $k \in N$

such that $\bar{\varrho}(f, \tau_l f) < \varepsilon$ for $l \ge k$. The map $g = \tau_k f$ satisfies

$$g(I^n) \cap K = \emptyset$$
 and $\bar{\varrho}(f,g) < \varepsilon$.

Remark. The class of subsets of Q satisfying the assumption of Corollary 1 coincides with the class of weakly thin sets in the sense of Anderson [1], and the statement of Corollary 1 concerning Q is a consequence of [1], Section 3.

2. Characterization of σ **-deficient sets.** Since X admits a complete metric, the Baire category theorem together with condition (ii) in Theorem 2 gives the following characterization of σ -deficient sets:

PROPOSITION 1. Let X be either Q or s and let K be an F_{σ} subset of X. Then K is σ -deficient in X if and only if for any $n \in N$ the set $\{f \in X^{I^n}: f(I^n) \cap K = \emptyset\}$ is dense in X^{I^n} .

COROLLARY 3. Let K be a σ -deficient subset of X. Then K is deficient in X if and only if K is closed in X.

Proof. It is a consequence of Proposition 1 and Theorem 2. This result has been established by R. D. Anderson.

In order to obtain further characterizations of σ -deficient sets, we shall need the following lemma.

LEMMA 2. Suppose that $\varepsilon > 0$ and M_1 , M_2 , M_3 are deficient subsets of Q such that $M_1 \cap M_2 = \emptyset$. Then, there exists an $f \in G(Q, s)$ such that $f(M_1) \cap M_3 = \emptyset$ and $f|_{M_2} = e$, $\bar{d}(f, e) < \varepsilon$.

Proof. According to Corollary 2, the set $L = M_1 \cup M_2 \cup M_3$ is of infinite deficiency. Hence, there is a $g \in G(Q, s)$ such that g(L) is straight, say,

$$(\pi_a g)(L) = a$$
, $a \in s$, $\overline{\overline{a}} = \aleph_0$.

Let δ be a positive number such that $d(x, y) < \delta$ implies $d(g^{-1}(x), g^{-1}(y)) < \varepsilon$. Clearly, there exists an isotopy h_t , $t \in [0, 1]$ of Q with the following properties: $h_t \in G(Q, s)$, $\overline{d}(h_t, e) < \varepsilon$ for $t \in [0, 1]$, $h_0 = e$ and $h_t(a) \neq a$ for $t \in [0, 1]$. Let g_1 be given by the formulas:

$$\varphi_{a\perp}(g_1(x)) = \pi_{a\perp}(x)$$
, $(\pi_a g_1)(x) = h_{u(x)}(x)$

where $u(x) = \min\{1, d(\pi_{a\perp}(x), (\pi_{a\perp}g)(M_2))\}$.

We put $f = g^{-1}g_1g$.

THEOREM 3. Let K be a subset of Q of type F_{σ} . Then the following conditions are equivalent.

- (iv) K is a σ -deficient set.
- (v) For any σ -deficient set L, there exists an $f \in G(Q)$ such that $f(K) \cap L = \emptyset$.

- (vi) There exists an $f \in G(Q)$ such that $f(K) \subset s$.
- (vii) There exists an $f \in G(Q)$ such that $f(K) \subseteq Q \setminus s$.

(viii) For every σ -compact subset L of the pseudointerior s, there exists an $f \in G(Q, s)$ such that $f(K) \cap L = \emptyset$.

Proof. (iv) implies (v). Suppose that $K = \bigcup_{n \in N} K_n$, $L = \bigcup_{n \in N} L_n$, where K_n and L_n are deficient. By Lemma 2, for any pair $i, j \in N$, the set $\{f \in G(Q): f(K_i) \cap L_j = \emptyset\}$ is open and dense in G(Q). Since G(Q) is complete-metrizable (Lemma 1), the classical Baire theorem shows that the set $\{f \in G(Q): f(K) \cap L = \emptyset\}$ is non-empty.

(v) implies (vi). This follows from the fact that $Q \setminus s$ is σ -deficient (the countable union of end-slices, each of which is deficient).

(vi) implies (vii). Let a_i , i=0,1,..., be infinite pair-wise disjoint subsets of N such that $\bigcup_{i\in N} a_i = N$. Let $f_1 \in G(Q)$ be such that $f_1(K) \subset s$. Since K is of type F_{σ} , we conclude that there are compact sets $K_n \subset s$, $n \in N$, such that

$$f_1(K) = \bigcup_{i \in N} K_i.$$

For each $i \in N$ the set $\pi_{a_i}(K_i)$ is a compact subset of s. Hence, by Theorem 1, (d) \iff (e), there are $g_i \in G(Q)$ such that

$$g_i(\pi_{ai}(K_i)) \subset Q \setminus s$$
, for each $i \in N$.

The cartesian product of the maps g_i , i.e. the map $g \in G(Q)$ defined by the condition $\pi_{a_i}g = g_i$, takes $f_1(K)$ to the pseudo-boundary. Hence $f = gf_1$ satisfies statement (vii).

(vii) implies (iv). Let f be as in (vii). Then f(K) is an F_{σ} subset of the pseudoboundary, and therefore is σ -deficient. But this implies that K itself is σ -deficient.

(iv) implies (viii). For each $x, y \in (-1, 1)^a$, let us write

$$\varrho_a(x, y) = \sum_{n \in a} 2^{-n} \min \left(1, \left| \tan \frac{\pi}{2} x_n - \tan \frac{\pi}{2} y_n \right| \right),$$

and let $\varrho = \varrho_N$. Then it is easy to see that each ϱ_a is a complete metric for the space $(-1,1)^a$ compatible with the product topology of this space. Hence, using Lemma 1, we conclude that the set G(Q,s) turns into a complete metric space under the metric

$$\psi(f,g) = \bar{d}(f,g) + \bar{d}(f^{-1},g^{-1}) + \bar{\varrho}(f_{|s},g_{|s}) + \bar{\varrho}(f_{|s}^{-1},g_{|s}^{-1}).$$

Using the classical Baire theorem, we reduce the proof of our implica-

LEMMA 3. If M is a deficient set in Q and L is a compact set of s, then the set $A = \{f \in G(Q, s): f(M) \cap L = \emptyset\}$ is a dense open subset of G(Q, s) in the topology induced by the metric ψ .

Proof. It is obvious that A is open. To prove that it is also dense, assume that we are given an $\varepsilon > 0$ and an $h \in G(Q, s)$. Pick a finite set $\alpha \subset N$ with $\sum_{i=0}^{\infty} 2^{-n} < \varepsilon/8$, i.e.

(1)
$$\varrho_{a,\perp} < \varepsilon/8$$
.

Denote by \mathcal{R} the collection of all sets $R \subset Q$ which are of the form

(2)
$$R = \underset{i \in \beta}{\mathbf{P}} [a_i, b_i] \times I^{\beta^{\perp}}, \quad \text{where} \quad \beta \supset a, \ \overline{\beta} < \kappa_0, \ -1 < a_i < b_i < 1.$$

We claim that there are $D, D_1 \in \mathcal{R}$ such that

(3)
$$h^{-1}(L) \subset \operatorname{int} D_1, \quad h(D_1) \subset D.$$

In fact, let K be the intersection of all the sets $R \in \mathcal{R}$ such that $h^{-1}(L) \subset \operatorname{int} R$. Then h(K) is a compact subset of s, and therefore there is a set $D \in \mathcal{R}$ with $h(K) \subset \operatorname{int} D$, i.e. $K \subset h^{-1}(\operatorname{int} D)$. By the standard compactness argument we can pick a finite collection of sets R_1, \ldots, R_j in \mathcal{R} such that $h^{-1}(L) \subset \operatorname{int} R_i$ for $i \leqslant j$ and $R_1 \cap \ldots \cap R_j \subset h^{-1}(\operatorname{int} D)$. Then the set D together with $D_1 = R_1 \cap \ldots \cap R_j$ satisfies conditions (3).

Let us now continue the proof of the lemma. By (2) we have $D=T\times \times I^{\beta\perp}$, where D is a finite-dimensional closed cube contained in the cube int I^{β} , $\overline{\beta}<\kappa_0$. The function ϱ_{β} is uniformly continuous on $T\times T$. Hence there is a $\delta_1>0$ such that, for any $x,y\in D$, the condition $\sum\limits_{n\in\beta}2^{-n}|x_n-y_n|<\delta_1$ implies

$$\varrho(x,\,y) = \,\varrho_{\boldsymbol{\beta}}(\pi_{\boldsymbol{\beta}}x,\,\pi_{\boldsymbol{\beta}}y) + \varrho_{\boldsymbol{\beta}\perp}(\pi_{\boldsymbol{\beta}\perp}x,\,\pi_{\boldsymbol{\beta}\perp}y) < \,\varepsilon/8 + \,\varepsilon/8 = \,\varepsilon/4 \;,$$

and therefore

(4) $d(x, y) < \delta_1$ implies $\varrho(x, y) < \varepsilon/4$ for $x, y \in D$. Similarly, there is a $\delta_2 > 0$ such that

(5) $d(x,\,y)<\delta_2\quad \text{implies}\quad \varrho(x,\,y)<\varepsilon/4\quad \text{ for }\quad x,\,y\;\epsilon\;D_1\,,$ and, moreover, such that

(6)
$$d(x, y) < \delta_2$$
 implies $d(h(x), h(y)) < \delta_1$ for all $x, y \in Q$.

By Theorem 2, condition (i), the set ∂D_1 has property Z with respect to D_1 regarded as a Hilbert cube. Hence, by Lemma 2 (applied to $M_1=h^{-1}(L),\ M_2=\partial D_1$ and $M_3=M\cap D_1$), there is a $g\in G(D_1, \operatorname{int} D_1\cap s)$ such that

(7)
$$d(g, e) < \delta_2$$
, $g(h^{-1}(L)) \cap (M \cap D_1) = \emptyset$ and $g|_{\partial D_1} = e$.

icm®

Extending g as identity beyond D_1 , we may assume without loss of generality that $g \in G(Q, s)$ and g is supported on D_1 .

We define $f = hg^{-1}$. By (7), $f(M) \cap L = \emptyset$. Hence to complete the proof of the lemma, we have to show that $\psi(f, h) < \varepsilon$. Observe that the condition $f(x) \neq h(x)$ implies $x \in D_1$; thus by (3) we find that $f(x) \neq h(x)$ implies $h(x) \in D$ and $f(x) \in D$. Hence, using the estimation $d(g, e) < \delta_2$ in (7) and conditions (6), (5), (4), we conclude that each of the numbers $\bar{d}(f, h)$, $\bar{d}(f^{-1}, h^{-1})$, $\bar{\varrho}(f_{|s}, h_{|s})$, $\bar{\varrho}(f_{|s}^{-1}, h_{|s}^{-1})$ is less than $\varepsilon/4$. Whence $\psi(f, h) < \varepsilon$.

Proof of the implication (viii) \Rightarrow (iv). Suppose that K is an F_{σ} set in Q satisfying (viii). Let, for each $n \in N$,

(*)
$$E_n = \{x \in s: \ \pi_i(x) = 0 \text{ for all } i > n\}.$$

Each E_n is a countable union of compact sets in s. Hence, by (viii), there is an $f \in G(Q, s)$ such that $f(K) \cap \bigcup_{n \in N} E_n = \emptyset$. Representing f(K) as $f(K) = \bigcup_{i \in N} K_i$, a countable union of compact sets, we find that each set $K_i \cap s$ satisfies the assumption of Corollary 1 $(\pi_{a \perp}(K_i \cap s) \notin 0$ for each finite $a \subset N$). Thus $K_i \cap s$ is deficient in s for each $i \in N$. Hence, by Theorem 1, the sets K_i are deficient in Q, and therefore both f(K) and K are σ -deficient.

COROLLARY 3. There exists an autohomeomorphism $f \in G(Q)$ which takes the pseudoboundary of Q into the pseudointerior (cf. [3], Theorem 11.1).

Proof. $Q \setminus s$ is clearly of type F_{σ} . Hence the statement follows from the implication (vii) \Rightarrow (vi).

THEOREM 4. Let K be a F_{σ} -subset of the space s. Then the following conditions are equivalent.

- (ix) K is σ -deficient in s.
- (x) For every subset L of s which is a countable union of compact sets there exists an $f \in G(s)$ such that $f(K) \cap L = \emptyset$.

Proof. (ix) \Rightarrow (x). Let $K = \bigcup_{i \in N} K_i$ where K_i are deficient sets. The sets \overline{K}_i are of infinite deficiency in Q (Theorem 1); thus the condition (viii) of Theorem 3 gives the existence of $h \in G(Q, s)$ such that $h(\bigcup_{i \in N} \overline{K}_i) \cap L = \emptyset$. We put $f = h|_s$.

(x) \Rightarrow (ix). Let $K = \bigcup_{i \in N} L_i$, where L_i are closed in s, and let $f \in G(s)$ be such that $f(K) \cap \bigcup_{i \in N} E_n = \emptyset$, where E_n are given by (*). Then $f(L_i)$ satisfies the assumption of Corollary 1 and consequently is deficient in s. We conclude that L_i is deficient in s, and K is a σ -deficient set.

4. Extensions of homeomorphisms between deficient sets. The following theorem is proved in [3]:

THEOREM 5. Let K_1 and K_2 be deficient subsets of X (X is Q or S), and let $f\colon K_1^{\rm onto} K_2$ be a homeomorphism. Then, there exists an $f\in G(X)$ such that $F|_{K_1}=f$. In the case where K_1 and K_2 are compact subsets of s, the autohomeomorphism F can be chosen from the set G(Q,s).

The second part of the theorem can be extended as follows.

THEOREM 6. Let K_1 and K_2 be deficient subset of Q and let f be a homeomorphism between the pairs $(K_1, K_1 \cap s)$ and $(K_2, K_2 \cap s)$. Then there exists an $F \in G(Q, s)$ such that $F|_{K_1} = f$.

Proof 1. We consider the case $K_1=K_2$. By Theorem 1 (e), there exists a $g \in G(Q)$ such that $g(s \cup K_1)=s$. According to Theorem 5, the homeomorphism $h=gfg^{-1}\colon g(K_1)\to g(K_1)$ can be extended to a $H\in G(Q,s)$. Clearly, $F=g^{-1}Hg$ gives the desired extension.

2. We pass to the general case. Applying Lemma 2 with $M_1 = K_1$, $M_3 = K_2$, $M_2 = \emptyset$ we conclude that there exists an $h \in G(Q, s)$ such that $h(K_1) \cap K_2 = \emptyset$. Let $K_3 = h(K_1)$ and $K = K_2 \cup K_3$. According to 1°, the homeomorphism $f_1 \colon K \to K$ given by

$$f_1(x) = egin{cases} fh^{-1}(x) \;, & x \; \epsilon \; K_3 \;, \ hf^{-1}(x) \;, & x \; \epsilon \; K_2 \end{cases}$$

can be extended to an $F_1 \in G(Q, s)$. $F = F_1 h \in G(Q, s)$ is the desired autohomeomorphism.

References

[1] R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), pp. 200-216.

[2] — Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), pp. 515-519.

[3] - On topological infinite deficiency, Michigan Math. J. 14 (1967), p. 365.

[4] — R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), pp. 771-792.
[5] — D. W. Hendewson and L. F. Wort Notice the subsets of infinite diagram.

[5] — D. W. Henderson and J. E. West, Negligible subsets of infinite dimensional manifolds (to appear in Compositio Mathematica).

[6] Cz. Bessaga, Every infinite dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. 14 (1966), pp. 27-31.

[7] — Negligible sets in linear topological spaces, ibidem 16 (1968) pp. 117-119.

[8] — and V. Klee, Two topological properties of topological linear spaces, Israel J. Math. 2 (1964), pp. 211-220.

[9] V. L. Klee, Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), pp. 30-45.

[10] — Convex bodies and periodic homeomorphisms in Hilbert space, ibidem 74 (1953), pp. 10-43.

Reçu par la Rédaction le 18. 12. 1968