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A note on recursively enumerable predicates in groups

by
Paul E. Schupp (Urbana, Illinois)

This note is prompted by a paper of A. Wlodzimierz Mostowski [3].
It has benefited from discussions with C. F. Miller. Among the interesting
results of Mostowski’s paper it is shown that the conjugacy problem and
the extended word problem are solvable for finitely generated nilpotent
groups. The purpose of this note is to point out that the arguments of
Mostowski can be stated in a unified and general manner. The possibility
of applying this method in the general setting is suggestive.

Let P, ..., 2,) be a predicate which is meaningful in groups, and
which is recursively enumerable in a finitely presented group @; that is,
the set of n-tuples of words representing elements of & which satisfy P
is recursively enumerable. We do not assume that P is a first order pre-
dicate. The relevant P for the extended word problem is “z, is in the
subgroup generated by @y, ..., Tn_1’.

We also assume that P is preserved under homomorphism. If ¢ is
a homomorphism of @ into any group H, then P(g, ..., gs) implies
P(‘P(gl)r ey ‘P(gn)) .

We use the symbol 7] for negation.

Tet X be a recursively enumerable sequence, Hy, Hy, ..., of finitely
presented gromps. (Precisely, X is a recursively enumerable sequence
of Godel numbers of finite presentations of groups.) We say that G is
P-separable in X if for any n-tuple (g, ..., g) of elements of G such that
1 P(gy, .-, Jn), there exists a homomorphism ¢ of @ into some H; in X
such that 7] Pp(g), .., ¢)gn)) holds in Hi.

TuROREM. Let & be P-separable in X. If there are uniform algorithms
for deciding the predicate P in the Hi and the word problem in the H;, then
the predicate P is decidable in G.

Proof. P is recursively enumerable in & by assumption. The idea
is to prove that 7] P is also recursively enumerable in . The decidability
of P in @ then follows.

Start enumerating the groups in X. We claim that we can effectively
enumerate all homomorphisms of & into the groups H;. Suppose & has
presentation {ay, ..., Gr; T1y eees Fod- :
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A homomorphism is completely determined by its effect on ay, ..., .
A candidate for & homomorphism into H; is a k-tuple of elements of H;.
Since we have a uniform algorithm for solving the word problem of the Hy,
we can, given an index ¢ and a k-tuple (b, ..., hx) of elements of Hy,
check if the mapping a;—>hy, § =1, ..., k, defines a homomorphism of ¢
into H;. To do this, simply check if each relator of @ js sent to the identity
under the proposed mapping. Label the homomorphisms enumerated
(P“lpi\y'Ve also begin enumerating #-tuples of clements of &. Tabel these
(Ga1y ey Gin); €6C. Liet @2 G —Hy. We can, by hypothesis, decide whether
or 10t Pps{gu), s @i(gim)) holds in Hy,.

I 71 Plpilgn)) s - @ilim)) holds in Hy, we know that ™1 L (gu, ..., gu)
holds in G since P is preserved by homomorphismy. We then enumerate
(Gry e, gm) a8 an n-tuple of @ for which ™ P holds. The hypothesig
that & is P-geparable in X ensures that we can enumerate all n-tuples
of G for which 7] P holds. Hence ™ .P is recursively enumerable in @.

If P(z) is “o=1" and & ig P-separable in X, we say that & is
residually imbeddable in X. If X is a recursively emumerable sequence of
presentations of all finite groups, we have the case where @ ig residually
finite. It is interesting to note that we may take for X a recursive enumera-
tion of all finitely presented one-relator groups. By the theorem of Magnus,
there is a uniform algorithm for solving the word problem. for the groups
in X, Hence, if G is a finitely presented group that is residually imbeddable
in a one relator group, then @ itself has solvable word problem. We could
also take X to be a recursive enumeration of presentations of groups
which have ‘“‘small cancellation among the relators’” for which Lyndon
has solved the word problem. (Cf. Lyndon [2]) (Admittedly, the lope
of verifying one of these conditions for a given @ is quite dim.)

New classes of groups for which various problem are decidable are
being found. If P(z, y) is “x i3 conjugate to y” we say, following Mostowski,
that @ is conjugacy separable in X. Garside [1] hag solved the conjugacy
problem for braid groups. It might be that some groups arising in a to-
pological context would be conjugacy separable in the braid groups and
thus have solvable conjugacy problem.

It is perhaps worthwhile to make two comments on the theorem.
In most cases of interest, a decision procedure for P solves the word
problem. C. F. Miller has pointed out that the separate assumption of
a uniform algorithin for deciding the word problem in the H; is unnec-
essary. It is not dificult to see that the homomorphisms of & into the H;
are recursively enwmerable without assuming a solution to the word
problem in the H;.

We have stated the theorem in terms of absolute computability.
Everything may be taken to be computable relative to some oracle.
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