On countably compact reduced products I

by
L. Pacholski and C. Ryll-Nardzewski (Wroctaw)

In [3] B. Jénsson and Ph. Olin have formulated the problem of
determining the ideals J of subsets of a set I which have the property
that every J-reduced produect of arbitrary struetures is countably com-
pact () and they have shown that the Fréchet ideal, i.e. the ideal of all
finite subsets of , has the required property. This covers an earlier
result of H. J. Keisler [5] concerning products of Boolean algebras.

We present here a solution of the problem under an additional as-
sumption that the Boolean algebra is atomless. Namely {Theorem 1)
if 2§ is atomless, then every J-reduced product is eountably compact if
and only if

(i) 9% is countably compact
and

(ii) I is the union of a countable subfamily of 3.

(leary for denumerable I condition (ii) is automatically satisfied.
We observe that any countably compact Boolean algebra has a property
called here basic commectedness (see Definition 2). On the other hand
Theorem 2 asserts that if a Boolean algebra 2% iy basically connected,
then it is countably compact. Theorem 3 is a reformulation of an un-
published result of F. Galvin mentioned in [3] p. 132. In [3] B. Jénsson
and Ph. Olin expressed an opinion that the ideals described by F. Galvin
did not exhaust all possibilities. In fact, this turns out to he true as it is
shown by the BExample.

The investigation of countably compact reduced products was started |
by H. J. Keisler [4], who described a class of ultrafilters for which ultra-
products are countably compact. Thig result can be easily extended to
the cage when 27 is finite. On the other hand one can easily verify that 2%
is not countably compact provided an element of 2% contains exactly x;
atoms. If 25 has uncountably many atoms which of course can happen

() We vecall that a relational strueture % is countably compact if the family of
all sets definable in 9 is countably compact. In this note we rather use ,countably
compact structure® instead of “o,-saturated”; the latter being used in [3], [41, [5].

. For countable languages both notions are equivalent.
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for countable I, it seems to be difficult to decide whether 27 is countahly
compact or not. :
The - letter A (sometimes with subseripts) denotes a relational
structure of a fixed similarity type and A—the universe of A. We vill
assume that every element of 4 has a name in 9. Moreover “formula”
means “formula of a language of %, The set I is always infinite. By 2 we
denote the Boolean algebra <0,1, u, ~, —~). We assume that a]lbideals
are proper. If J is an ideal on I then AZ denotes the J -reduced power of Q[‘
For B—4 €3 we write 4 C B(modJ) and for GV e Vlp_g, @A . .
write \/
i<n T<n
and terminology used in this paper see [1].

‘ DEerrsiTion 1. We say that sequence &= (WA i eI, of simﬂm re-
lational structures is rich, when for any formula @ there exists a pred-
icate P(p) such that 9 k= gsP(g) for 4 c 7. ' ‘

' PROPOSITION 1. If J is an ideal on I such that 2§ s atomless and
@ rich sequence, then in the product A = Py Q)
to an open formula.

Proof. By a theorem of 8. Feferman and R. T.. Vaught ([1], Th. 3.1)
for any formmla ¢ there exist a partitioning acceptable 'sequen
{={@, gy .y On> such that for every fed

: wAayo 1 we
af,_/<\ ai, respectively. For another information on notation

& is
every formula is equivalent

sequence

A= ¢[f] it and only if 2§ = p[KZ(F), ..., KE(f)] .

Sinc 0[ 3 + - . g
o e6.4;| s i’gmnle)ss, @ I8 equivalent to some quantifierfree formula
e [6]) ie. 27 = Part(X,, iy Xm) > @\ gy, where
n<e

1)
and

Pu 38 (Tao = 0ATa1 # OA ATy, # 0)

Tag=Xp 0V v Xp,sras: Where X, ..., X, are free variables in ¢.
(l?l (1) only one equality 7,0 =0 appears, because every conjunction
of equalities may be replaced by a single equality). Obviously,
Prer—Tpg=AA—Tp1 Z 1A...A
- Let §j=P(—]0J) for j = 0,
& reduced product, we have

2 = (~ o = D [EL(S), ...

*Tn,]:,,‘# 1.
-3 My then, by the definition of validity in
P Han(), if, and only it

Moreover, U=lEp, g0 ons Ennomna) [11 -

Iv I
2ab= (=g = DIE(F), v K] if and only if

A= (Ep, 0 A AE
6 Bt denes 0 N ST
(®) P;#% denotes J-reduced product of 4. 2, ni*n g
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DEFINITION 2. A Boolean algebra is called basically connected if the
zero element is not a meet of a countable decreasing sequence of non-zero
elements.

It is known that the factor algebra of all subsets of a countable set
by the Fréchet ideal is basically connected (cf. [2], p. 100).

Leannia 1. If 2 is basically connected and atomless, then for any counl-
able sequence {(Fy: n < @) such that Fy C I, B, ¢ 3 there erists a sequence
of mutually disjoint sets G for which Gy C Fyp and Gy ¢3 for n < o.

Proof. By induction on n, we define a sequence {Gyu: n < o> of
subsets of I such that Gun Gu=0, G, CFy, Gn¢J and F,L\]U Gréd

o<m

for m, # < o, and m > n. Suppose that for n > m, are already defined.
Let Fpo= —Fm\ U G and Dpg= FppnFrpp. I Dyped, we put
n<m

Fonerr = Fmp ; otherwise we select a subset Fyzq1 of Dy r is such a way
that Frps1 ¢ 3 and Dy p— Frrsr ¢ 3. The sequence (I, 51 k< ™ obtained
in this way is decreasing and Fo,p ¢ 3 for £ < w. Since 23 is basically con-
nected, there exists a set Gp¢J such that G, CF,, (modd) for < o;
moreover, one may assume that ¢, C Fye.

To formulate Lemma 2 the following nofation is applied. Let
A= P 4;, where 4; are non-void sets. For a sequence $ = {(B;y: i el

iel

guch that B; C 4; we put
Qp={fed: {i I: f() e B;} ¢ 3},
Ry="{fed: {i eI: f(i)eB:} 3} .

Now, let Xj denote the family of all sets of the form Rg or Q.
LEMMA 2. If an ideal 3 satisfies (ii), 2% is atomless and basically con-
nected, then Xy is countably compact.
Proof. Consider a countable subfamily £ C Xy with the finite inter-
section property. Let £ = <{Qg(n): n < w> v {Re(n): 1< w , where

BN = (BM: i eI and ¢ = (01 el

We put
@) FP = fiel: BP— (P v ..o P20}
and
(3) L=fel: (P0v..u0=44.

It follows from the finite intersection property of L that FP¢3and I;el.
For any n, the sequence (F(”: j < w) is decreasing, whence, by basic
connectedness of 23, there is a set F, such that

(4) F, CFPmods) and Fn¢J.
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In view of Lemma 1 one may assume that the sets 7,

are b
disjoint. Since F, — 7™ \ Diutually
joint. Since H, —I,

€ J, without any loss of generality we May assume

that
(5) F,CF.
J satisfies (ii), hence 7= | #;, where B; form an increasing sequence

i<e .
of sets from J.
We are going to define an fe A such that f €[) £. There are two
cases: i elf= | J F, or i ¢m.

n<w
Case 1. i e F. Then for some n i € Fy, we pub fpos = sup{j: ¢ e P}
and
J . {jmax if jum:< o
1 . . . »
J if Jmax = ©0, e E7~E1_1 .

Now we define f(4) in such a way that

(6) J(@) e BY— (0P O ... 0 089
Case 2. 1 ¢F. For j< o we put Ij= I; v B; and leb
(M) Fi)edi— U 0 for ie(Ij—I)—F.

=<7

The sets occuring in (6) and (7) are non-empty by (2), (3) and

It remains to verify that fe £ For any Jo 0

< o the following holds:

U ¢ nm) o

i<fo

®) i fl)e U Py C B0 U (fi¢ By fi) e

v U el fi)e U 0Py nm)

<jo

V¢ fG)e L) 0P}

=Jo

We have By, €J. For the second summand in (8) we have

{i ¢ Bry: () e U O NPy C Ty —FY9 e 3
. . <7fo -
The ?hil‘d _sumfnzmd is empty, by (5) and (6). Finally, the last one is
contained i Ij.i, by (7); hence {i: f(i)e || CP}ed. The fact that
o 155

for any n < o {i: f(i) e B} D F, ¢ 3 (see (1)) y
Fel L.

We are now ready to prove our main resuls,

TrrorEM 1. If J is an ideal of subsets of I such that
connecled and atomless and (ii) holds, then for any family 9
of relational structures of the same
A= Pa is countably compact.

completes the proof that

2% is basically
! (indewed by I)
similarity type, the reduced product
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Proof. One can assume that our family is rich. By Proposition 1,
every formula is equivalent in % to an open formula. It is well known
that for any countably compact family of sets the closure of it with
respect to finite unions and intersections is countably compact. Hence
it is enmough to investigate only atomic formulas and their negations.
For atomic formula P(v,) and fe d we have %= P[f] if and only if
{ir f(4) ¢ P} €3, where Pi={ae Ay Us|=Plal}. Puting Bi= 4;— P,
we obtain
A= PLf]
A= "1PIf]
By Lemma 2, this completes the proof.

COROLLARY 1. When 25 is atomless, countably compact and (i) holds,
then for every family & of relational structures, W = Pyt is countably
compact.

Let us remark that (ii) is a necessary assumption. In fact, let us
consider a structure A given by an infinite set A and a decreasing sequence
of non-empty subsets Bp of 4 (n < ) with the empty intersection. For
any ideal J the sets @n = {J: {i: f(i) ¢ By} € 3] form a decreasing sequence
of non-void sets from Xj. It is an easy exercise to prove that [} @ # 0

n<ew
if and only if J satisties (ii).

LEmniA 3. If 2% is atomless and basically connected, then I satisfies
a condition:

(G) If B ¢ 3, then there is a subsel By of B such that By ¢ 3 and By is a union
of countably many sets from I.

Proof. Since 2% is atomless, for B ¢ J there is a sequence (F,: 0 < n < o)
such that By C B, By ~ By = 0 for m # n and B, ¢ 3. Since 2] is basically
connected, there is a set B, C F such that Fy¢J and B, C Ik ) Er(mod3).

k=n

if and only if {i: f(i) e Bl eI,
if and only if {i: f(i) e B} ¢1.

Obviously, By= |J By~ By and Byn Er el ’
ko
One can see that (C) follows from (ii) but the example of the ideal
of all finite subsets of an uncountable set shows that the converse fails.
Criterion. An atomless Boolean algebra 8 is countably compact if
and only if for any @, bu, ¢x, dn from B such that

(9) ang Ay r1 E bn—’rl g bn: bn [aR ™ # 07 =y N dm #* 0 for Wy W < 0,
there is an element  in B such that
10) 0 CaChy,@nn#0, —5ndn50 for all n<w.

THEOREM 2. If the Boolean algebra 2f s atomless and basically con-
nected, then 25 is countadbly compact,
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Proof. Assume that ay= A,/I, b, = Byl en= OWI, d, DyI
satisfy (9). Without loss of generality’ we may assume that 4,C4, “
C Bu41 C B, for n < w. In virtue of Lemma 3, one can find sets O,y
C 0w C By and Dy C Dy—dy which do not belong o0 3 bu are count-
able wnions of sets from J, Let us denote by 3’ the restriction of ideal 3
to the set I'= ) (Cyn v D). 3 satisties (i), hence by Theorem 1

mn<o
there exists a set X' CI' such that (dy~ I')/3 C X')3 C(By ~ Iy,
X' Cy¢d, ~X N Dyéd. The element X/3 of 25, where X — X
v (=I"~ {J 4y), satisfies (10).
n<w

Let us remark that Theorem 2 does not hold for every atomless
Boolean algebra. In fact, the algebra of all cloged and open subsets of
the one-point compactification of a topological union of uncountably
many disjoint copies of f(w)—w (3) is bagically connected but it is not
countably. compact.

THEOREM 3. If an ideal 3 on I has a countable basis and has the prop-
erty (ii), then 23-is atomless and basically connected.

Proof. By the assumption, there is a countable partition of I into
sets By from J such that Z e J if and only it EC {J B, forsome Ny < o,

N<ngp
Obviously 25 = § (2%4)3, , where J,-is the Fréchet ideal. The assertion
n<w )

follows from Theorem 1 and the known fact that 23, is atomless and
basically conmected.

BEXANPLE. Let <I,: n < o) be a partition of w into countably many
infinite subsets and let 3, be a non-principal prime ideal in . We are
going to define another ideal J letting Bed it {n: |I, ~ B| = So) €J,.
We will show that 25 is atomless and countably compact but J has no
countable basis. ’ .

Let us observe that 2§ is isomorphic to (2%,)35,, where J, is the Fré-
chet ideal, hence the algebra is atomless and by [4] countably compact.
Finally 3 has no countable basis. In fact, if B, €3, then A, — {82 [I; ~ By| =8y}
€d; and, sinee J, iy maximal, there is a set 4 in J; which does not belong
to the ideal generated by sets A,. It is easy to see that the seb
B = -l';f;Ii isin Jand B ¢ B, for all » < w.

1€
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