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Dans ce modéle, K est évidemment une classe propre. Si elle y était
déecomposable, il existerait deux classes propres disjointes K, et K, telles que

K =E; v E,AP(E)ANP (K,
done il existerait un ordinal « tel que pour tout f,y = a:
JnK, = K, .

Mais K, et K, étant propres, il devrait exister des ordinaux fy, y, > a
tels que R‘f, € Ky et Ry, e K,, d’olt

«
Jﬂa'yn 1 #* KI b

ce qui est absurde.

Remarque. Toute formule purement ensembliste @ est invariante:
@y, <> @. Il en résulte que Paxiome du choix local E; (“Tout ensemble
admet une fonetion-choix”) est vrai dans 6. Il est cependant aisé de
vérifier que l'axiome du choix universel F est fanx dans JG.

COROLLATRE. Si l¢ systéme (ABC) est consistant, alors (ABC) et
(ABC Ey) sont des systemes non compressifs dans lesquels il est consistant
de supposer que K est une classe propre indécomposable.
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Pointwise limits of sequences of functions

by
Coke S. Reed (Auburn, Alabama)

Each of Baire [6], Lebesgue [6], and Mazurkiewicz [3] has obtained
characterizations of the class ¢, of funetions which are pointwise limits
of sequences from the class ¢, of continuous functions. In this paper,
we obtain a theorem which (1) gives two new characterizations of e
(2) gives two characterizations of the class 7, of functions which are
pointwise limits of sequences from the class 7, of continuous on the right
functions; (3) gives two characterizations of the class j;, of functions
which are pointwise limits of sequences from the class j, of jump functions
(A function f with domain [0,1] is & jump function means that £(0+)
exists, f(1—) exists, and for each # in (0,1), f(x+) and f(z—) exist.);
(4) has the following corollary: if {¢,}{r,}{j,} denotes the class of functions
which are pointwise limits of sequences of class {e,} {ry} {j,}, then ¢, Cr, Cj;,
o F= 1 F iy and 6 =1y = J,.

For simplicity, all functions discussed here will be real valued and
have domain [0, 1]. The number p will be said to be a {condensation point}
{limit point from the right} {limit point from the left} of the set X if and
only if each neighborhood of p containg {uncountably many points of X}
{a point of X to the right of p} {a point of X to'the left of p}. If X is a set,
{eon(X)} {rt(X)} {Ift(X)} will denote the union of X and the set of its
{condensation points} {limit points from the right} {limit points from
the left}. If G is a collection of sets, &* will denote the union of the
members of G.

THEOREM. If f is a real-valued function defined on [0,1], then
La=Ila=1l,, Izg=Ilg=1Ils, and Ic=Ilg=Illg.
L. fis the pointwise limit of a sequence from
{A)ey  {B)ro} {(C)hu}-
IL If a and b aré numbers (a > b), then there ewist sequences Ti(a, b),
Ty(a,d), ... and Bya, b), By(a, D), ... such that:
(1) for each n, Tu(a,b) and Bula, b) are finite collections of
{(A) intervals} {(B) sects closed on the left} {(C) connected number seis}
such that [Tn(a, b)T* ~ [Ba(a, b)I* = 9,
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@) {o: f(2)> a} C ;QI i [Ti(a, B)]* and

00

{o: f@) <C ) [ [Bila, BT

k=1 =k
II. If a>b, UC{s: f(x)> a} and V C {m: f(z) < b}, then
{(A)T Gel(V) or V¢ cl(T)} {B)TZrt(V) or Vg r6(U)}
{C)U ¢ con(V) or V ¢ con(U)}.

Proof. We will first show that Ic-»IITg. Suppose Ig/>IIIs. There
isan fin f,, a sequence fi, fa, ... from j, converging pointwise to f, numbers
a and b (4> b) and sets U and V such that

UC{z: f(w)>a}, VC{z: fla)<b}, UCecon(V)and VC con(D).
Tet a’ and b’ be numbers such that a>a’>b" > b. For each j, set

Uy = 1:65 {m: fe(®) > b} and v :@j{w: Su(w) < a’}.

Notice that [0,1]1C J (ux v ). Suppose that I is an interval such
K=1

that 1C[0,1], I ~ U is uncountable and % is a positive integer. There
is an o' >k sueh that {o: fu(®)> a} ~ U ~ I is uncountable. Since hi%
is in j,, it is not discontinuous at uncountably many points and therefore
there is a subinterval I’ of I such that I' ~ U is uncountable and
I’ C {@: fw(x) > a}. Similarly, there is a subinterval I'" of I’ and an 2" > n’'
such that I” ~ U is uncountable and I'' C {z: fu(z) > b}. Therefore,
I"CI, I" ~ U is uncountable and I" ~ (ux © vi) = . Therefore, one
can construet a monotonically decreasing sequence I, I, ... of subintervals
of [0,1] such that for each p, I, (4, wn,)=@. This constitutes
a contradiction. Therefore I —II11g. The fact that Iy —ITI, and Xs—+TIlg
can be established by arguments parallel to the one above. These proofs
are therefore omitted from the paper.

We will now define conditions IT4 , 115, and IT5 equivalent respectively
to IIA, IIB, and IIc.

II'. If a is a number, then there ewist sequences - Ty(a), Ty(a), ... and
By(a), By(a), ... such that:

(1) for each n, Tu(a) and Bu(a) are finite collections of {(A) inter-
vals} {(B) sects closed on the left} {(C) conmected number sets}
such that [Ta(a)]* ~ [Ba(a)]* = O;

@) @ f@>a J (3 (750" and

{o: f(@) <a}C ;Ql ék [By(a)T.
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114 obviously implies ITs. We will now show that II, »1II4. For
each pair of numbers a4 and b (s> b) define two sequences Ti(a,b),
Tya, b), ... and Biy(a, b), By(a, b), ... which satisfy II,. Suppose that z is
a number. For each positive integer », let

=1

n &
ty = kU ([ Tulz+1[k, 2)T* ~ ,-@1 [Tulz, z—1[/)T1%),

n

o= U ((Bule, ==11)T > (1 [Bule-+14, 4T

k=1

Suppose that there is an n such that b~ 1, 5 3. Let 2 denote
a member of b, nty. Since 2 is in b, there is a %k < # such that

I
@ € [Ba(z, 2—1/E)]* ~ f‘] [Bu(2+1]j, 2)]*. Since @ is in t,, there is an L < n
7=1

L
such that z e Tu(z-+1/L, 2)]* n ﬂl [Tu(z,2—1/j)]*. If L <%, » is in both
[Ta(z+1/L, 2)]* and [Ba(z+1/L, 7z)]"‘. If L >k, # is in both [Bu(z, 2—1/k)]*
and [Tu(2, 2—1/k)]*. This constitutes a contradiction. Therefore, by ~ i,
= . Since, for each p, b, and t, are closed number sets with only finitely
many components, there exist two collections of intervals Tp(z) and By(z)
such that t, C [Tp(2)]*, by C [Bp(2)]* and [Tp(2)T* ~ [Ba(2)]* = @. Suppose
that # is a number such that f(z) > 2. There is a positive integer % such
that f(#) > 2+1/k. Therefore there is an n such that for each n' > x,

k
2 e [Tw(z+1/k, )] ~n () [Tw(?,2—1/)]* and therefore @ €ty.
=1

Similarly, {#: f(z) <2} C ’E\ _Jl (]k bp. Therefore Ty(2), Ty(2), ... and By(z),
By(z), ... satisfy the conditiong imposed on the sequences in IT;. Notice
that IIp = ITs and Ilg = II¢ by arguments parallel to the above.

It will now be demonstrated that IT, implies I, by showing that 1T,
implies Tx. For each number ¢, let 7(c), Ty(c), ... and Byc), By(c), ..
denote two sequences which satisfy the conditions imposed on the
sequences in ITi. For each positive rational number ¢ (¢ = rfs in lowest
terms) and each positive integer n, the sets E(c), Un(c), un(c), va(c), Valc),
My, Py(c), and ,f. will now be defined. E(c) is the set of non-negative
rational numbers to which D (D = w/v in lowest terms) belongs if and
only if » <s and D <e.

Un(e) = [0, 11~ [ [Tw(D)T"
D eE(c)
un(c) = [0, 1] ~ [Ta(0)]* ﬂDELIJM[Bn(D)]*-
oa(¢) = [0, 1] ~ [Ba(0)] Dg(o)[Tﬁ(—D)]*-

V(o) = [0, 11~ [ [Ba(=D)I".
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M, is the set consisting of the centers of the components of [0,1]—
—[0, 11~ ([Ta(0)T* v [Ba(0)T). Pu(e) is the point set in the plane to
which (@, y) belongs if and only if either (1) @ is in Un(c) and y = ¢;
(2) @ isin Vy(e) and 4y = —o; or (3) @ is in {0} v {1} v My v ua(c) w vy(c)
but not in Vu(e) v Tn(e) and y = 0. Since Ua(e), Va(c), ua(c), va(c) and I,
are mubually exclusive closed sets each with only finitely many com-
ponents, Pu(c) is a point set in the plane which is the union of a finite
collection of degenerate sets and horizontal line intervals and no two
points of Py(¢) have the same abcissa. Let ,f, denote the polygon with
vertices the boundary points of Py(e). »f. is the graph of a continuous
function with domain [0, 1]. Let 7y, 75, ... denote a sequence of positive
rational numbers which contains each rational number only once.

We will now define a sequence g, go,... of continuous functions

converging pointwise to f. For each positive integer # and each number z
in [0, 1] define g, as follows: If » is in M, then set gu(2) = 0. If # is not
in M, and [T#(0)]" intersects the component of ([0, 1]— M) containing z,
then set

gn(®) = max[nfr,(2) ) nfrs(®) y ooy afra(@)] -

If ¢ is not in I, and [T,(0)]* does not intersect the component of
([0,1]—2M,) containing #, then set

Gnl®) = WiInLnfr (@), nfrel®) ; covj nfrale)] -

Since, for each n, each of ,fr, nfr,y - s nfr, is continuous and vanishes
at each member of M, g, is continuous.

Suppose that « is a number in [0, 1] such that f(z) > 0 and suppose
that 6> 0. There exist integers j and % such that f(z)— 48 <1 < f(=z)
< 1% < f() 4 6. Write 7, = a/b in lowest terms and let ¥ denote the set
of positive rational numbers to which ¢/d (written in lowest terms) belongs
if and only if d <b and (¢—1)/d < r; < ¢/d. There is a positive integer
% > max(j, k) such that if #' > n, then ’

ge () [Tw(D)*~ () [Bu(D)T.
De¥

DeEB(ry)

Suppose that m > n. Since z e [Tm(0)T%,
In(®) = MAX [nfr (@) y mfra(), ..., wfr(®@)];  ®me [ [Tw(D).
DeE(rs)

Therefore, @ e Upn(r;). Therefore, ,fy(2)=1r;. Therefore, gm(z)> 1.
However, for each I such that 71, > 11, there is a member of ¥ in E(rp).
Therefore, # € un(rz). Therefore, wfr(®) = 0. Therefore, gm(x) < 7%. There-
fore, |gm()—f(#)] < 4. Similarly, if & is a number in [0,1] such that
J®) <0, then |gm(a)—f(x)| < 6 for sufficiently large Vintegers m. There-
fore, g1, gs ... is & sequence of continuous functions converging pointwise

©
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to f. Therefore, IIs+Ix. The fact that Ilg—-Ip and IIg—Ig can be
established by arguments parallel to the one above. These proofs ave
therefore omitted from the paper.

In order to facilitate the description of certain collections of sets
used in the proofs that IITs, 11Is, and IIlg imply IIi, IIy and Ilg,
respectively, the terms “acceptable’”, “determines’”, and “total (I, Q)
result”’ will now be introduced.

Suppose that K is a collection of sets. The statement that H is an
acceptable subecollection of K means that H is X, or else each element
of K—H is a subset of every element of H. The word defermines is not
Jefined at this point but is assumed to have a meaning which satisfies
the following condition: no collection of sets determines two sets, and
if H is a collection of sets which determines the set #, then # is a subset
of each element of H and each subcollection of H determines a set whic¢h
has z as a subset. If M is a set and @ is a meaning of the word determines,
then H is a total (M, Q) result means that H is a collection with the follow-
ing four properties: (1) M is in H and each element of H i3 a subset of M;
(2) if @ is an acceptable subcollection of H such that G determines a set &
and no subcollection of & determines a member of itself, then x is in' Hj
(3) if y is & member of H and K is a subeollection of H such that K does
not contain 4 and K determines ¥, then no subcollection of K determines
a member of itself; and (4) if ¥ is a member of H distinet from M, then
there is an acceptable subcollection G of H such that G determines y
but G does not contain ¥.

Tt can be demonstrated that if M is a set and @ is a meaning of the
word determines, then there is only one total (I, @) result. Moreover,
if ﬁrecedes ¥ means that y is a proper subset of @, then the total (M, Q)
result is well ordered with respect to this meaning of the word precedes [4].
See [2].

The following notation will be used in the proof that IIT -IL If K
is a collection of point sets and ¢ is an element of a seb in K or ¢ is a subset
of @ set in K, then K; will denote the common part of all of the members
of K containing . )

We will now show that III, —II,.Suppose that fis a function defined
on [0,1] and f has property IIIs. Let @ and b be two numbers (a > b).
In the non-trivial cage there is an f(#)>a and an f(z) <b. Leb
U= {z: f(x) > a} and let V= {z: f(x) <b}. The sta;tem.ent that the
collection X of number sets determines the number set A in the {8} {1}
sense means that -

4= NendVn cl(zOK o]} {4 ZEOK” ~ [T~ cl(xQKw)j} .
Let {G} {H} denote the total {U, S} {V, T} result. For each posmwe
integer n, let {Ju} {K} denote the collection of intervals to which the
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interval I belongs if and only if: (1) the length of I is 1/n; (2) the center »
of I is in {U} {V}; and (3)
{lr—4[n, s+4n] AV ~ cl(G:) = O}
{lo—4/n, x+4/n]~ U~ cl(Hz) = @ and [@—2/n, -+ 2/n] ~ l[(J2)*] = G},
We will now show that
UC U N Ua)*.

k=1 n=k
Let uelU. If uecllV ncl(Gy)], then Gy~ cl[V mel(Gw)] is a member
of @& containing u. Therefore, G, = G, ~[cl(V) ~ el(Gy)]. Thereforé,
V ~ el{Gy) Cel{Gy) and G, C cl[V ~ el(Gy)]. This contradicts IITs. There-
fore, u ¢ cl[V ~ el(Gy)]. Hence, there is an # such that for all ' > n,
[u—4/n', ut+4[n'] [V ~ cl(Gu)] = @. Therefore v is the center of an
element of J, . Therefore, UC |J [ (Ja)*.

k=1 n=Fk

o0 -] N
We will now show that V'C | J (M (Ks)* Let v e V. By an argument

j=1 n=7
parallel to the one above, there is an m such that for all m' > m
[v—4/m o +4/m' 1A U nc(H)=0. Let Q= {w: e U and v e cl(Gy)}.
If » is a pogitive integer and # is a member of @ such that # is the center
of a member of J,, then |v—uv|> 4/n. Therefore, if U—@Q = O, then
v e (Kp)* for all m' > m. Suppose that U—Q # @. Either there is no set
in @ which is & proper subset of G;_q or else there is one and therefore
@ first one. In either case, there is a member z of (U—Q) such that ¢
= G-¢- Therefore, v ¢ cl[Gr—q]. Therefore, v ¢ cl(U—@) and there is
an 7> m such that if 7' >, then [v—4/r', v+4/r'] A (U —Q) = 0.
Therefore, v e (K»)*. Therefore we have that V C G ﬁ (Kn)*. Because
j=1 n=j

of the second part of condition (3) in the definition of K, cl(Ky)* ~
~el(Ja)* = @ for all positive integers n.

For each positive integer n, let {Ta(a,d)} {Bula, b)} denote the
collection consisting of the components of {el(J.)*} {c1(K,)*}. The se-
quences Ty{a, b), Tya,b),... and Bya,b), Bya,b), .. satisfy the con-
dition imposed on the sequences in IXi. Therefore, IIT, —TL..

We will now show that IITc—IIc. Suppose that f has property IIlg
and suppose that o and b are numbers (a>b). As before; let
U= {z: f(#)>a} and let V= {: f(2) < b}. The statement that the

collection K of number sets determines the number set A in the {Q} {B}
sense means that

{4= ) @~con[V ~con( ) 2)]}

zeK TceK

{4 :Q{w A con[T ~ con( QKJG)]} .
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Let {G} {H} denote the total {(U, @)} {(V, R)} result. Let {@} {H'} {a}

denote the collection of sets to which W belongs if and only if there is
an #in {U} {V} {V} {U} such that {W = Gz}{W = H}{W = U ~ con(H.)}
(W=Vn con(Gz)}. Let {U'} {V'} {U"} {V"} denote the set to which =
pelongs if and only if there is a set Y in {6'} {H'} {a} {#} such that 2 ¥
but 2 is not a condensation point of Y. Notice that in these definitions,
¥ must be {G2} {H:} {a:} {#:}. Notice also that G;= @; and H, = H..
Suppose that U’ is uncountable. Since each uncountable number set
contains one of its condensation points, there must be uncountably many
members G, of G’ such that # is in U’. Suppose that no point # of T’ is
4 limit point of a member of ¢ which is a proper subset of G,. For each p
in U, there is an integer m, such that no segment of length 1/n, con-
taining p, intersects a member of & which is a proper subset of G,. There
is an integer & and an uncountable subset W of U’ such that, if p ¢ W, -
then mp =k W has a condensation point . Let s denote a segment of
length 1/k containing @. There must be two points # and y of s ~ W such
that @Gs # Gy. This constitutes a contradiction. Therefore, there is
a point # of U’ which is a limit point of the first member S of & WhiC.h
is a proper subset of G.. 8= G.~ eonl[V ~con(G)]. # is in 8. This
constitutes a contradiction. Therefore, U’ is not uncountable. Similarly,
T’ is not uncountable. )

Suppose that U'' is uncountable. As before, there is a number # in (734
such that # is a limit point of the first member § of a which is a proper
subset of a,. There is a number y in V such that a.= U~ con(H,).
§=[Un (Hy ~eon[U con(H,)])]. # is a condensation point of
[U ~ con(H,)]. This constitutes a contradiction. Therefore, U"” is not
uncountable. Similarly, ¥’/ is not uncountable. Let U, = U—(U v T")
and let V.=V — (V' wV"). For each positive integer =, let Ja denote
the collection of intervals to which I belongs if and only if: (1) the length
of Iis 1/n; (2) the center @ of I is in Uy; and (3) [z—2/n,5+2Mm] V.~
N con(@y) = 9. ’

0 o0

We will now show that U.C LUI nfjk (J)*. Let ue U. HuecVen
~ eon{Gy,)], then % e con[V, » con (Gy)]. Therefore, Gy ~ con[V, n con(Gy)]
is a member of @ containing u. Therefore, Gy = Gu con[V, n con(Gu)]
and we have that Gy C con[Ve con(G)] and [Ve ~ con(Gu)] C con(Gu)-
This contradicts IILg. Therefore, ¢ cl[Ve n con(Gy)] and we have that

o0 =]
U.C U N ()" ‘
k=1 n=k
We will now show that

Vo () [(=o0, o) = (Jall" -

k=1 n=
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Let veV,. Let Q={z: v U, and v e con(Gx)}. If ¢ is a positive integer
and ze@ and # is the center of a member of Ju, then [p—o]> 4/n.
Therefore, if U,—Q =@ and u is a positive integer, then ¢ (Ja)*.
Suppose that U.—Q s @. There is a number # in (U.—Q) such thas
Gs = Gr—qy. € con(Gy). v ¢ con(Uecn Go). v¢ cl(Upn Gy). v ¢ cl(U;—@).
Sinee ¢ is not in ¢l(U,—Q) and no member of Ja With center in @ con-

tains v, we have that V,C kU ﬂk [(—o0, c0)—(Ju)*].
=1 n=

B{m o020 oy = 0}, arrange its members into a sequence
{y %y o} {0y, 2, ). For each positive integer n, let Tu(a, b) denote

n n
the collection consisting of the components of [(Tn)* © ’U {un}]— rU {vn}
i=1 fe=1

and let Bu(a, b) denote the collection consisting of the components of
(—co, o) —Th(a, b)*. The sequences Ti(a, b), Tha,b),... and Bi(a, b),
By(a, b), ... satisfy the conditions imposed on the sequences in IIc. There-
fore, ITTg—11c.

We will now show that IIlg —IIp. Buppose that f has property IIIg
and suppose that ¢ and b are numbers (@ >1b). As before, let U = {m:
f(@) > a} and let ¥V = {#: f(#) < b}. The statement that the collection K
of number sets determines the set 4 in the {E} {F} sense means that

{4 = EOK % A rht[V ~ rh( QKm)]} {4 = xOK % A rht[ U ~ rhi( wOK 2)]}.

Let {G} {H} denote the total (U, B)} {(V, F)} result.

For each positive integer n, let ¢, denote the collection of sects closed
on the left to which the sect s belongs if and only if: (1) the length of s
I8 1/n; (2) the left end point @ of s is in U; and (3) [#, o+ 4] AV ~ rht(G,)
= 0. For each n, let ¢, denote the set consisting of the left end points
of members of 1,.

We will now show that T C Cj hw én. Suppose that w e U, If
=1 n=k

% erht[V ~ tht (G,)], then Gy rht[VLm rfﬁt(Gu)] is & member of @ con-
taining . Therefore, @, — Gu ~ Tht[V rht ()] Therefore, G, C rht[V ~
N rth(Gy)] and Vnrht(Gu)Crht(Gu). This contradicts ITTp. Therefore,
there is an n such that for all n' > 7, % 18 the left end point of & member
of f. Therefore, T C k@ ﬁk (en).
=1 n=

For each positive integer # and each component J of (t,)%, let a,(J)
denote the collection of closed on the left sects to which ¢ belongs if and
only if: (1) the length of s is 1/n; (2) the left end point y of s is in ¥ ~ J;
@) it wed neyn [y—2/n, yl, then G A s — O; and (4) if med meyn
N [y—1/n,y], then y elft(@,). For each integer n, leb M, denote the seb

to which # Dbelongs if and only if there ig a component J of (i,)* such
that & e J —rht ([an(J)]).

icm°®
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‘We will now show that U C kL:Jl QA M. Suppose that © « U. There

is a positive integer n; such that me () e,. For each integer k> ny,

n=ng
let Jx denote the component of ()* cgntaining 2. Let N = {w:a¢ el(Gg)}.
If N # @, then there is a number y in ‘N such that Gy = Gy. @ ¢ el{ ,,l)}
o ¢ el(N). Therefore, there is a positive integer n, > n, such that if w e
and # ¢ 1(Gy), then |z—w| > 4/n,. )
Suppose that there is an integer 7?> 1, such that z e [c-tk(J )] .f’l‘hers
ig & number 4 in V ~ J; and a sect s, in ax(J%) such that y is the left en:

point of s, and ® e s;. There is a number w in J and a sect s, in # such

i ft end point of s, and y es,. Since jw—a| < 2/1_5 < 4fny,
313 EI?)GS t]]:El[Zli(e:e, therep is & member of Gj" in §,. This eontraxilct-s part
(3) of the definition of ay(J%). Therefore‘, .1f k > Ny @ ¢ [an{J%)]" it
Suppose that there exists a positive m!:egejr P> ')ngsutellll . a;s
% e rht[ay(J4)]*. It follows from part (3) of the definition of az_( 'i? a a;;) 5
not a limit point of G, from the right. Let 6 Qenote a posmfve num j
such that 8 < 1/ and (z, x4+ 6) » Gz = . Tl.lere is a nuglber y in (z, m—f—é)
such that y is the left end point of a seet in a;(Jy). Sm.ce‘ G’m A (fm, m(:; )
=0, y ¢1ft(Gx). This contradicts part (4) of the definition of ax(Sx).
Therefore, if n > n,, then » e M,. )
We will now show that VC {J (N [(—oo, c0)—M,]. Suppose

k=1 n=Fk R
that ¥ e V. Let M = {®: v e« U and y ¢ it (G2)}. If M + @, the;htheigr;s
a number # in M such that G = Gsz. ¥ ¢]ft(Gz). y ¢ 1t (). erethe];
there is a positive integer =, sueh't_ha]t .1f e Ur\[y—e':/m;l m{}m; n
¥ eft(G;). Similarly, there is a positive integer mn,> :.mca e
veUny,y+4/n,], then y erht(Gz). Supp;)s; ;}fhé(btt )fhzr:n Slfd N fhe e
integ 1, such that y is in a componen n) -

ZDS%;]: ?"/Z —]?1/7‘;). We will sil]/low that s is in aa(J). s has 1engt1'1’\1[/oz— a;}i t;f
left end point ¥ of s is in ¥ ~ J. Suppose tha‘t z eJnT ?]'I_'ljh_;ref’ore
Since # € ey, there is no point of V rht‘(Gz) in (w., m:—]— /'/2].1 hex tha,i,;
y ¢ tht(Gy,). Therefore, since n > 7y, no point of Gy is in ‘séorepps e
ved neyn[y—1/n,y). Since n>n,, Y elit(Gz). Therefore, »
Therefore, if n > mn,, then y ¢ M. ] L

For 'éa,ch positi,ve integer , let U, .denote the colle(é;mE ?ffis;mii
of the components of M,. Uy, U,, ... is & -sequence suchb ra O.f S
& positive integer, U, is a finite. collection each membe

A *s and
a segment or a sect cloged on the left; (2) UC U () (Un)5; 3

k=1 n=k

@V O [ oo, o)~ (Ta)']


GUEST


192 C. 8. Reed

By an argument parallel to the one above, one can construct a se-
quence V;, V,, ... such that: (1) if » is a positive integer, V, is a finite
collection each member of which is a segment or a sect closed on the
left; (2) ¥ C U ﬂ (Va)*; and (3) UC U ﬂ [(—o0, 00) — (Va)*].

=1 n=k k=1 n=k

For eaeh positive integer n, let Wp= (Un)*—(Va)* and let Z,
= (Va)*— (Us)*. Notice that if k is a positive integer, ¢ is a component
of Wy, and d is a component of Zj, then there is a closed on the left
sect ¢’ containing ¢ but no point of Zz and a closed on the left sect &'
containing d but no point of Wy. Therefore, there exist sequences Ti(a, b),
Tya, b), ... and By(a, b), By(a, b), ... which satisfy the conditions imposed
on the sequences in IIg. Therefore, ITIp —ITg. This completes the proof
of the theorem.

OBSERVATION L. It can be established by straight forward elementary
arguments that each of the properties I, IIg, IIg, III,, I1Tp, and IIlg
can be replaced by a local property. For example, f has property III, if
and only if f has the following property: if w e[0,1], then there is
a segment s containing w such that if a> b, UCs ~ {&: f(z) > a} and
VCsn{m: f(w) <b}, then UG cl(V) or Vg el(T).

OBSERVATION II. We have noted that the “6wo number” condition IT
can be replaced by the corresponding “one number” condition IT’. There
is no corresponding “one number” condition which is an equivalent
modifieation of III. This fact is illustrated by the following function
fee. If o is an irrational number in [0, 1], then f(x) = 0; if # is a rational
number in [0, 1] (= p/q in lowest terms), then f x)=1/g in case ¢ is
even and f(2) = —1/g in case g is odd.

OBSERVATION IIL. ¢, Cr,Cj and ¢ % # f,. ¢, is a subset of 71y
because each function which is continuous is continuous on the right.
71 is a subset of g, because each function with property Iy has prop-
erty Ilg. Let M denote a Cantor set in [0, 1]. Define f(z) to be 1 if
is in ([0,1]—M) and 0 otherwise. Define glw) to be 1 if z is a
limit point from the right of a component of ([0, 1]—3) and 0 otherwise.
Define h(z) to be 1 if # is a limit point of a component of (o, 1]—M)
and 0 otherwise. Notice that fis in ¢, ¢ is in , but not in ¢;; b i3 in j; butb
not in 7.

OBSERVATION IV. C. T. Tucker [5] has shown that the following
two statements are equivalent: (1) f is in Jji; and (2) there is a countable
subset T' of [0,1] and a function ¢ in ¢, such that if  is a number in
([0,1]~-1T), then f(z)= g(»). It follows from this result that Gy = Js.
Since 62C1‘2 Ciay =1 = §y.

OBSERVATION V. Using an argument similar to (but in fact simpler
than) the argument that II, -1, it can be shown that if f eIlg, then fis
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the pointwise limit of a sequence of continuous on the right jump functions.
Therefore, we have that the following two statements are equivalent:

1) f is the pointwise limit of a sequence of continuous on the right
fmmmons, and (2) f is the pointwise limit of a sequence of continuous
on the right jump functions.
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