acher

Remark. All of the circle action constructed in Section 4 are totally wild. In Section 3, a constructed action is totally wild if the original fixed-point-free action is free.

THEOREM 5.3. If there is a free action of G on S^{q} , $q \ge 0$, $p \ge 3$, then there is a totally wild action of G on S^{p+q+1} .

Proof. Let \overline{a} be action constructed in the proof of Theorem 5.2, where a is taken to be free. Then, for each $1 \neq g \in G$, X is the fixed-point set of \overline{a}_g . If \overline{a}_g were conjugate to a piecewise linear homeomorphism, then X would be homeomorphic to the fixed-point set of a piecewise linear map, which is impossible since X is not a polyhedron.

References

- J. J. Andrews and M. L. Curtis, n-Space modulo an arc, Ann. of Math. 75 (1962), pp. 1-7.
- [2] R. H. Bing, Inequivalent families of periodic homeomorphisms of E³, ibid. 80 (1964), pp. 78-93.
- [3] W. A. Blankinship, Generalization of a construction of Antoine, ibid. 53 (1951), pp. 276-297.
- [4] M. Brown, Locally flat imbeddings of topological manifolds, ibid. 75 (1962), pp. 331-341.
- [5] Wild cells and spheres in higher dimensions, Mich. Math. J. 14 (1967), pp. 219-224.
- [6] J. L. Bryant, Euclidean space modulo a cell, Fund. Math. 63 (1968), pp. 43-51.
- [7] J. L. Bryant, and C. L. Seebeck, Locally nice embeddings in codimension three, Bull. Amer. Math. Soc. 74 (1968), pp. 378-380.
- [8] R. C. Lacher, Cell-like spaces, Proc. Amer. Math. Soc. 20 (1969).
- [9] L. L. Lininger, Actions on Sn, Topology (to appear).
- [10] On topological transformation groups, Proc. Amer. Math. Soc. 20 (1969), pp. 191-192.
- [11] D. R. McMillan, A criterion for cellularity in a manifold, Ann. of Math. 79 (1964), pp. 327-337.
- [12] D. V. Meyer, More decompositions of E^n which are factors of E^{n+1} , Fund. Math. (to appear).
- [13] J. Milnor, Groups which act on Sⁿ without fixed points, Amer. J. Math. 79 (1957), pp. 623-630.
- [14] D. Montgomery and L. Zippin, Examples of transformation groups, Proc. Amer. Math. Soc. 5 (1954), pp. 460-465.
- [15] M. H. A. Newman, A theorem on periodic transformations of spaces, Quart. J. Math. (Oxford Series) 2 (1931), pp. 1-9.
- [16] R. H. Rosen, Examples of non-orthogonal involutions of euclidean space, Ann. of Math. 78 (1963), pp. 560-566.
- [17] P. A. Smith, Transformations of finite period, ibid. (1939), pp. 690-711.
- [18] J. Stallings, On topologically unknotted spheres, ibid. 78 (1963), pp. 501-526.

INSTITUTE FOR ADVANCED STUDY Princeton, New Jersey FLORIDA STATE UNIVERSITY Tallahassee. Florida

Reçu par la Rédaction le 23. 4. 1968

About an imbedding conjecture for k-independent sets

by

A. B. Németh (Cluj)

Following [1] we say that a subset X of the n-dimensional real Euclidean space R^n is k-independent $(0 \le k \le n-1)$ if any k+2 distinct points of that subset are linearly independent. (1)

In what follows the homeomorphic image of the set $\{(x^1, ..., x^m): \sum (x^i)^2 < 1\}$ in \mathbb{R}^m will be said to be an *open m-cell*; the homeomorphic image of the set $\{(x^1, ..., x^m): \sum (x^i)^2 = 1\}$ will be said to be an m-1-sphere.

K. Borsuk [1] has proved the following imbedding theorem concerning k-independent sets:

If X is a compact k-independent set in \mathbb{R}^n and if N is an open subset in X containing k distinct points, then $X \setminus \mathbb{N}$ is homeomorphic with a subset of \mathbb{R}^{n-k} .

In [6], p. 503 and in [4], another notion of k-independence is applied, which is useful in applications in the approximation theory and which will be called in the sequel k-vectorial-independence.

The subset X of \mathbb{R}^n will be said to be k-vectorial-independent if for any k of its distinct points x_1, \ldots, x_k the vectors $\overrightarrow{Ox_1}, \ldots, \overrightarrow{Ox_k}$, where O is the origin in \mathbb{R}^n , are linearly independent.

Observation 1. A k-vectorial-independent subset X in \mathbb{R}^n is k-2-independent in the sense of [1].

Indeed, if $x_1, ..., x_k$ are k distinct points in X, then they cannot be contained in any k-2-dimensional hyperplane H^{k-2} , because such a hyperplane generates a k-1-dimensional subspace (i.e. a k-1-dimensional hyperplane passing through the origin), and if $x_1, ..., x_k$ were in H^{k-2} , the vectors $\overrightarrow{Ox_1}, ..., \overrightarrow{Ox_k}$ would be linearly dependent, being in R^{k-1} .

Observation 2. If X is a k-independent subset in \mathbb{R}^n , then it may be considered a k+2-vectorial-independent subset in \mathbb{R}^{n+1} if we consider \mathbb{R}^n as a hyperplane \mathbb{H}^n in \mathbb{R}^{n+1} not passing through the origin.

⁽¹⁾ For the sake of simplicity, the affine space and the vectorial Euclidean space of dimension n are denoted by the same symbol Rⁿ.

icm[©]

Indeed, consider k+2 distinct points x_1, \ldots, x_{k+2} in X in H^n . The vectors $\overrightarrow{Ox_1}, \ldots, \overrightarrow{Ox_{k+2}}$ in R^{n+1} are linearly independent. If they were linearly dependent, there would exist a subspace R^{k+1} in R^{n+1} containing them, which would intersect H^n in a k-dimensional hyperplane H^k containing the points x_1, \ldots, x_{k+2} , which is a contradiction.

It was conjectured by A. M. Gleason (see [8]) that the k-independent compact subset X in \mathbb{R}^n is homeomorphic with a subset of \mathbb{S}^{n-k} , the n-k-sphere. Investigations about this imbedding conjecture were announced by C. T. Yang in [8], but we have not been able to obtain any information about his results.

In Theorem 2 of [4] it was proved that if X is a compact k-vectorial-independent set in \mathbb{R}^n , N is open in X and contains k-2 distinct points, then $X \setminus N$ is homeomorphic with a subset of \mathbb{R}^{n-k+1} , which is an analogue of the imbedding theorem of K. Borsuk for k-vectorial-independent sets. By a similar reformulation of the conjecture of A. M. Gleason, we obtain:

If X is a k-vectorial-independent compact subset of \mathbb{R}^n , then it is homeomorphic with a subset of \mathbb{S}^{n-k+1} .

Making use of our Observation 2 above, we can see that this conjecture implies the conjecture of Gleason. Our conjecture for k=n is the well-known theorem of J. Mairhuber [3] in the approximation theory. For k=1 it is obviously true, and for k=2 an imbedding of X into a proper subset of S^{n-1} may be realised by the radial projection with respect to the origin of R^n into the geometrical sphere with its centre at the origin.

Let X be a compact k-independent set in \mathbb{R}^n containing an m-cell. Then, as has been proved by S. S. Ryškov [5], the following inequality is valid: (2)

$$\left[\frac{k+2}{2}\right]m + \left[\frac{k+1}{2}\right] \leqslant n.$$

Suppose now that the compact k-vectorial-independent subset X in \mathbb{R}^n is of dimension m. Then there exists a closed subset X_0 of X of the same dimension m and an n-1-hyperplane H^{n-1} which has the property of separating strictly the origin O and the subset X_0 . Denote by X_0' the radial projection with respect to O of X_0 into H^{n-1} . Obviously, X_0' is a k-vectorial-independent homeomorphic image of X_0 , and therefore

from Observation 1 it follows that X_0' is a k-2-independent subset of H^{n-1} . Applying the inequality of S. S. Ryškov we conclude that

$$\left[\frac{k}{2}\right]m + \left[\frac{k-1}{2}\right] \leqslant n-1 \ .$$

The present note aims at giving a proof of our conjecture in the particular case where the k-vectorial-independent set X in R^n contains an n-k+1-cell. More precisely, we shall prove the following.

THEOREM. Let X be a compact subset of \mathbb{R}^n , $n \geq 2$, which is k-vectorial-independent and contains an n-k+1-cell. Then X is homeomorphic with a subset of \mathbb{S}^{n-k+1} .

The inequality (*) restricts k in this case to $k \leq 3$ or k = n. As we have observed above, in the case of k = 2 the proof is simple, and in the case of k = n it is known. Therefore only the case k = 3 will be considered, and to justify our theorem in this case, we observe that each geometrical sphere S^{n-2} in a hyperplane H^{n-1} in R^n not passing through the origin is a 3-vectorial-independent set in R^n containing n-2-cells.

In the proof given here we apply a method utilised by I. J. Schoenberg and C. T. Yang in [7] for proving the theorem of J. Mairhuber. An important moment in the proof is the employing of the following theorem of M. Brown [2]:

If h is a homeomorphic imbedding of $S^{n-1} \times I$ into S^n , then the closure of either complementary domain of $h(S^{n-1} \times \{1/2\})$ in S^n is a closed n-cell. (Here I = [0, 1].)

We begin with a lemma:

LEMMA. Let X be a compact Hausdorff space having the following properties:

- (i) X contains an open n-cell Q as an open subset;
- (ii) if N is a non-empty open subset of X, then $X \setminus N$ may be imbedded in a proper subset of S^n .

Then X is homeomorphic with a subset of S^n .

Proof. If X is not connected, the proof is immediate.

Suppose that X is connected. Let A be an annulus, that is to say the homeomorphic image of the set $S^{n-1} \times I$, which is contained in the n-cell Q. Since Q is open in X, A separates X and so does σ^{n-1} , the image in A of $S^{n-1} \times \{1/2\}$, i.e. $X \setminus A = Y_1 \cup Y_2$, $X \setminus \sigma^{n-1} = Y_1 \cup Y_2$, where Y_1, Y_2 , and respectively Y_1, Y_2 are non-empty open disjoint subsets of X. Suppose that $Y_1 \subset Y_1$, $Y_2 \subset Y_2$ and introduce the notations: $B_1 = Y_1 \cup \sigma^{n-1}$, $B_2 = Y_2 \cup \sigma^{n-1}$. The sets B_1 and B_2 are both connected and are not separated by σ^{n-1} . Denote by f and by g the homeomorphisms of $X \setminus Y_2$ and, respectively, of $X \setminus Y_1$ in S^n , which exist according to (ii). Since the above sets both contain A, from the theorem of M. Brown [2]

^(*) In [5], Ryškov defines the so-called k-regular sets as being in fact k-independent in the sense of [1], and has announced his inequality for these sets. But all the reasonings in the text are valid for k-1-independent sets. In Uspehi Mat. Nauk 15 (6) (1960), pp. 125-132, the definition of the k-regular sets is changed in this sense. Our inequality follows from the inequality of Ryškov applied to k-independent sets.

it follows that the complementary domains of $f\sigma^{n-1}$ and $g\sigma^{n-1}$ in \mathcal{S}^n are open n-cells. Thus we may suppose that f and g are homeomorphisms which both transform σ^{n-1} in the equator E of \mathcal{S}^n and by which B_1 is mapped into the north hemisphere and B_2 into the south hemisphere of \mathcal{S}^n (suppose that \mathcal{S}^n is a geometrical sphere). Consider the following homeomorphism of E onto itself: $l=g\circ f^{-1}|E$. Let h be an extension of the homeomorphism l to a homeomorphism of the whole north hemisphere onto itself. Then $h\circ f$ will be a homeomorphism of B_1 into the north hemisphere carrying σ^{n-1} onto E. Consider the mapping

A. B. Németh

$$arphi x = egin{cases} h \circ fx & ext{ for } & x ext{ in } B_1 \ gx & ext{ for } & x ext{ in } B_2 \ . \end{cases}$$

 φ is a well-defined mapping which is one-to-one and continuous. To prove its continuity, let $U \subset \varphi X$ be open. If $U \cap E = \emptyset$, then $\varphi^{-1}U$ is open according to the continuity of $h \circ f$ and g. Suppose $U \cap E \neq \emptyset$. Then the sets $h \circ fB_1 \cap U$ and $gB_2 \cap U$ are open in the relative topology of $h \circ fB_1$ and gB_2 respectively. Therefore the sets

$$W_1 = \varphi^{-1}(h \circ fB_1 \cap U) = (h \circ f)^{-1}(h \circ fB_1 \cap U)$$

and

$$W_2 = \varphi^{-1}(gB_2 \cap U) = g^{-1}(gB_2 \cap U)$$

are open in the relative topology of B_1 and B_2 , respectively. Let G_1 and G_2 be open sets in X such that $G_1 \cap B_1 = W_1$, $G_2 \cap B_2 = W_2$. Then the sets $G_1 \cup V_2$ and $G_2 \cup V_1$ are open in X and

$$W_1 \cup W_2 = (G_1 \cup V_2) \cap (G_2 \cup V_1)$$
.

But $W_1 \cup W_2 = \varphi^{-1}U$, which completes the proof of the continuity of φ . From the compactness of X it follows that φ is a homeomorphic imbedding of X into S^n .

Proof of the theorem. If X in the theorem contains an n-2-cell (remember that only the case k=3 is considered), then it contains an open n-2-cell as an open set. Indeed, suppose that Q is an open n-2-cell in X such that $X \setminus \overline{Q} \neq \emptyset$. According to Theorem 2 in [4], Q is open in any closed proper subset in X in which it is contained. Then Q is open in X according to the normality of this space. From Theorem 2 in [4] it also follows that $X \setminus X$ may be topologically imbedded into a proper subset of S^{n-2} for any non-empty, open subset X in X. It follows that all the conditions of the lemma are satisfied and therefore X is homeomorphic with a subset of S^{n-2} .

References

[2] M. Brown, A proof of the generalised Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), pp. 74-76.

207

[3] J. C. Mairhuber, On Haar's theorem concerning Chebyshev approximation problems having unique solutions, Proc. Amer. Math. Soc. 7 (1956), pp. 609-615.

[4] A. B. Németh, Homeomorphe projections of k-independent sets and Chebyshev subspaces of finite dimensional Chebyshev spaces, Mathematica 9 (1967), pp. 325-333.

[5] S. S. Ryškov (С. С. Рышков), О к-регулярных вложениях, Докл. Акад. Наук.
СССР 127 (1959), pp. 272-273.

[6] Yu. A. Šaškin (Ю. А. Шашкин), Систем Коровкина в пространствах непрерывных функций, Изв. Акад. Наук. СССР 26 (1962), pp. 495-512.

[7] I. J. Schoenberg and C. T. Yang, On the unicity of solutions of problems of best approximation, Ann. Math. Pura Appl. 54, pp. 1-12.

[8] C. T. Yang, On non-orientable closed surfaces in Euclidean spaces, Canad, J. Math. 14 (1962), pp. 660-668.

THE COMPUTING INSTITUTE OF THE ACADEMY OF ROUMANIA

Reçu par la Rédaction le 5. 5. 1968

K. Borsuk, On the k-independent sets of the Euclidean space and of the Hilbert space, Bull. Acad. Sci. Pol. 5 (1957), pp. 351-356.