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Remark. All of the cirele action constructed in Section 4 are totally
wild. In Section 3, a constructed action is totally wild if the original
fixed-point-free action is free.

THEOREM 5.3. If there is a free action of G on 8% ¢ = 0, p = 3, then there
is a totally wild action of G on S°TTT, '

Proof. Let a be action constructed in the proof of Theo;‘en1 5.2

haat}
where a is taken to be free. Then, for each 1 # ¢ « @, X is the fixed-point
set of a;. If @, were conjugate to a piecewise linear homeomorphism,
then X would be homeomorphic to the fixed-point set of a piecewise
linear map, whieh is impossible since X is not a polyhedron.
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About an imbedding conjecture for k-independent sets

by
A. B. Németh (Clyj)

Following [1] we say that a subset X of the‘ n~dimension€{l }*eal
Euclidean space R* 8 k-independent (0 <k <n—1) if any k-2 distinct
points of that subset are linearly indepeu‘dent. ™ N

Tn what follows the homeomorphic image of the set {(a', ...,a:'):
2 (@) <1} in B™ will be said to be an open m- cell; the homeomorlphlc
image of the set {(#!,...,2™): D@ =1} Wl]l.be s.aud to b.e an m— 1-sphere.

OK. Borsuk [1] has proved the following imbedding theovem con-
cerning %-independent sets:

If X is a compact k-independent sel in 1?." and if N is an open subset
in X containing & distinct points, then I\N is homeomorphic with a subset
Of Rn-—k. ) . ‘

In [6], p. 503 and in [4], another notion of ]c-u{dependenee is apphfa:li,
which is useful in applications‘in the approximation theory and which
will be ealled in the sequel k-veclorial-independence. ‘

The subset X of R™ will be said to be k-vec{oﬁal-iwd_@endmt if fo.r
any k of its distinet points &y, ..., Tk the vectors Oy, ..., Oxg, where O is
the origin in R", are linearly independent. ‘

OBSERVATION 1. A k-vectorial-independent subset X in E"is k—2-inde-
pendent in the sense of [1]. ,

Indeed, if @, .., % arve k distinet points in X, ’21}2&11 they canno;
be contained in any k—2-dimensional hyperplane H ) beeaﬂ.;ﬁse lsu:lzl
a hyperplane generates a k —1—dimensionar1. s.ubspace ‘Sfl.e. a 9: e
mensional hyperplane passing t];zough the orlg}n), and if @, ... ,ﬁ kbein
in H*?, the vectors Oy, ..., Oz would Dbe linearly dependent, g
in RF, ' o .

OBSERVATION 2. If X is a k-independent Si.bbsetni? R , then %d :nRZ'I'
be considered a %2 -vectorial-independent subset in R‘ . if we conside
as o hyperplane H" in B*™* not passing through the origin.

(1) For the sake of simplicity, the affine space and the vectorial Euclidean space
" .
of dimension n are denoted by the same symbol R”.
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Indeed, consider k+2 distinet points @y, ..., ¥pes in X in H™ The
vectors OTI'Z_, ey O—:);Hg in R"™ are linearly independent. If they were
linearly dependent, there would exist a subspace BT in R*™* containing
them, which would intersect H" in a %-dimensional hyperplane H* ¢on.
taining the points @, ..., #p4s, Which is a contradiction.

It was conjectured by A. M. Gleason (see [8]) that the k-independent
compact subset X in R" is homeomorphic with a subset of 8% the
n—F-sphere. Investigations about this imbedding conjecture were an-
nounced by €. T. Yang in [8], but we have not been able to obtain any
information about his results.

In Theorem 2 of [4] it was proved that if X ig a compact %-vectorial-
independent set in R", N is open in X and contains k—2 distinet boints,
then X\N is homeomorphic with a subset of B **', which is an analogue
of the imbedding theorem of K. Borsuk for k-vectorial-independent sets.
By a similar reformulation of the conjecture of A. M, Gleason, we obtain:

If X is a k-vectorial-independent compact subset of R", then 4t is homeo-
morphic with a subset of §™ **,

Making use of our Observation 2 above, we can see that this con-
jecture implies the conjecture of Gleason. Our conjecture for k = n is
the well-known theorem of J. Mairhuber [3]in the approximation theory.
For k=1 it is obviously true, and for k= 2 an imbedding of X into
a proper subset of §°* may be realised by the radial projection with
respect to the origin of R™ into the geometrical sphere with its centre
at the origin.

Let X be a compact k-independent set in B® containing an m-cell.

Then, as has been proved by 8. 8. Ry¥kov [5], the following inequality is
valid: (%)

[k—:g} m- [L—i;l] LN

L

Suppose now that the compact k-vectorial-independent subset X
in " is of dimension m. Then there exists a closed subset X, of X of the
same dimension m and an n —1-hyperplane A" which has the property
of separating strictly the origin O and the subset X,. Denote by X; the
radial projection with respect to O of X, into H"™. Obviously, X; is
a k-vectorial-independent homeomorphic image of Xy, and therefore

(*) In [5], Ry¥kov defines the so-called f- regular sets as being in fact k-independent
in the sense of [1], and has announced his inequality for these sets. But all the reasonings
in the text are valid for k— l-independent sets. In Uspehi Mat. Nauk 15 (6) (1960),
Dp. 125-132, the definition of the k-regular sets is changed in this sense. Our

inequality
follows from the inequality of Ryikov applied to k-independent sets.

icm®

An imbedding conjecture for k-independent seis 205

from Observation 1 it follows that X; is a k—2-independent subset
of H™ . Applying the inequality of 8. S. Ry¥kov we conclude that

(*) [g}m—% [E;] <n—1.

The present note aims at giving a proof of our eogjectare in 1§he
particular case where the k-vectorial-independent set X m.R containg
an #—k-+1-cell. More precisely, we shall prove the follow‘mg. .

TrroreM. Let X be a compact subset of B", n > 2., which is k-ve:j"tom‘{zl-
independent and contains an n—k4-1-cell. Then X is homeomorphic with
o subset of S

The inequality () restricts k in this case to & < 3.or k=n. As t\;vle
have observed above, in the case of k = 2 the proof is su'nple, avnd.m :de
case of k = # it is known. Therefore only the case k = 3 will be consldteriea i
and to justify our theorem in th151 case, ,;We obs_ervr? that e?achhgic})lme ll:ic‘m
sphere §*° in a hyperplane H” " in B not passing through the orig
is a 3-vectorial-independent set in E" containing r{z.—2-cells. Sehoon.

In the proof given here we apply a method utilised by I.. J . bc 0(21
berg and C. T. Yang in [7] for proving the tvl.leorem of J. Mat.uhu13 ]fr(;re IE
important moment in the proof is the employing of the following the
of M. Brown [2]:

If b is a homeomorphic imbedding n0—f1 I indo n;S”.‘, 'th@’rlL th; Z(isca:;le
of either complementary domain of R(8" " X {1/2}) in 8" is a close .
(Here I =1[0,1].)

Ve begin with a lemma: .

‘g};gref Let X be a compact Hausdorff space having the following
properties: ‘

i) X contains an open n-cell Q as an open subset; )

((ii)) if N is a non-empty open subset of X, then X\N may be imbedded
in a proper subset of 8" §

Then X is homeomorphic with a subset of 8" "

. If X is not connected, the preof is immediate.

glf}?;cfse that X is connected. Let _1} be. an gnm?lus, tigt ;si 1;,:; iiye
the homeomorphic image of the set 8”7 x I, which I8 4301(11 ag: e
n-cell Q. Since @ is open in X, 4 separates X and sO "91——17 ;V
mage In A4 of BXUR, L N - Y2'7 CI’l di;T oirzt sm;z
where ¥,,Y,, and respectively Vy, Vs are non-e}ﬁptyd ope 0 31 e
sets of X. Suppose that ¥, CVy, ¥,CV, and intro ucebOth Rt
B,=7V,u v, B,=V,u o" L The sets B; and B, areh B orptisms
and are not separated by o"~*. Denote by f and by g t‘hi Of:r;rding o (.
of X\ Y, and, respectively, of X\Y, in 8% which exis 94(; e
Since the above sets both contain A, from the theorem of M.
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it follows that the complementary domains of fo*~! and go™ ! in §" ape
open #n-cells. Thus we may suppose that f and g are homeomorphisms
which both transform o"~! in the equator B of 8" and by which B, is
mapped into the north hemisphere and B, into the south hemisphere
of 8" (suppose that 8" is a geometrical sphere). Congider the following
homeomorphism of E onto itself: I =g of Y B. Let h be an extension
of the homeomorphism I to a homeomorphism of the whole north hemi-
sphere onto itself. Then % of will be a homeomorphism of B, into the
north hemisphere carrying ¢"* onto E. Consider the mapping

hofy for & in B,
= ge for «in B,.

@ is a well-defined mapping which is one-to-one and continuous. To prove
its continuity, let UC X be open. If U~ E =@, then @ U is open
according to the continuity of 2 o f and g. Suppose U ~ ¥ # @. Then the
sets ho fB; n U and ¢B, ~ U are open in the relative topology of & fB,
and gB, respectively. Therefore the sets

Wi=g¢ (hofB,n U)= (hof) (hofB, n U)
Wy= ¢~ (9B, ~ U) = g~gB, ~ U)

are open in the relative topology of B, and B,, respectively. Let ¢, and G,
be open sets in X such that Gy~ Bi=W,, G, B,= W,. Then the
sets Gy vV, and 6, vV, are open in X and

W1VW2=(G1UV2)"‘((¥2UV1)-

But Wy v W, = ¢~'U, which completes the proof of the continuity of ¢.
From the compactness of X it follows that ¢ is a homeomorphic imbedding
of X into S™.

Proof of the theorem. If X in the theorem contains an n—2-eell
(remember that only the case &k = 3 is considered), then it contains an
open n—2-cell as an open set. Indeed, suppose that @ is an open n— 2-cell
in X such that X\@ # @. According to Theorem 2in [4], Q is open in any
closed proper subset in X in which it is contained. Then @ is open in X
according to the normality of this space. From Theorem 2 in [4] it also
follows that X\N may be topologically imbedded into a proper subseb
of 8% for any non-empty, open subset ¥ in X. It follows that all the
conditions of the lemma are satisfied and therefore X' is homeomorphic
with a subset of §"7%

and
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