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It :followg from [4], p. 37, and the fact that there is an order preservi
homeomorphism between the irrationals in I and the non-end o'lfcg
of P that there is a universal null set ¥ in P such that there is copt‘m .
ous 1;11?]9 g of N onto P. Denote the graph of ¢ by Q. S

here is a standard way of mapping I into I 5
morpl:usm f such that f maps P ?)Eltog P xP anéjlllllj(ie:veli*onlf};)_
equa-tlonlv(m).—_—y has only a finite number of solutions if y e} —)Pe
where v is defined on I by f(t) = (u(t), v(t)). Beginning with a diagr: ’
a sketch of a construction of such a function f follows. s

1

| s | on]| 1y |

0’1‘11111?;1 t];]l emapts igld ?ineaﬂy onto the noted diagonal of I, x I,, 0y, linearly
e noted diagonal of I,; x Oy, ... To define foy et

after f; on the sets To;, 4 < 4, and , ‘ o T T
o = on t rag - i

rocess, atd ot fou z,ﬁm\fﬂ( ;; N fa=fi on the rest of I. Tterate this
b Ili‘iez.tz;a,use Gis a su‘bset of PxP, the set B =f"YG) is a subset of P
Sme‘i 15‘]10meo.morphm to‘ G. Hence F is a universal null set. (In fact
" cortg Is continuous, B is also homeomorphic to N.) Moreover, v is’
Onlynﬁ:lnniggluys I;l;a;% of 11’ t(?nto If, v(E) = P, and the equation v(x) =’y ha:s

y solutions if y ¢« I—P. Hence it follows from [1

; ‘ Theo-

;ZLEL ];I% é)‘.r(%fo, th‘at there exists a strictly increasing continuous gugl,ctionoq;
unction & such that v = g o h. It h(EB) were a universal null

Set, then i ould fOHOW hat P =
S . t t. i = olh eas
; iW X ‘ ql( (.E)) has m asure zero. Hen(ﬂe h(—E)
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Some remarks concerning
the shape of pointed compacta

by
Karol Borsuk (Warszawa)

By @ we denote the Hilbert cube, that is, the subset of the Hilbert
space consisting of all points (2, 2s, L) with 0 <z <1fnforn=1,2, ..
Two pointed compacta (X, a), (¥, b) are said to be fundamentally equiva-
lent (notation: (X, a)% (¥, b)) if there exist in @ two pointed compacta
(X', &') and (¥, b’) homeomorphic to (X, @) and (Y, b) respectively and
two fundamental sequences (see [1], p. 225)

f= e (X, a), (T, 00} and g ={gr (T, 9, (X a')}
such that jgzi(ygb/) and gf= i, where 4z, denotes the identity

fundamental sequence {3, (Z, ¢), (Z, ¢)}-

If we assume only that the second relation g I dxean holds true,
then we say that (X,a) is fundamentally dominated by (¥Y,b) and we
write (X, a) < (¥, b).

F

The collection of all pointed compacta (Y, b) fundamentally equivalent
to a given pointed compactum (X, a) is called the shape of (X, a) (see [3]);
it is denoted by Sh(X,a). Thus the relation Sh(X, a) = Sh(Y, d)
means that (X, a)% (Y,D). If (X,a) % (Y, b), then Sh(X,a) is said to
be less than or equal to Sh{Y, b) and we write Sh(X, a) < Sh(¥, b).

The aim of this note is to establish & condition under which Sh(X, a)
does not depend on the choice of the point a, and to study the operations
of addition and multiplication of shapes of pointed compacta.

I wish to thank A. Lelek, who read the manuscript of this note,
for his penetrating remarks.

1. A Jemma on isotopy. By a map we understand here always & con-
tinuous function. A map '
¢ X x{u,v;>Y, where u,v are numbers with » <7,
is said to be a homotopy in & set B if all values of ¢ belong to Z.If aeX,
beY and if g: XX u,vy—>Y is @ homotopy satisfying the condition

@la,t)=">b for every u <t<v,
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then ¢ i3 said to be a homolopy of (X, a) in (X, D), and we write
o (X, a) X {u, o0 (Y, b) .
If, for every e {u,v>, the map ¢: XY defined by the formula

o(w) = @(z,t)  for every point e X

is a homeomorphism, then the homotop: ¢ is said to be an isotopy.
Let us prove the following

(1.1) Lennra. Let a be a point of an open subset G of the Hilbert cube Q
and let ug, v, be two numbers with u, < v, and lei B gy o> =@ bé
a map with p{u,) ='a, f(v,)) = b. Then there exists an isotopy

p: @ Xty 1> @
satisfying the following conditions:
(1) ez, u) = for every point » <@,
(2) p(z, 1) = o for every (z,1) ¢ (Q\G) X {up, v},
(3) pla, 1) = B(2) for every te Cuy, vo).
Proof. First, let us consider the special case when the values of

the map § belong to the interior K° of a ball K C ¢ i .
n the spac
center o and radius 7. Let us set ) pace @ with

L2 P@0= '“'”er_ga(»*—a"w) (B(t)—a) tor every (2,1) c K x (o, 003 ,
pz,t) == for every (z,1) e (Q\K°) X ttq, vo) .

If @ < (Q\E°) ~ K, both formulas (1.2) give g, 1) = o It follows
that @: @ x {uy, vod> =Q is a homotopy. Moreover, if % ¢ K, then

Plp(@; 1), 0] < elp(a, ), 01+ o0, 0) = 720D 1500 g1 1 (4, 0)
<r—ela; o) +ola,z)=17r.
Hence ¢ (X, ¢) C K. Consequently, in order to prove that ¢ is an isotopy,

it suffices to show that for z,y ¢ K the e i impli
i qualit; %, 1) =
#= 9. In fact, in this case YOl =l ) duplies

B—y = QML;Q&’_?/) (ﬁ(i)—a) ,
whence

e(B(t), ’
ol@,y) = iw_@ ‘le(a, )~ o(a, y)l .

icm®
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<1, we infer that sy implies

ele, y) < lee, 2)—ele, y)i,

which contradicts the triangle inequality.

Thus ¢ is an isotopy and one can see by (1.2) that it satisfies the
conditions (1), (2) and (3). In order to finish the proof of Lemma (1.1),
let us observe that there exists a finite sequence of numbers

Up < Uy < oor < Up < Ugigy = g
such that for every i = 0,1, ..., n all values §(t) for u; < ¢ < Us4x lie in
the interior K¢ of a ball K;C G By the special case just econsidered, there
exists an isotopy
@it @ X {1y, Usy1> Q@

satisfying the conditions: )

(1) gi(z, w;) = = for every point 20,

(2) gilz, t) = for (@, 1) e (Q\G) X {us, Uisr),

(3) @ilB(ue), t) = (1) for ¢ e {us, uirrd-
It suffices. to sebt

fi(®) = gilee, ;1)  for  j=0,1,..,0-1

and
p(@,1) = @, 1)
@z, 1) = (Pi(fi—lfi——z -~-fo(“"): t) for

in order to obtain an isotopy satisfying the required conditions.

for Uy <t U,
<t

U < U and 1=1,2,..,n,

2. Movable pointed compacta, A pointed compactum (X, #) C(Q, )
is said to be movable (compare [2], p. 137) if for every neighborhood U
of X there exists a neighborhood U, of X such that, for every neigh-
borhood T of X, there is a homotepy

@ Uy x<0,1> U
« guch that !

(2.1)
(2.2)

plz,0)=x and - g@@,1)eV for every point ¢ Uy,
@ (%0, T) = Lo
By a slight modification of the arguments used in [2], one shows that:
(2.3) If (X, ) is movable and Sh(Y,y,) <Sh (X, @), then (¥, 90 148
movable (compare [2], p. 140). ;
(2.4) If @, e X € ANR, then (X, x,) is movable (compare [2], p. 137).

(2.5) Evei’y pointed plane compactum 1is movable (compare [2], p.145).

for every 0 <t <1.
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(2.6) The pointed solenoids of wan Danizig ([5], p. 106) are not movable
(compare [2], p. 138).

(2.7) If (X, ), (Y,y,) are movable, then X x¥ pointed by (m,,y,) is
movable. . T

Let us prove the following

(2.8) THEOREM. If (Xy, my), (Xa, @) C(Q, 2,) are movable, and if X, ~ X,
= (%), then (Xyu X;, (zy)) is movable.

) Proof. Let U be a neighborhood (in Q) of the set X — X, v X,
Sinee (X, x,) and (X,, z,) are movable, there exist two neighborhoods:

U; of X, and U, of X, such that for every neighborhood V of X there
are two homotopies

¢t Uyx<0, 15U, »=1,2,
such that g,(x, 0) = @, ,(%, 1) ¢ V for every point @ ¢ U, and ¢,(z,, t) = g,
for every 0 <t <1. ’ ’
Let 1_9,, denqte the ball (in @) with center % and radius % > 0. Since
U; n U, is -a neighborhood of %y, there exists a positive number & such

that By, CU; ~ U,. It is clear that there exist a closed neighborhood, U.CU.
of X; and a closed neighborhood U, C U, of X, such that '

(2.9) U,~0,CB,.
The set §
Uy = ffl v 172 v B,
i8 a neighborhood of X. Let us define a map a: Uy x<0,1» T setting:
(210) a(@, ) =t-z+(1—1) 2 I o(w,2) <e and 01,

(2.11) a(mat)‘=z—glh——izv’m'[t-xﬁ.(l—t)-m]—{—ww-

it e<<p(e, 2) <2 and 0<t<1,
<

(212) ez, t) =2 it

o(®, ) > 2 and 0 < t<1.

Since for o(z, z,) = e the two formulas (2.10) and (2.11) coincide
a,nd. for o(z, #) = 2¢ the same holds also for formulas (2.11) and (2 12)’
we infer that « is a map of Uy x<0,1> into T. .

Moreover, let ns observe that ’

)

(2.13) a(z,0)=2 for every point e U,,
(2.14) a(®,1) =z, for every point z e B,
and, since By, C U, n Us,

(2.15) a(@,1)e T if zel,.

11
£
(=14
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It follows by (2.9), (2.13), (2.14), and (2.15) that setting
oz, 1) = a(x, 2t) for (z,t) e Uy x<0,4%y,
@(®, 1) = glale, 1), 2t—1) for (¢,t) e (U, u B) %<&, 1, v=1,2,

one gets a map ¢: U, x<0,1> T such that ¢z, 0)==a, ¢(z,1) eV for
every point @ e U, and. ¢ (%, t) = x4, for every 0 < ¢ < 1. Hence (X, #,) is
movable and the proof of Theorem (2.8) is finished.

Remark. Since the solenoid of Van Dantzig can be represented
as the union of two compacta 4, B homeomorphic to the Cartesian
product of the Cantor set € by a segment with 4 ~ B homeomorphie to C,
we see that the union of two movable compacta with the movable common
part is not necessarily movable. Even the question remains open whether
the union of two movable compacta having only one point in common is
necessarily movable.

3. A lemma on pointed movable compacta. Let us prove the following

(3.1) LeamA. Let a, b be two poinis belonging to one component of a com-
pactum X CQ. If (X, a) is movable, then for every neighborhood U
of X there exisls a neighborhood U, of X such that for every neighbor-
hood W of X there is a homotopy a: Uy x<0,1> U satisfying the
following conditions:

a(z,0) =2, a(z,1)eW for every point xe U,,
ala,t)=a, a(b,t)=0>b  for every 0 <t<<1.

Proof. Since (X, a) is movable, there exists a neighborhood U, C U
such that for every neighborhood W of X there is a homotopy

a: Uyx{0,1>=>TU
such that '
a(x,0) =, alz,1)eW for every point z € Uy,

a(a,t)=a for every 0 <<i<1.

We can assume that U and W are open in @ and that ¢ 5= b. Let W, denote
the component of W containing a. Then there is an are L C U, » W, with
endpoints @ and b. Setting A(#) = a(x, 1) for every point @ ¢ L, we have
a map A: L—W for which the map A: U,—W given by the formula i(z)
= d(z,1) is an extension. But all maps of (L, a) into (W, a) are homo-
topic, whenee A is homotopie to the inclusion map j: L—W. Since W,
as an open subset of @, is an absolute neighborhood retract for metric
spaces, we infer by the homotopy extension theorem that 1 is homotopic
in (W, a) to a map i: U,—W such that 3/L = j. It follows that we can
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assume from the Deginning that the given homotopy a: U, <0,15 =7
satisfies the condition )

a(z,1)=a for every point v eL.
Consider now the disk
D=Lx<0,1>C U, x<0,15.
There exists a homotopy
x: Dx{0,1>>D
joining the identity map 4: D-D with a map 7 retracting D to the set
Z = [Lx(0)]v [(a)< X0, 1>] w [L x (1)]
and satisfying the condition y(z, t)~= (z, 1) for every (z,1) e Z.
Let § denote the projection of D onto I given by the formula

Blz,t)== for every (z,?) eL x<0,1).
Then
Bz, 1) = a(w,t) =2 for every (z,1)cZ.
Setting )
Do(@, 1) = ay[(, 1), 25] for every (z,t)¢D and 0 <s <}
Fs(x, t) = fy[(z,1),2—2s] for every (z,¢)eD and F<s g

§<1,
o2, 1) = a(x, 1) for every (#,1) «[Uy x (0)]w [T, x (1)],

we get a homotopy joining in U the map 1904= @[T, x (0)]w DU [T, x(1)]
with the map &: [Ty X (0)]w D U [T, x (1)] =T given by the formulas:
Nz, t) = = for (z,%)eD,
e, )= a(o,1) for  (w,1) e [Ty x (0)] v [Ty x (1)] .
Since a is an extension of the map 9, with values in U and since U, as
an open subset of @, is an absolute neighborhood retract for metric spaces,
we infer that the map & can be extended to a map a: Uy x<0,1> U, It

is clear that o satisfies all the required conditions. Thus the proof of
Lemma (3.1) is finished.

As an immediate consequience of Lemima (3.1); we get the following

(3.2) THEOREM. If a,b are two points belonging to one component of
a compactum X C ¢, then the movability of (X, a) implies the movability
of (X, ).

4. Shape of pointed movable compacta. Let us i)rove the following

(4.1) TEEOREM. If a,b are points belonging to one’ component of @ com-
pactum X CQ and if (X, a) is movable, then Sh(X, a) = Sh(X, b).

® ©
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Proof. It follows by Lemma (3.1) that there exists a decreasing
sequence Ui, Uy, ... of open neighborhoods of X (in @) sueh that every
neighborhood of X contains almost all U, and that for every n =1, 2, ...
there is a homotopy

apt Uny1 X€0,15—»Tn
satistying the following conditions:
(42) . au(z,0)=0 and an(®,1) e Unse for every point @ e Upt1 s
(4.3) aufa,t)=a and  an(b,t)=10 for every 0 <t<<1.
Since the points @, b belong to one component of X, there exists 2 map
' Bi: €0,1>=T,

such that $,(0) = a, pi(1) = b. Let us assume that for an #»>1 a map
Bn-1: €0,1> U, is already defined, such that f.—1(0) = a, fa-a(1)=b,
and let us seb

Bult) = an-aBn-a(t),1) for every 0 <<i<1.

It is clear that this formula defines a map

(4.4) - Bnr (0,1 =Upt1
such that
(4.5) Bu0y=a and Ba.(l)=0b.

By Lemma (1:1) there exists, for n=1,2,..., an isotopy

P’ 0 x<0,1>~>Q

such that

(4.6) ou(, 0) = for every point €@,

(4.7) on(@,1) € Un for every (,%) e Unx<0,1;,
(4.8) on(z,t) = for every (z,1) e (Q\Ua) x<0,1)>,
(4.9) on(a, ) = Pu(t) for every 0 <1,

Now let us set
(4.10) fa(%) = @u(z,1) for every point ze@,

and let us show that the maps fu: (@, @)->(@, b) constitute a fundamental
sequernce I: {fe, (X, a), (X, b)) . . .

Consider an open neighborhood ¥V of X (in @) and an index 7, :<;1'.Lch
that U, CV. By (4.7) and (4.8), the isotopy . satisfies the condition

©n(Ungs ) C Un, for every nzzng.-

Fundamenta Mathematicae, T. LXVIL 16
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Hence the restriction gnf(Un, X {0,1>) joins in Uy, CV the map fo/T,,
with the identity map. Similarly the restriction @u+1/(Un, % (0, 1)) joing
in V the map fu41/Un with the identity map. Setting

walit, 1) = gu(x, 1—2f) for 0<E<Y,
Pa(@, 1) = guia(@, 20-1) for F<igl,

we get a homotopy
ynt U X (0,15 =V

joining the map fu/ Uy, with the map fu1/Un,, because

(2, 0) = gn(@, 1) = falx) , ]

- for every point ¢ .
pulit; 1) = gusa(e, 1) = fua(®) | Y pomt @ € Un,

Moreover,
Pa(@, 1) = gn{a, 1 —2t) = fa(1—2t) for 0],
w,z(a, t) = ¢7n+1(a, 2t—1) = ﬁ,H.l(ilt—-l) for g <t<<1.

Now let us observe that the map assigning to every 0 <1 <1 the
point Bu(l—2t) is a path in U,, with the initial point B.(1) = b ‘mci the
terminal point £.,(0) = a, and the map assigning to every 1 <t <1 the
point fp1(2t—1) is a path in U,, with the initial point fr+1(0) = & and
the terminal point fuii(l)=05. Hence the map assigning to every
0 <4< 1 the point ya(a,t) is a loop A, in U,, with the basic point b

It is clear that this loop is homotopic (in Uy, C V) with the loop .1,
which we obtain if we run first by the path En: {0, 1y ~>T,, given bv‘
the formula fu(t) = fu(1—1) and then by the path fuyq: 0,1 —>U¢z;.
But this last loop is homotopic to a constant in V, beeause setting

xn(S, t) = ﬂn(ﬁn(t); S) ’

one gej;s a homotopy in the set U, C Uyn, CV joining f. with fu.: and
satisfying (by (4.3)) the conditions:

(8, 0) = aﬂ(ﬁﬂ(o): S) = mfa,s)=a,

anl(s; 1) = Gn(ﬁn(l), '5') = an(b,s) =10
for every s e <0, 1.

It fol%ows that there exists a homotopy contracting in V the loop A,
to the' point b and keeping this basic point fixed; that is, there exists
a f%m_ll}‘f 'of maps ¥ depending continuously on s e (0,1}, with values
in V, joining the map & = yu/{(a) x <0, 1] with the constant map &, =D
and such that J5(a, 0) = dy(a, 1) = b for every s <0, 1). Setting

A = [T x(0)] v [(a) X <0, 1] w [Uny x (1)1,

©
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we infer that the map wn/4 is homotopic in ¥ with the map v, which
coincides with w, in the set [TUn, X(0)] v [Uy, X (1)] and is constant in
the set (@) x €0, 1. By the homotopy extension theorem we infer that WYn
can be extended to a map Pu: Up, X (0, 1> V. This map ¥, is a homotopy
joining in ¥ the map Yuf[ Ung X (0)] = faf Un, with the map pa/f Un, X {1)]
= fu+1/Un, and it satisfies the condition Pnla, 1) = b for every 0 << 1.
Hence fu/(Ungs @)= fus1/(Ungy @) in (V,0) for n=mn,. It follows that
f={fr, (X, a), (X, D)} is 2 fundamental sequence.
By an analogous argument, one shows that setting

In =f';1: (Q: b) *>(Q) a),

one gets a fundamental sequence g = {ga, (X, d), (X, a)}.

Finally, the relation fugn(#) = gnfu(e)= = for every point xeX
implies that the fundamental sequences fg = {fagn, (X,d), (X, )} and
gf = {gnfn, (X, a), (X, a)} are genemted“by the identity maps 4xu:
(X,b0)>(X,d) and ixa: (X, a)>(X, a) respectively. Hence fg= dixu
and gf~ixq. Thus (X, a)z (X, b) and the proof of Theorem (4.1) is
concluded.

5. An example. Let us show that there exist continua X such
that the shape Sh(X, a) depends on the choice of the point a ¢ X.

Consider the circular disk D with the center a = (4, {,{) and the
radius 1 lying in the plane P given in the Euclidean 3-space E? by the
equation z, = §. Let 4, denote the anchor ring which we obtain by
revolving the disk D about the stright line L given by the equations
2, =1, &, = . Then 4,C E® ~ @ and the set 4, ~ P is the union of two
disjoint circular disks D with the center @ and D’ with the center a’ lying
symmetrically with respect to L.

The circle ¢, obtained by the rotation of the point a is said to be
the core of A,. Let us give to it a fixed orientation.

Now let us assign to every point p € B>~ L the point s(p) in which
the half-plane H, passing through p and having L as its edge intersects
the cirele €. Then to every path ¢ lying in E*\L corresponds a number » (o)
defined as the oriented angle described by the vector with the beginning
(3, %, 1) and the end s(p) when p runs through the path ¢. The fixed
orientation of ¢, determines the sign of »(6). If o is a path in BA\L from p
to ¢ and 7 is a path in E®\L from ¢ to r, then »(o1) = »(0)+»(). If y s
a loop in BX\L, then »(y) = 2km, where % is an inbteger. In particular,
for the loop y, constituted by the oriented curve (g with the beginning a,
the number »(y,) is equal to 2w.

By a regular anchor ring of degree m (and the radins r) we understand
every set 4 C 4, homeomorphic to 4, and such that for every point
pe(, the set A ~ Hy is the union of m -disjoint circular disks with

16*
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radii 7 and such that for p = a the centers of those disks lie on the dig.
meter & of D parallel to the axis #,. In particular, 4, is a regular anchor
ring of degree 1. :

Assume as known the following elementary geometric facts:

(1) It 4 is 2 regular anchor ring of degree m, then the set of ail
ce,n.ters of the circular disks being components of 4 ~ H, for pe(, iy
a smlple closed curve C; let us call it the core of the anchor ring 4. One
can give to~ C an orientation such that the loop y obtained from ¢ (with
the2 beginning arbitrarily selected on O) satisfies the condition »(y)
= 2mm.

(2) Two loops y and ' lying in 4, are homotopic i

: n 4, t
another if and only if »(y) = »(3'). ’ ' P e

(3) If 4 is a regular anchor ring of degree m and if 2 belongs to the
core of' 4, ?hen there exists a regular anchor ring A’ of degree 3m lying
In the interior 4° of 4 and such that p belongs to the core of A,

It follows by (3) that there exists a sequence of regular anchor rings
AO,‘Al,fiz, - With cores 0O, ¢y, 0,, ... such that Apy1 lies in the in-
terl'or An of Ay, the degree of A, is 3" and a ¢ Cy for every n=0,1, 2
It is known that the set R

8= 4,
n=0

is an indecomposable continuum, called the 3 adic solenoi
- q s
({51, ». 108). ! enoid of van Dantzig

By .(1)2 we can ass}gn to C an orientation such that the loop py with
the beginning a, obtained in this way from C,, satisfies the condition
(5.1) {yn) = 8"2% .

) Let us show that we can assign Vto every n=20,1,.. a point
ag‘e Con D, 0 that a; and a decompose C, into two oriented ares: I,
(from a to az) and I, (from ), to a) with the property that the cor-

-responding paths A, and 1, satisfy the eonditions:

(5.2)" 8" < (M) < 2-3" 0

(5.3) The segment Uy lies in Ay

Since for aj = a’ the path 2, is the ori ir
the eqmatity o & oriented half-circumference of (,,

(5.4) V() = =
holds true, and consequently condition (5.2)° is satisfied. Assume that

for a given # condition (5.2)" is satisfi
; L . stied and let us prove that th
exists & point ani; € Uy satisfying (5.2)"** and (5.3). P o
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Remarks concerning the shape of compacta 231

The set A, ~ D' consists of 3" disjoint disks Dpi, Dagy ooy Dugn,
and we may assume that their order is such that the loop y, meets them
consecutively. Then the point @ satisfying (5.3)" is the center of
a disk Dpp, with 3" <%n<2-3""". Now let us observe that the
loop yn+1 meets consecubively the disks

Dn,ly -Dn,zg weey Dn,a"y Dn,lg -Dn;?.; ey Dn,a"; —Dn,ly Dn,‘z: weey Dn,ﬁ" ?

containing the disks
: Dn-}-l,ly »Dn+1,‘3’ ey Dﬂ—'ri,ﬂ"'”
respectively. It follows that there is an index Fny1 with 8" L hpr < 23“
guch that Dpiigen C Dage It suffices to seb aniy equal to the center
of Dpyims in order to satisfy (5.3) and (5.2)"".
It follows by (5.3) that the sequence of points ay converges to
a point b ¢ § such thab

(5.5) The segment anb lies in An for every n=1,2, ..
Moreover, let us observe that inequality (5.4) implies that

(5.6) For every N > 0 there ewists an indew n, such that for every n > nqg
all numbers of the form

128" —»(An)] ,
where k is an intéger, are greater than N.

Tt is clear that D ~ S is a subset of the diameter B of the disk D.
Consequently there exists in the half-plane Ho @ circle K tangent to B
ab the point @ and such that K\D = @. Let us observe that
(5.7) K~ Ay is an arc for every n=0,1,32, ..

Setting [
= w 3

let us show that
(5.8) Sh(X,a) # Sh(X,b).

Proof. We ghall show more, namely that (X, a) is not fundamentally
dominated by (X, b). Otherwise, there exist two pointed fundamental

sequences )
5.9)  f={fr;(X,a),(X,0)} and g={g b), (X, a)}
such that

(8.10) gf~2ixa -
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By a double anchor ring we shall understand a s

3 ‘ sha sta set homeomorphi
to the Cz.u'tesxa-n product of the interval (0,1> by the set I criveﬁ liw
the Euclidean 2-space E* by the formula i

M= {o= (@, m), oo, (0,0) <4, oo, (2,0) > 1, 0fa, (-2, 0) 1)

Ol%e _cavn easily see, by virtue of (3.7), that for every n = 0,1, 2, ... there
exists a p(}sltwe number s, such that ey << e < 1/(n+1) and that the
set. By, being the qnion of A, and of the anchor ring T, defined as the
:130111 lof allhballs in B* with radins e, and centers belonging to K, ig
a double anc. i reoV i i
» or ring. Moreover, B, is a closed neighborhood of X (in E%)
X=MNB,.
n=0

Let us observe that
(5.11) None of the curves Cy and K is contractible in B, .
Now, consider the retraction 7: @ —+Q° = E* ~ Q given by the formula
(@) = (21, ¥y, 73,0, 0,...) for every point @ = (@, &, ...) e Q .
Let T : . et .
t cloyria) Sl o e # Delging f0. @ e
(5.12) Up=rBy) " F, for 5= 0,1,2,..

b

we get o descending sequence Qf neighborhoods of X' (in @) such that

P

X:mUzly Bn: Un{\Qa for ’)7,:()’]_’2

n=0

and
B, is a deformation retract of Up for n =10,1,2
N
It follows by (5.11) and (5.12) that
(5.13) Neither Cy nor K is contractible in U,.

Now let us denote, for
o s y every n=10,1,2,.., by o, the path con-
f,fﬁ;ﬁﬁiﬁf, the g?linted segment from & to ay, and l’w % t};be looppwith the
g g & which we obtain if we give to the curvy i i
tation. Let us observe that setting 7o & fixed orien-

(5.14) M=2"kl and =2,

Z&;etﬁgtrf:ezo;gops in (B, b) Whi(:,h are representatives of two generators
ated by a,nbele]]lgf :z;(Bo , l?). Let a;, denote the subgroup-of =,(B,, b) gener-
- ents which hfwe a5 a representative a loop lying in the

n- Lhe group m(By, b) is a free group with two generators. It is

icm®
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easy to see that we can select as one of them the element for which the
100D On ¥ o' (lying by (8.8) in 4z CBy) is a representative, and as the
other the element with the representative of the form o, Wt wdaant, By (5.1)
the loop s is homotopic in A, with the loop yﬁ”, and we infer that the
first of those loops is homotopic in (By, b) to the loop £ = ayyn on " and
the second is homotopic in (By, d) to the loop

(on 2 20) (76" 5220) (35 Inow ) 5
where ophn A, is a loop in (4, b). Since p(ay) = 0, we infer that
p(oudn Ao} = v(on) + (i) F (k) = 7= (4a) .
Since oaAn', is & loop, the mumber »(oniz'k) may be written in
the form 2mmy, where m, is an integer. Consequently y(Ondm ) = (™),

whence
ondnle= E™ in (B, b) .

Moreover, it follows by (5.6) that ma satisfies the following condition

(5.13) For every N > 0 there éxists an index n, sueh that m > n, implies
that |3"k—ma| > N for every integer k.

Thus we have shown that every element of the group 7, has a re-

presentative which is a product of the potences of two loops: of Cs“. qnd
of {™yt™™". Let us observe that every such product (if it is not trivial)

is of the form
(5.16)
Consider now the element of the group (B, b) with the represen-

tative fi(). Recall that f and g are pointed fundament&l sequences. It
follows by (3.9), (5.10) and (5.12) that there exists an increasing sequence

of natural numbers j, js, -.. such that

Tul(Biiy a) = f1[(Byy, @) in (By, b)

C(gn k+ mn)?]kl Cllnkg 51 2 ,’]ka i.(aﬂ I — ) .

and
Giiful(Bsy @)= 4[(By, @) in (By b)

for every 1=1,2, ..

Tt follows that the loop % = fi(x)
belonging to the group =z, for every 7= 1 8 e
trivial, because otherwise the element Giufilw) 2 would be.trlwa.l in
(By, @), contrary to (5.13). Consequently it has a representative of the
form (5.16) for every w. But this is incompatible with (5.15), b'eea.use
the elements with the representatives z and { are independent in the

group m{ By, b).

is a representative of an element
,2,... This element is not
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Thus the supposition that (X,a) is fundamentally dominated by
(X, 0) leads to a contradiction. Hence the proof of proposition (5.8) is
finigshed.

6. Sum of shapes of pointed compacta. Let (X, ) and (Y, )
be two pointed compacta. It is clear that there exists a pointed
compactum (Z,#,) such that Z= 2’ v Z", where Z' A 7" = (%) and
there exists a homeomorphism 9: (X, @) >(Z', %) and a homeomorphism
k: (X, 40) > (2", %). Manifestly the topological properties of (Z s %) depend
only on the topological properties of (X, @) and of (Y, 9). Thus we can

say that the {opological type of (Z y %) 18 the sum of the topological types

of (X, m) and of (¥,y,). We write shortly: (Z,2,) = (X, mo)to—l;(lf, Vo).
Let us prove the following
(6.1) THEOREM. If (Z, %)= (X, mo)t—okp(l’, Yo)y then Sh(Z, z,) depends only
on Sh(X, z,) and Sh(¥, y,).
Proof. Setting )
P={lm,z,..)eQ; 0< 6<%, B={a, Ty ) Qs 3< <1},

we get a decomposition of .Q into two sets P and B homeomorphic to Q.
Now let

(6.2) (X, %)% (X @) and (Y, Yo) 2 (Y, 90) -
In order to prove that the shape of (27, éé) = (X', wo)+ (T, 9¢) is the
top

same as the shape of (Z,#), we can assume that @, =y, = @) = g,
€P n R and that

(XvXN@)CP\R  and (Y v ¥')\(@) C R\P.
This hypothesis implies that there exist two maps

a, B: (Q, o) (@ , @)
such that

(6.3 e(2) = @ for every point # ¢ X U X'y a(z) = &, for every point z ¢ R,
B(z)= @ for every point 2 ¢ ¥ u Y, B(z)=u,for every point z ¢ P.
It follows by (6.2) that there exist four fundamental sequences
I= e (X, @), (X, )}, I'= {0 (&, @), (X, @)},
9= 1{9x, (Y, m), (T, %)}, 9 = {0, (T, @), (¥, @)}
such that
(6.4) Ff 2dxay, JI =z,
g g

oz s 99 >y -

* © 7 -
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Setting . X y ,
fe=1foa, Ffi=fia, Ge=grB, Gr=giB,

we get for every k=1, 2, ... four maps of (¢, x,} into (@, x).
Let us observe that
f: {flﬂ (X, wo)y (X', mo}} Q: {g, (¥, ), (Y5 2o)5
= (@), (X, @)}, g = {gh (T a0, (T, 0}
are fundamental sequences homofopie to fr0,59 res.peetive.ly.
In fact, if U’ is a neighborhood of X', then there is a neighborhood

U. of X such that fix(U,) C U’ for almost all k. By (6.3) we can a,ssigi
to1 T, a neighborhood U, of X such that for every point z e U, the segmen
7.8

za(x) lies in U;. Sebting

yu(@, 1) = felz+(1—t)al@)} for every (m,1)e Upx (0,15,

et a homotopy joining in U’ the map fil U, with the map fif Us. Hence

}VSJ% By a similar argument one proves that g=g ['=f and §g'=g".
~ "It follows by (6.4) that

(6.5) Ficicam, [I'=icm-

Since

Fl@) = Gul@) = Th(®) = fu(w) = m,  for every point @ e PAR,

we infer that setting
f f ery weP
_ fu(z) for every zeP, o) = fr(w) for every s

o ir(w) for every ze R, () for every ze R,

we get, for every k=1, 2, ..., two maps
Wiy Ok (@, o) (@5 %) -

Let us observe that o= {wr, (Xv T,z), (X'v I;e,swo)} and
o = {0k, (X' v ¥, m), (X v T, z)} are fundamelxltal ;'e(ﬂl?l; tﬁere st
B Y fact, if W’ is a neighborhood of the seb X v h, T uoh
an open neighborhood U of X and an open neighborhoo

that for almost all & .
Ful(U, %) = fosa(T, %) in W' and  gif(V, @) = gV, %) I W'
R ~
It means that there exist two homotopies

I Ux<0,1>->W,  pe: Vx0,1) W’
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satisfying the conditions
{ay 0) = fil@) ,  Mylw, 1) = fupa(x) for every point z e U,
(@, 0) = gr(r) , il 1) = groo(w)  for every point z eV,
Aoy 1) = gl 1) = @, for every 0 <t< 1.
Consider the sets
U=a(y, T=pm),
which are open neighborhoods of X and T respectively. Setting
Inlw, ) = Afa(@),1]  for every point z e U7 and for 0 <t<1,
e, 1) = wff(x), t] ’ for every point x ¢V and for 0 <i<1,

one gets two homotopies,

An: U x <O, 1> —>W" ﬁk; f’ X <07 1% __9_“,7”

such that % joins in (W', x,) the map fr, a‘/ﬁ = fl‘/ﬁ with the map fi., af i

;fg# U ilnd/;zk I\J:[Oins in (W, ;) the map gf/¥ = i/ with the map
i41B/V = gr4a/V. Moreover, since a(z) = B() — 2. for averv nain ‘
we infer that the formulﬂ; . (9)=Pe) = for ex erypomtac PR,

Il 1) = Ap(w,d) - for (#,1) e (U~ P)x<0,15,
Oz, )=z, 1) for  (2,1) ¢ (¥ A R) x<0, 1>
ilve a hor,notopy I (U~ Py (V ~ R)]x<0,1> W joining e with
0fk+f1h1n ( W', m,). Since the set W, = (UAP)yu(TAR)is a neiZhborhood
e set X v Y, we infer that © i8 a fundamental sequence. By an

& alogous g en T tha S f q .
3y at w’ 18 a a 1 sequence
it argument we sho W v’ is also ndﬂmen al
h C

'O~ gy -

gg{r:gidgr afneigllborhoofl W of the set X u Y. By (6.4) there are a neighbor-
o of X and a neighborhood T o of ¥ such that for almost all % there

exist homotopies
gr: Uy x 0,1 W and wir Vo x 0,1 W
such that 4
rie(, 0) = fifule > every
erl®; 0) = fifi(w) for every z e Uiy wila, 0) = giga(z) for every w eV,
2y 1) = i v
Pr(®, 1) = 2 for every z e U, ve(®, 1) =z for every z eV,

Pu(oy 1) = pa(wy, 1) = @, for every 0 <<t<<1.

©
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Setting
u(z, 1) = ela(z), t] for every (x,1t) e (U, P)x<{0,1>,

;:k(mﬂ 1) = wilf (@), 1] for every (z,t)e(Tyn R) x 0,13,
Wo= (U~ P)vw (Vo R),

we get a homotopy
7ee Wox 0,1 =W,

satisfying the condition Zx(we,1?) =, for every 0 < {<1, because a(x)
= f(x) = m, for every point # € P ~ R. The homotopy o5 joins in (W, o)
the map wjoi/(Wo, ) With the map Dt (Wo, ) (W, x) given by
the formula &x(z) = ¥r(®,1) for every point z e W

Tt follows that & = (@, (X v T, @), (X w T, &)} is a fundamental
sequence homotopic to w'w. Moreover, if ¢ X then

() = i@, 1) = plala), 1] = iz, 1) = .
By an analogous argument one shows that éle) = x for every point
ze¢ Y. This implies that the fundamental sequence @ is homotopie to
the fundamental identity sequence ixur.). Hence 0’02 UXOT o

By an analogous argument one proves that oo’ = ixuy eo-
the proof of Theorem (6.1) is finished.

Remark. Let us observe that if one replaces hypothesis (6.4) by
the weaker one that j’j ~ ixag a0 g9 = Lran (that is, the hypothesis
that (X, %) % (X', 2) and (X, %) 2 (X', yo) by the hypothesis thf(_mt
(X, @) ? (X5 m) and (Y, 9o) % (Y, y6)), then in the same way we obtain

Thus

the following proposition:
(6.6) If Sh(X, z) < Sh(X', @) and Sh(Y, yo) < Sh(Y',50); then
Sh (X, 20)+ (¥, %)) < Sh{X; 20)+ (¥ o)) -
top top

7. Cartesian product of shapes of pointed compacta. By the Cartesian
produet of two pointed compacta (X, ) and (Y, 'yf,) one understands
the pointed compactum (X x ¥, (2, ¥,)) and one writes

(X, #0) X (X5 Yo} = (X XX, (%, '!/o)) .

Let us prove the following ‘
(7.1) THEOREM.%‘“ Shi{X =¥, (09, %) depends only on Sh(X, ) and
Sh(Y, yo). )

Proof. It suffices to show t
of @, and if Sh(X,w,) = Sh(X’,a) and Sh(Y, o) = Sh(

hat if X,X, ¥, X are subsets
Y’, ), then
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Sh(X X T, (2, o)) = Sh (X =T, (=4, 95))- By our hypotheses, there exist
four fundamental sequences,

Ix {sz (X: ) 5 (le "”4;)} ? II = {fl’u: (X, mé): (X) ml))} ’
9= {9%: (X5 90}, (7, %)} g’ = {¢%, (Y, %0), (Ya Yo)}

such that
~ T~k s [ Yicealy,
(7.2) o .
99=2rwr 99 Zixgy.
Setting

@, )= (), 0y)) ,  FuX, 9) = (fila), ghly))  Tor every o,y e Q
and ﬁor k=1,2,.., we get the maps
fk:f;ﬂ: (Q xQ, (%o, yo)) "’(Q X Q, ($6: ’J/(;))

for every k=1, 2, ...

Consider now the set @ X@ homeomorphie to Q, containing the two
sets X XY and X' xY'. Let W’ be a neighborhood of X’ x¥’ in Q xQ.
Then there exist a neighborhood U’ of X in @ and a neighborhood V'
of ¥’ in @ such that .

(7.3) UxvCw.

Since f and g are fundamental sequences, there exist a neighborhood U
of X (in @) and a neighborhood V of ¥ (in @) such that the homotopies
Fel(U, @) 2 foaf(U, ) 1o (T, @) 5

96V 90) = grs/(V, 90)  in (V', y5)
both hold true for almost all k. Tt follows that
fk/(U XV, (q, yo)) :fkﬂ-I/(U XV, (2, %)) in (U/ XV, (w0, yé))

for almost all k. Sinece W = U xV is & neighborhood of X x ¥ -in Q xQ,
we infer by (7.3) that

fk/(W; (wo? ?/0)) :fk+1/(TV7 (o yO)) in (Wﬂa (wﬂ,y ?/6))
for almost all k, and consequently T=1{F (X x T, (2, Yo)) s (X' X X, (w4, 95))}
is a fundamental sequence.

By an analogous argument one shows that

_.f’ = {J?;u (X’ X X7, (a, yé))’ (X XY, (,, .7/0))}
is a fundamental sequence.

[ ]
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Since
Fifuw, y) = (fifel@), ghge(y))  for every (z,9)eQxQ and k=1,2,..,
one shows, in the same way, that the fundamental sequence z’f
= {fifir (XX, (@0, 90) (X X T, (@, 90)} 35 homotopic 0 i capm, a0k
the fundamental sequence f ]f’ = {fuft, (X' X X', (2, 43)}, (X' %X, (2, 40))}
is  homotopic 10 ixriehyn. It follows that Sh{X x¥, (), yo)

is equal to Sh(X’xY¥', (%5, %)), and the proof of Theorem (7.1) is
finighed.

" Let us observe that if we replace the hypotheses that Sh(X,a,)
= Sh(X',m) and Sh(Y,y,) =Sh(¥,y) by t!he weaker ones t]tigt
Sh(X, s,) < Sh(X’, @) and Sh(Y,y,) < Sh(Y’, 1), then we get in the
same way the following proposition:

(7.4) If Sh(X, o) < Sh(X', ) and Sh(¥, y,) < Sh(Y', yo) then
Sh(X x ¥, (2, 9) < Sh{X' x Y, (&5, 95) -

8. Simple and prime pointed shapes. Some problems. It follows by
Theorem (6.1) and Theorem (7.1) that the formulas

Sh(X, a) +-8h(Y, o) = Sh((X: )+ (¥, ?/u))

+

top

and ]
Sh(X, 2) x Sh(T, 95) = Sh((X x 1), (o, 90))

define uniquely two commutative operations, called addition and multi-

" plication, respectively, assigning to two pointed shapes a pointed shape.

1zso of
Since (X, @) is an r-image (See [4],p. 8) of (X, mo)t;!;(Y, y,) and also

(X x T, (2, o)) and since the shape of an 7-image (X, ) (?f (Z, ) 1s
less than or equal to the shape of (Z,2,), we infer that

. Sh(X, 2,) < Sh(X, ) +8h(Y,y,) - and
o e h Sh(X, #) <Sh(X, 2) xSh(¥, y)

i Ty) & Y, y0)- )
for every pointed shapes Sh(X, z,) and Sh(¥, ¥y, .

It iz cll)ear that the trivial pointed shape (tl‘la,t is the shapetS;l (X b’oﬁi
where X consists of only one point mo)‘ i§ th-e 1dent1ty.e}emen or
operations, the addition and the multiplication; that is:

Sh ((v”?o), 970) +8h(Y, yo) = Sh(Y, %) »

Sh ((090), wﬂ) XSh(Yy ?/o) = Sh(Y3 ?/o)

for every pointed shape Sh (X, v,).
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It 8h(Z, ) = Sh{X, 2)+Sh(Y, ¥,), then Sh(X, z,) and Sh(Y, y,)
will be said to be constituents of Sh(Z, z,). And if Sh(Z, z,) = Sh(X, 41’0)‘X
X Sh(Y, yo), then Sh(X, ) and Sh(1Y, y,) will be said to be factores of
Sh(Z, z). Thus (8.1) implies that every constituent and also every factor
of a pointed shape is less than or equal to that pointed shape.

Let us say that a pointed shape Sh(X, ) is movable if (X, x,) is
movable. It follows by (2.3) and (8.1) that all constituents and all factors
of a movable pointed shape are movable.

A pointed shape Sh(X, 2,) is said to be simple if each of its consti-
tuents either is trivial or coincides with Sh(X,2,). A pointed shape
Sh(X, x,) is said to be prime if it is non-trivial and each of its factors
either is trivial or coincides with Sh(X, x,).

Let us formulate some problems concerning those notions:

1. Is it true that every pointed non-trivial shape has at least one
non-trivial simple constituent and at least one non-trivial prime factor?

2. Is it true that there is at most one decomposition of a pointed
shape info a finite sum of simple pointed shapes?

3. Is it true that for every compact manifold X the shape Sh (X, )
is simple? .

4. Is it true that the shape of every acyclic curve is trivial?

' 5. Is true that Sh(X, )= Sh(Y, y,)+8h(Z,z2,) implies that the
fondamental dimension Fd(X) of X iy equal to Max(Fd(l'),Fd(Z))?

By the fundamental dimension of X we understand here the number
Fd(X) given by the formula (compare [3])

Fd(X)= Min dimY.
Sh(X)<Sh(I)

6. Is it true that if Ze ANR and Sh(Z, z) = Sh(X, 2)+Sh(Y, 5,),
then Sh(X, ;) is determined by Sh(Y, y,) and Sh(Z, z)?

7. I§ .it true that for every ANR-set X the shape Sh{X,x,) has
only a finite number of simple constituents and prime factors?
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The global dimension of the group rings
of abelian groups III

by
'S. Balcerzyk (Torun)

This paper is a continuation of papers [1], [2] and is eoncerned with
computation of the global dimension of the group ring of arbitrary abelian
group with commutative Noetherian coefficient ring. Also the dimension
of those rings as algebras is computed.

In this paper all rings and groups are assumed to be commutative.

For any R-algebra .1, we denote by dim .l or E-dim .1 the pro-
jective dimension of A as A°-module. If A= R{I) is & group ring, then
it is known (see [4]) that dimR(JT)= dimgmR where II operates
trivially on R.

1. In this section we prove some preliminary lemmas.

LeyA 1. Let IT be a group and aC R be an ideal of a ring R. If
E = Rja, then R-dimR(IT) > R-dimR(IT).

Proof. If P is a projective resolution of R(I/I)-module R, then
P ®zr R is a E(IT)-projective complex. Since Ho(P ©r B) = ToZ (R, R),

then P ® B is a projective resolution of R and the lemma follows.
' LeavyA 2. If II, is a subgroup of a group II, then
gl. dim R(IT) > gl. dimR(I,) ,
dim R (1) > dim R(IL,) .

Proof. It is easy to prove the formula
dimR(uu)A = diml?(H)A @R(Ho)R(II)

for any R(I7,)-module A and this implies the first inequality. The second
one follows by the fact that any R(JT)-projective module is R{I1,)-pro-
jective.

Leamga 3. If R is a field and mR = R if m is an order of an element
in a group IT, then in the group ring R(IT) any set of orthogonal idempotents
is at most countable. .

Proof. It is easy to see that all idempotents of R(II) belong to the
subring R(T) where T is the maximal torsion subgroup of IT. The group T
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