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Regulated bases and completions of regular spaces

by
Solomon Leader (New Brunswick, N. J)

0. Introduction. One can construct the completion of a metrie
space from any topological base of open balls knowing only the binary
relation: § € ' on the base B defined to mean § is uniformly interior
to T' with the diameter of S at most half that of 7. Motivated by such
constructions involving a “regulator” S €T we infroduce here the
“abstract regulated base’” and show that it has a representation as a base
of regularly open subsets of a regular Hausdorff space with the regulator
on the base somewhat like a semi-topogenous order [2]. § €T always
implies 8 C T, the weakest regulator.

The representation theorem yields a technique for “completing”
a regular Hausdorif space relative to a base of regularly open subsets
and a regulator on the Dase. Such completions include all Hausdortf
compactifications and local compactifications as well as all metric com-
pletions, but not all completions of uniform spaces.

The concept of abstract regulated base comes under the program
set forth by K. Menger [8]. The compingent algebra of H. de Vries [13]
is a special kind of abstract regulated base. Our representation theorem
subsumes that of de Vries and thereby that of M. H. Stone [11].

Our “end” is a generalization of the concept introduced to eonstruct
compactifications by H. Freudenthal [4] and P.S. Alexandroff [1].
(See [6] and Chapter 21 of [12].)

1. Abstract regulated bases. An absiract regulated base (B, <) consists
of a non-empty set B and a binary relation < on B subject under Defini-
tion 1 to the four axioms A;-A, listed helow.

DerFmnrrioN 1. Given a, b in B we say that a meets b if there exmts 4
in B with both e¢<a and ¢ <b.

A;. If a<b and b <c¢ then a<e.
A,. If ¢<a is equivalent to ¢<b for all ¢ in B then a= 5.
Ay If a<b and ¢ meets every z <) then a<e.’ ’
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A,. Every member of B belongs to some subset E of B satisfying:
().
E(ii). If a <b and a meets every member of E then b belongs to E.

Given a, b in E, there exists ¢ in E with both ¢<a and ¢ <b,

A non-empty subset E of B satisfying E(i) and E(ii) will be called
an end. The relation <€ will be called a regulator.

LeMyvA 1. Given b in B there ewists ¢ in B with ¢ <b.

Proof. Apply A, to get an end E to which b belongs. Then. apply E (i)
with a = b to get ¢.

DEFINITION 2. Let a <

Levmwva 2. (i) o<

(il) a <b implies a < b.

(iii) a<b <

(iv) If ¢ meets every z < b then b < ¢

< b mean #<b for all z<a.
<'b under Definition 2 is a partial ordering on B.

¢ implies a<ec.

Proof. To prove (i) note that reflexivity and transitivity follow
from Definition 2 while antisymmetry is A,. A; and Definition 2 give (ii).
(ifi) follows from Definition 2. (iv) is a reformulation of A, in terms of
Definition 2.

LEMMA 3. Every end E in (B, <) s a filter in (B, <). That is,

F(i). Given a, b in E there exists ¢ in E with both ¢ < b.

F(ii). If a.belongs to E and a < b then b belongs to E.

Proof. F(i) follows from E(i) and (ii) of Lemma 2. Given ¢ in E
and a < b, use E(7) to get ¢ in E with ¢ <€ a. Then ¢ < b by (iii) of Lemma 2.
So by E(i) and Definition 1 every member of E meets ¢. Hence b belongs
to E by E(ii). So F(ii) holds.

Levua 4. The following are equivalent for a, b in B:

(1) @ meets b. (See Definition 1.)
(i) There exists ¢ in B such that both ¢ < a and ¢ <b.

(i) There ewists an end E to which both a and b belong.

Proof. That (i) implies (i) follows from (ii) of Lemma 2. Given (ii)
use A, to choose an end E to which ¢ belongs. Then both ¢ and b belong
to E by F (i) of Lemma 3. So (ii) implies (iii). That (iii) implies (i) follows
directly from E(i) and Definition 1.

Lzmua 5. For b, ¢ in B the following are equivalent:

(i) b<e.
(i) ¢ belongs to every end to which b belongs.

(ill) Bwery = which meets b meets c.

) b.

a ond ¢ <

(iv) ¢ meets every = <

©
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Proof. That (i) implies (ii) is F(ii) of Lemma 3. Let (ii) hold and
let # meet b. Then z and b belong to some end E by Lemma 4. Then ¢
Dbelongs to E by (ii). Hence 2 meets ¢ by Lemma 4. So (ii) implies (iii).
Let (iii) hold and let z < b. Then 2z meets by Lemma 4 and (i) of Lemma 2.
Hence z meets ¢ by (iii). So (ili) implies (iv). That (iv) implies (i) is (iv)
of Lemma 2.

Lmvwa 6. Let D and E be ends in (B, <). Then

i) If every member of D meets every member of E then D = E.
(i) If DCE then D= E.
Proof. Consider any b in D. By E(i) choose a4 in D with a<b.
a meets every member of E by the hypothesis of (i). Hence b belongs
to E by B(ii). So D C E. Interchanging D and E in the proof we get (i).
(ii) follows from (i) and Lemma 4.
2. Stone bases.

DEFINITION 3. An abstract 1egu1ated base (B, <) is a Sione base
if @ <b is equivalent to a < b, that is, if 2 <b for all < a implies ¢ <b.

THEoREM 1. A Stone base is a pair (B, <) where B is a non-emply
set and < s a partial ordering on B satisfying under the definition of “meets”
_provided by (ii) of Lemma 4:
< b then b <
Sz. Fvery member of B belongs to some subset E of B satisfying:

T(i).

U(ii). If b meets every member of E then b belongs to E.

1 If ¢ meels every z <

Given a, b in E, there exists ¢ in E with both ¢ < a and ¢ < b.

Proof. That a Stone base has these properties follows from (i) and (iv)
of Lemma 2 and A,. Conversely, given (B, <) with the above properties
define a <b to be a < b. Then Ay, A,, and A, are trivial. 8, implies A,.

An end E in a Stone base (a non-empty subset E satisfying U (i)
and U(ii)) will be called an ultrafilter. Every ultrafilter is & maximal
filter, that is, a maximal subset of B satisfying U(i). However, unless
ahb exists in B whenever a meets b, the Axiom of Choice may yield
a maximal filter for which U (ii) fails. q,.o a maximal filter in a Stone base
need not be an ultrafilter.

3. Regulated spaces. A regulaied space is a triple (X, 3, €) with X
& non-empty set and 3 a collection of non-empty subsets of X such
that (B, €) is a regulated base with A, and A, replaced by:

B,. For every point z in X the set B, of all members of B which contain
s an end.

By, If Bp= By then z=y.
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It is obvious that B, makes A, redundant. That B, also makes A,
redundant can be shown as follows. Congider 4 not contained in B.
Choosing # in A — B we have 4 in $; and B not in B;. By E(i) choose ¢
in B, with ¢ € A. Now if ¢ € B then B would belong to every end § to
which ¢ belongs. But the latter is contradicted for § = $,. So ¢ (ng.

THEOREM 2. Let (X, B, €) be a regulated space. Then

(i) B< O in B (Definition 2) if and only if B C C.

(i) 4 meets B in B (Definition 1) if and only 4f A ~ B = @.

(i) B is a base for a topology G in X.

(iv) A € B implies AC B under 6.

(v) X is a regular Hausdorff space under G.

(vi) Under G every member of B is reqularly open (i.e. is the interior

of its closure).

Proof. Given B < C, then by Lemma 5 C belongs to every end & to
which B belongs. Applying this to § = %, we conclude B C (. Conversely,
given B < C, there exists Z by (iv) of Lemma 2 such that Z < B and Z
fails to meet €. By Lemma 4, Z and O belong to no $, in common. That
is, Z~ C=@. Moreover, ZC B since Z < B. So ZC B—C. Z is non-
empty since it belongs to $. So B Q; C. Therefore (i) holds.

(ii) follows from (i) through Lemma 4 and B,.

(iii) follows from (i), B;, F(i) of Lemma 3, and Proposition 3 in
Chapter 8 of [9].

To prove (iv), let A €B in $ and consider any « in 4. The latter
condition means according to (ii) that A meets every member of B,.
Hence B belongs to 3, by B, and E(ii). That is, » belongs to B. So 4 C B.

. Regularity of X under G follows from (iv), B,, and E(i). Therefore,
since B, implies that singletons are closed, (v) holds.

To prove (vi) we need only show C°C C for every member C of %
since the reverse inclusion holds for all open . Congider any member B
of $ with BC C. We must show B C (. For any member Z of $ with
Z C B we have ZC (. Hence %, being open, meets C. Therefore B C ¢
by (iv) of Lemma 2 and (i) of Theorem 2. -

COROLLARY 2 (a). A regulated space (X, B, €) consists of a non-empty
regular Hausdorff space X, a base 5 of non-empty regqularly open subsets
of X, and a binary relation € on B such that for A, B, C in B

(i) If AGBC ( then AEC.

(ii) If A €B then 4 C B.

(il) Given = in X and B in By, there ewists A in B, with A € B.

DermvrtioN 4. A regulated space (X, %, €) is weakly regulated if
A€B is just ACB. (X, B, €) is topologically regulated if it is weakly
regulated and B consists of all non-empty regularly open subsets of X.

icm
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THEOREM 3. A weakly regulated space corresponds to any pair (X , B)
where X is a non-empty regular Hausdorff space and B is a base of non-
empty regularly open subsets. A topologically regulated space corresponds
to any non-empty reqular Hausdorff space.

Proof. Given (X, $) as characterized above, introduce the weak
regutator 4 C B. Then Definition 1 yields (ii) of Theorem 2. Ay, A, By,
and B, are easily verified. In particular, for $ consisting of all non-empty
regularly open subsets of X, the latter statement in Theorem 3 clearly holds.

DEFINITION b. A regulated space (X, B, €) is complete if every end
in $ has a non-empty intersection in X. That is, every end is of the
form B, for some z in X. (See Lemma 6.)

4, Representation of abstract regulated bases.

THEOREM 4. Given an abstract regulated base (B, <), there exists a unique
complete requlated space (Y, B, €) such that (B, <) is isomorphic to (B, €).

Proof. Let ¥ be the set of all ends in B. Define a mapping ¢ of B
into the power set of ¥ as follows. For each b in B, let ¢(b) be the set U,
of all ends to which b belongs. By A, each U, is non-empty. Let 3 be
the range of @. Then Lemma 5 gives b < cif and only if U, C U,.So b= ¢
if and only if Up = U,. That is, ¢ maps B one-one onto $B. Therefore,
defining Uy € U, to be b € ¢, we have (B, €) isomorphic to (B, <). Now
for E any end in B the set $z of all members of $ to which E belongs
is the ¢-image of E. Hence B, and B, follow by isomorphism. Se (¥, 8, €)
is a regulated space. Moreover, isomorphism implies that every end & in
(B, €) is the p-image Pg of some end E in (B, K). So (¥, B, €)is complete.

To prove uniqueness let (X, 4, <) and (¥, $, €) be complete
regulated spaces with (+6, <) isomorphic to (%, €). Such an isomorphism
matches all ends #; in - biuniquely with all ends B, in $, thereby in-
ducing & one-one correspondence between X and Y which is an isomorphism
between (X, 4, <) and (¥, B, €).

DEFINITION 6. A member b of an abstract regulated base (B, <) is
bounded if given any subset 4 of B with the property that it intersects
every end E whose members all meet b there exists a finite subset D of 4
with that property. .

DEFINITION 7. A subset D of a partially ordered set C is a base for G
if given ¢ in C there exists d in D with d <.

CoROLLARY 4(a). The following table gives the equivalence between
properties of an abstract regulated base (B, <) and corresponding properties
of the complete regulated space (¥, B, €) representing (B, <);

(1) (¥, B, €) is weakly regulated.
(See Definition 4 and Theo-
rem. 3.)

(1) If b belongs to every end whose
members all meet a then a<b.
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(2) Every non-empty subset A of B
has a supremum in (B, <). Bvery
member of B which meels sup A
meets some member of A.

(3) Given any subset A of B with
the property that A intersects
every end E in B there exists
@ finite subset of A with that
property.

(4) A member b of B is bounded.

(5) Every end in B has a bounded
member.

(6) Every end in B has a countable
base.

(T) B has & countable base.

(8) Given subsets A,C of B such
that E~ (4w C) # @ for every
end E in B, there exist subsets
D, F of B such that for every
end E either EnD =@ and
End#0@ or E~AF=0 and
EnCs#0.

(9) (B, <) is a Stone base. (See
Definition 3 and Theorem 1.)

(2) B consists of all nON-empty
reqularly open subsels of Y.

(8) Y is compact.

(&) The member U, of % cor-
responding to b has compact
closure.

(5) Y is locally compact.

(6) The First Awiom of Count-
ability holds in Y.

(7) The Second Aziom of Count-
ability holds in Y.

(8) Y is normal.

(9) The space is weakly regulated
and every member of B is both
open and closed.

_ CorRoLLARY 4(h). (B, <) is a Stone base (Definition 3 and Theorem 1)
if and only if there emists a Boolean algebra (A, <) with o base in A—[0]

isomorphic to (B, <).

CoROLLARY 4(c). If (B, <) is an abstract regulated base, then (B, <)

under Definition 2 is o Stone base.

5. Completion of regulated spaces.

THEOREM 5. Given a regulated space (X, £, <), there ewists a unique
complete regulated space (Y, B, €) which admils an injection f: X —T for

which the mapping @: 43 defined. by @(A) = F(A)° is an isomorphism

between (4, <) and (B, €).

©
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Proof. Apply Theorem 4 to the regulated base (£, <) to get (¥, B, €)
with an isomorphism ¢: £—3. For each point # in ¥ the end 4, is carried
into an end in & which must be of the form $, since Y is complete.
Define f(x) = y. Clearly f injects X into ¥.

Let B= g(4). Then for y = f(») we have the equivalence of the
following conditions: y e f(4), xed, Ae#,, BeBy, yeB, ye B f(X)
Therefore f(4) = B n f(X). So f(X) intersects every basic open set B
since f(4) 7%= @ because 4 = . That is, f(X)= Y. Hence B f(X)= B
since B is open. So f(4)°= B nf(X)°= B°= B since B is regularly
open by (vi) of Theorem 2.

6. Compact spaces.
THEOREM 6. The following are equivalent:
(iy X is a compact Hausdorff space.

(i) X 4s a normal Hausdorff space such that (X, 3, €) is complete
for every regulated base (%, €) compatible with the topology in X.

(i) X 4s a normal Hausdorff space which is complele as a topologically
regulated space. (See Definition 4.)

Proof. Let (X, B, €) be a compact regulated space. As is well known
every compact Hausdorff space is normal. Consider any end § in (5, €).
By Lemma 3 and (i) of Theorem 2, & is a filter in the power set of X.
Since X is compact, § has a cluster point z in X. Thus every member
of & meets every member of B,. So § = H; by (i) of Lemma 6. Hence
(X, B, €) is complete. So (i) implies (ii).

(ii) implies (ili) o fortiori. -

Given (iii) for the topologically regulated space (X, %, €) consider
any ultrafilber W in the power set of X. We must show that 9L converges .
to some point & in X, that is, B, C U. Let & consist of all members of B
which contain closed members of U. Thus § C U and & is closed }1nder
finite intersection. Normality implies that for each 4 in § theve exists B
in & with BC A. So E(i) holds for § To verify E(ii), let 4 meet every
member of § and 4 C B. By normality, 4 meets every closed member
of L. Also by normality there exists D in $ with AC D and DCB.
Thus D meets every member of U, hence D belongs to . So D ?elongs
to U and therefore B belongs to & So & is an end. Since the space is com-
plete, & = B, for some « in X. So (iii) implies (i).

7. Some special cases.

1. Given a metric space X and a base # of interiors of closed halls,
define § € T as in the Imiroduction. Then (X, #, €) is a regulated space
whose completion is the metric completion.
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II. Given a completely regular Hausdorff space X, let A consist
of all subsets 4 of X which are interiors of z-sets [5], that is, 4 = ( f‘10)°
for some continuous real-valued function fon X. Define 4 €B in # to
mean that 4 is functionally separated from X — B. That is, there-exists
a continuous real-valued f on X with 4 Cf7(0) and X—B C F71). Then
(X, #, €) is a regulated space whose completion is the Stone—Cech com-
pactification.

IIT. Given a proximity space X in the sense of [3], let # consist of
all non-ernpty regularly open subsets. Define 4 € B to mean that 4 is
remote from X — B. Then (X, #, €) is a regulatpd space whose completion
is the Smirnov compactification [10].

IV. Given a local proximity space in the sense of [7], let # consist
of all bounded non-empty regularly open subsets. Define the regulator
as in III. Then (X, £, €) is a regulated space whose completion is the
local compactification constructed in [7].

V. Let (B,<, <) be a compingent algebra in the sense of [13].
Then (B, <) is an abstract regulated base whose induced partial ordering
(Definition 2) coincides with that of the compingent algebra. Moreover,
the representation given by Theorem 4 is just the compact space con-
structed by de Vries [13].

8. Product spaces. For each o in a non-empty indexing set X, let
(Xsy By €) be a regulated space. For notational simplicity we assume
XoeB, and A €, X, for all A belonging to $,. Let X = KXo Xs. Let &
consist of all product sets X, B, where B, ¢ ®, for all ¢ and B, = X, for
all but finitely many o. For 4 = Xodsand B= X, B,in $ define 4 € B
to be 4, €, B, for all 5. A routine verification of the axioms shows that
(X, %, € is a regulated space. The topology induced by the base % is
the product topology since B, is a base for the topology in X,. For each ¢
in % let & e an end in (B, » &). Let § consist of all product sets B — Y. B,
where ¥, ¢ §, for all ¢ and B, = X, for all but finitely many o. Then & is
easily seen to be an end in (B, €). Conversely, every end §'in (B, €) is
of this form. That is, the canonical projection of X onto X, carries §
into an end &. Clearly & has a non-empty intersection if and only if
each & does. So (X, 8, €) is complete if and only if each (X, Bsy €)
is complete. Moreover, by considering the imbedding of the product X in
the product of the completions X, we conclude that the completion of
the produet is the product of the completions. Finally we note that
a product of weakly regulated Spaces is wealkly regulated.

Note added in proof: J. R. Porter has pointed out that “normal” in Theorem
6 can by replaced by ““completely regular’.
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