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A fixed point theorem for continua
which are hereditarily divisible by points

by .
L. Mohler * (Warszawa)

1. Introduction. Tt has been conjectured (1) that a continuum which
is hereditarily divisible by points (that is, a continuum each of whose
non-degenerate subcontinua has a cutpoint) has the fixed point prop-
erty. The main result of this paper (?) is a special case of this con-
jecture. Specifically, it will be shown that if H is a continuum which is
hereditarily divisible by points and (H) 5 oo, then H hag the fixed.point
property. By v(H) we denote the degree of non-local connectedness of H
defined by Charatonik in [1](®). This result generalizes the well known
theorem (see [5] and others) that trees have the fixed point property,
since (as is observed below) a continuum H is a tree if and only if H
is hereditarily divisible by points and z(H) = 0. In the course of
proving the main theorem we also prove a fixed point theorem (*)
which is the generalization to the non-metric setting of a theorem of
Young [7].

2. Preliminaries. This section is devoted to a number of prelim-
inary results which will be needed in the proof of the fixed point
theorem mentioned in the introduction. The main theorems of the section
are generalizations of theorems due to. Charatonik [1] and Young [7].

2.1. Degree of non-local connectedness. In [1] Charatonik defines the
degree of non-local conmectedness 7(H) of a hereditarily unicoherent
metric continnum H and proves a number of properties of v(H). All
of the main results of his paper generalize to the non-metric setting

* The research constitutes a part of the authors doctoral dissertation at the
University of Oregon. The author wishes to express his sincere gratitude to Professor
L. E. Ward, Jr. for his advice and guidance thronghout the period during which this
research .was conducted.

(*) The conjecture is due to Knaster.

' (3 Theorem 3.27 below.

(*) Numbers in square brackets refer to the bibliography at the end of the paper.

(*) Theorem 2.2.18.

24*
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with only minor changes in the proofs. For the sake of brevity we there.
fore simply state these resultis in the non-metric setting and for the proofys
refer the reader to [1]. In what follows we will understand a continuum
to be a compact connected Hausdorff space.

_ DFF]NITIOltI 2.1.1. A continuum is said to be hereditarily unicoherent
if the intersection of any two of its subcontinua is connected.

_ ]%Lemark 2.1.2. It follows immediately from the definition that
l.f H is a subcontinuum of a hereditarily unicoherent continuum then H
is hereditarily unicoherent. T

. 'LEMMA 21.3. A continwum H is hereditarily unicoherent if and only
?f given any set X C H, there is o unique subcontinuum I (X) of H wMéh
s drreducible with respect to containing X,

DermNiTioN 2.1.4. If H is a hereditaril i i
y unicoherent continuum and
X CH, we let I(X) denote the continuum of lemma 2.1.3. !

Dmpinrrion 2.1.5. Jf X is a topological s Y
: : g pace, then N(X) denotes
the points at which X fails to be locally connectéd. (&) Gonotes

ProrosrrioN 2.1.6. If H, and H, are hereditaril i i
B Yy unicoherent continuy,
and H, C H,, then N (H,)C N (H,). 1ot

DeriNITION 2.1.7. If H is a hereditarily uni i

. nnicoherent ¢ 1
then we define J(H) = I (N (H)). . d u contimu,

Dermnrrion 2.1.8. Let H be a hereditaril i i

¢ 8. 4 Yy unicoherent
For each ordinal o we define J*(H) as follows: conbiamm.
JUH)=H.
If a0, then

JWH) it a= g4,
NIHH) if a=1limp.

B<a A<a

Lemma 21.9. If § < a, then J(H) CJ"(H).

Remark 2L, is clear from 2.1.9 that event ld:uy JYH) is
2.1.10. It ;
U ( )

J(H) =

. deFmITION 2111. I H is a hereditarily unicoherent continuum,
we define (H), the degree of non-local commectedness of H, as follows:

“(H) = {min{a: JNH) = 0} if {a: JINH) = 0} 2 0,
co otherwige .

Prorosirion 2.1.12. If H, ax itard i ‘
) Jd.12. 1 and H, are hereditaril ‘ -
tinua and H, C H,, then ©(H,) < T(H,) Y tiooherent oon
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ProrosSITION 2.1.13. If f is a continuous map from a hereditarily
unicoherent continuwum H onto o hereditarily unicoherent continuum f(H),
then J°(f(H)) C F(J(H)) for every ordinal a.

TeEoREM 2.1.14. If f, H and f(H) are as in 2.1.13, then v (f (H)) < 7(H).

22. A fixed point theorem. In [7] Young proves the following
theorem: If X is an arcwise connected metric space with the property
that the union of any countable nest of arcs in X is contained in an are
in X, then X has the fixed point property. The object of this section
will be to generalize this theorem to the non-mefric sefting with “are’
being replaced by “topological chain” (to be defined below). In [2] Harris
proves this result under the further assumption that X De compact. We
begin with some definitions.

DerINITION 2.2.1. A fopological chain is a continuum with exactly
two non-cutpoints (in particular an arc is a topological chain). Two points
in a topological space X are said to be joined by o topological chain in X
if there is some topological chain in X of which # and y are the two non-
cutpoints.

DEFINITION 2.2.2. A space X is said to be topologically chained if
any two points in X can be joined by a topological chain in X (in particular
an arcwise conneeted space is topologically chained).

DerrNTTION 2.2.3. Suppose that X s a topological chain with non-
cutpoints x, and z;. We then set 2 <y in X if o separates x, from ¥
(ie. if m, and ¥ lie in different components of X\{w}) or if &, =gore=7y.

The following is a folk theorem:

TmorEM 2.2.4. If X is a topological chain, then < is a total order
on X and the order topology generated by < on X is identical with the original
topology.

Remark 2.2.5. It easily follows from 2.2.4 that if X is a topological
chain, then since X is compact and connected it must be order complete
and order dense in itself under” <.

DEFINITION 2.2.6. A continnum X iy said to be a tree if and only
if any two distinet points in X are separated (see 2.2.3) by some third
point in X. .

It is clear from theorem 2.2.4 and definition 2.2.6 that if X is
a topological chain, then X is a tree. In fact the following characterization
of topological chains is possible:

LiEyA 2.2.7. A space X is a topological chain if and only if it is @ tree
with exactly two non-cutpoints. ’

Proof. This is clear from the preceding remark and definitions 2.2.1
and 2.2.6. @ :
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We now recall two theorems proved by Ward in [5].

THEOREM 2.2.8. If X is a tree, then X is topologically chained.

THEOREM 2.2.9. 4 continuum X is o tree if and only if it is locally
connected and hereditarily unicoherent.

COROLLARY 2.2.10. 4 hereditarily wnicoherent comtinuum X is a tree
if and only if ©(X) = 0.

Proof. This is immediate from the above theorem and detinition
2.1.11. B

Drrinirion 2.2.11. Let X be a topological chain with non-cutpoints ,
and «,. Then for each »,y in X wé define

[e,9]={eeX: 2 <2<y}, @y)={eeX: 2Ly and -w £ 2 £y},

(Note that in particular X — [&y, 2,]).

Theorem 2.2.4 implies the following two lemmas whose proofs are
not included. The proofs are identical to the proofs of the analogous
results for real arcs.

Lmymea 2.2.12. If X 4s a topological chain, then every subcontinuum
of X is a topological chain (or a point). In fact the subcontinua of X are
exactly the “intervals” [@,y] where z,yeX.

Lemma 2.2.13. If X 4s a topological chain, then the open sets of X are
exactly those sets which are disjoint unions of “open intervals” (z,y)C X

(we think of [#0, ®) and (z, ;] as open intervals if @y and x, are the non-
culpoints of X).

Levma 2.2.14. If X is a topologically chained Hausdorff space with

the property that the union of any nest of topological chains in X is con-
tained in a topological chain in X » then given any two points » and y in X,
there is a unique topological chain in X Joining » and y.

Proof. Suppose that X is as above and that the theorem does not
hold for X. Let [, y; and [#, 5], be two distinct topological chains in X
joining # and y. Then [z, yI\[#, ¥), is open in [, y], and thus contains
an “open interval” (z,w) where Z,welx, 4y ~[w,y],. Let [z, w], and
[#,w], be the subintervals of [#; ¥y}, and [», y], respectively joining =
and -w. Then [z, w] ~ [z, w], = {z, w} by the choice of (2, w). Now let ,
be an increasing (in the sense of <) net in [z, w]; converging to w and
let @; be an increasing net in [z, w], converging to w. Then given any o
and B, [z, 4.] v [z, #5] is a. topological chain. Let N be a maximal nest
of these topological chains. Then by hypothesis | N is contained in
a topological chain in X. Thus Cl(lJ W) is contained in a topological
chain in X (in fact the same topological chain which econtains U§).

But clearly Cl(|J N) = [z, w}h v [z, w],. Thus we can infer from 2.2.12 ‘

that [z, w], v [z, w], is a topological chain. But it is not difficult to see

. q
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that [¢, w] v [#, w], has no cutpoints. This contradiction establishes the
) 2] 2
lemma. &
DEFINITION 2.2.15. If X is as in 2.2.14 and @, y « X then we let [, 7]
denote the unique topological chain in X joining @ and y.
TEMMA 2.2.16. If X is as in 2.2.14, then the intersection of any two
ic ins in X is connected.
topologzoal chains in 2 . N -
Proof. Suppose that C; and C, are topological chaing in X and that
0, Oy 0. If 2,0 e~ 0y, then by lemma 2.2.12. ¢, and C, boﬂ;
cénta,iﬁ topological ehaing joining # and w. By lemma 2..2.14 tht?se -nmsY
be identical, ie. €y~ Oy contains the unique topological chain in 2
, le. .
i ! ] (, is connected. B
soining # and w. Clearly then Gy~ C _
o Agwell known theorem due to R. L. Moore sta.tves.th.at a }ocalllyfcglxlm
nected, metric continuum is arcwise connected. T‘hls lmplles ha,t de
eontim’wue: image of an arc in a Hausdorff space is arewzse. cmt?ec ‘(25).
; ralized to the non-metric setting (°),
Vhile Moore’s theorem cannot be genera. i ;
:]Zelnext theorem proved by Harris in [2] shows that the above-mentioned
corollary to Moore’s theorem does generalize. -
THEOREM 2.2.17. The continuous image of a topological chain i & Haus-
i 1c hained.
dorff space is topologically ¢ . | .
fTHFOR’EM 2.2.18. If X is a topologically chained Hcmtedo'rlff Sg)faa.e with
. . ] est of topological chains in X 18 con~
he property that the union of any mest o . 8 o "
Z?"nj:d f’/b (;a/ topological chain in X, then X has the fiwed point property

Proof. Let X be as above and suppose that f: X »X;D is cg:u:;iz(;i
We can define a partial order <* on X a8 fq]lows: Let 0' e soto Olo;ical
uished point. Then we set o <*y in X if o lies on t'he*l}m(l"l oD e
fhain in X joining 0 and y. It is not difficult to see thelt é isa g:anmne i e
order on X. Moreover, any chain (in the sense of § ) llfl X;; ﬁi;?*:;lgglogicéﬂ
in X ‘(this follows from the hypotheses on X and the &c L et (v the
chains are order complete under <). Let M be a*maxn;m every @ e M.
sense of <*) in X with the property that = < f (m)— ;’1]; e wish
Since 0 <* f(0) we can always find such an M .‘Let mod— sgors .of o hna
first to show that z, e M. First obsell‘ve that the plg et(‘: . respec’ﬁgvely.
f(a,) under <* are the topological chains [0, @] and [0, ch (mﬂ)] s 5 proper
Tt @, <* f(m), then @ ¢ [0, f(z,)] and so [0, %] ~ [0, Toat 15 [0 o]
subinterval (recall lemmas 2.2.16 and 2.2.12) of [0 ‘,‘;v;z e e,r oL
~ [0, f(zy)] = [0, ] where @ €[0, %) and @ # m(,:h se a neighborhood U
cases. First suppose that 2 # f(2). Th.en we can ¢ f00 ot £7) C T
of f(x,) such that o ¢ U. Let V be a neighborhood of &, st e interval
Now V ~ [#, 4,] is open in [@, %] and therefore cor;ta,mi . elzz a3
(2,®] in [#, %,]. By our choice of ®, there must be an @ €(?,

() See [3].
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ie. there is an (2, ] such that z <*f(@). Now [#, 2]~ [, f(2)]
= {#} by our choice of ». Therefore, the fact that [z, F(@)] A [, f(,)]
is connected allows us to infer that [, f(2,)] ~ [#, f(m)] = {z}. We can
now conclude that [w,f(m)] v [z, f(z,)] is a topological chain. Thug
[#, flan)] © [, f(@)] is the unique topological chain in X joning f(m,)
and f(w,). By theorem 2.2.17 f([my, 2,]) is topologically chained and must
therefore contain [, f(z)] © [w, F(2)] (by the uniqueness of [, flz)] v
vz, f(#)]). Thus @ ef(m, z,]). But [2,2,]C (#, 5]~V and so we
have x «f(V) contradieting the fact that f(V)C U. This concludes the
consideration of the case % # f (@5). Now suppose # = f(2,). Then choose
disjoint neighborhoods ¥ and U of %o and f(@,) respectively with fwmcu.
A similar argument to the above can be produced to find @, ¢ ¥ ~ M such
that [, 2,1 CV but with the property that @, e f([z,, 2,]) contradicting
our choice of ¥ and U. Therefore we must have @y <* fy), e, iy e I
If @+ f(x,), then we can choose , <"z < fl@y) with @y # 2 = f(a,).
By the maximality of u, in M we may conclude that f([w,, 2]) » [=, f(z,)]
= {f(5)}. One can now argue as above to show that z <* f(=), contra-
dicting the choice of #,. Therefore we must have @y = f(m,), i.e. x, is a fixed
point for f. B

3. The fixed point theorem. In +this section e prove the fixed
point theorem mentioned in the introduction. In fact we will prove
a slightly stronger result. Namely, that if H is a hereditarily unicoherent

continuum and 7(H) 5= co, then H iy hereditarily divisible by points
and H has the fixed point property.

DBrINITION 3.1. A continnum H is said to be hereditarily divisible
by points if every non-degenerate subcontinuum of H (including H itself)
has a cutpoint.

The following theorem is well known (°). A partial converse is given

below which allows us to classify those hereditarily unicoherent con-
tinua H with 7(H) # oo.

THEOREM 3.2. If H is a continuum which is hereditarily divisible by
points, then H is hereditarily unicoherent.

Before proving the converse to theorem 3.2 for those H with T(H) 5 oo,
a few preliminaries are needed. In [6] Whyburn proves the following

theorem for metric trees (dendrites). The proof in the non-metric case
iy the same and is omitted here.

THEOREM 3.3. If T is a tree and z €T, then @ has arbitrarily small
connected neighborhoods whose boundaries are finite.

(*) The author has been unable to find a reference for this result. But in any case
it is not difficult to prove,
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CoROLLARY 3.4. If H is a hereditarily umﬁcoheo‘mt 00.nti-nfu«um and
e H\Gl(N(.H)) (recall definition 2.1.5), then x has arbitrarily small con-
nected neighborhoods with finite boundary.

Proof. Let  and H be as above and let ¥ be a connected ne‘ighvbmj-
hood of # such that CL(V)CH\CL(N(H)). By remark :3.1.2 CL(T) is
a hereditarily unicoherent continuum. By proposition ‘).2:)1.6 V) is
locally connected. Therefore CL(V) is a tree by theorem ).f.,.'9. .

Theorem 3.3 then implies that hag smadl gonnected neighborhoods
in CL(V) with finite boundary. But Cl(V) contains an open set zzlbouz .:;
(namely V). Therefore H confains small connected neighborhoods o
with finite boundary. @ -

TaroREM 3.5. If H is a hereditarily ufn.ic.?ohm‘ent continuum and
7(H) # oo, then H is hereditarily divisible by poinis.

Proof. Let H, be a non-degenerate subcont»inuun} of H.. By prop-
osition 2.1.12 v(H,) < v (H) and thus r(Hl? #*= oo. Thls_ implies w};he
definition of = that J(H,) is properly contained in Hi, i.e. HNI (4 ( 1))
#0. But CL(N(H,) CI(N(Hy). Thus Hl\Cl(N(Hl))j& 0. B'y Tco;ol-
lary 3.4 we can find a connected open set v suc}.l that C1(V)C H\C1 ((Jll\ & 1))
and V has finite houndary. As was observed in thf ~proof of 3.4, Ci( ])11s
a tree. Therefore C1(V) has a cutpoint p. Since V .ls.conngc,ted fung.l Tas
finite boundary and H, is hereditarily unicoherent, it is eagily seen that p
m“StLll?liﬂ\::Ac?g.o 1;1; IO; gla:m"editm‘il'y wnicoherent continuwum .su(:h th;t
+(H) oo and if f: H —~H is a fized point free map, then H comfc[zmilz) s;[

continuum Hy (such that ©(H,) # oo) and such that fla, maps . ;0 15

Proof. Let f and H be as above and let M be a maximal nestis(;g
subcontinua Hyp of H such that f(Hn)C Hn (ﬁueh a nest Ghvvz:ys eejcxth;
since f(H)C H). It is easy to show 'Jﬂmt ge;tigg); ﬁlz NM we g
desi g oo by proposition 2.1.12). . o
demg; I:is;llntl‘)e(z(fﬂtll)lj previgfu; lemma we need only (.‘.On;il(].(::il istzll.jeefllnvief
e e+ 2 oo Thanefoe for the omainder of s

erent continna H with 7 0, b : r OF b
:Z(}zl’rfi;lnivzﬁﬁnrg;ke the standing assumption that H is a fixed hileflgtzailg
unicoherent continuum, that v(H)="ay, a lixed ordinal and that f:
is a fixed surjective map. ‘

LemMA 3.7. JU(H) is a iree.
Proof. We first show that J(H) # 0. Recall that

ap = v(H) = min{g: J*(H) = 0} .

If gy—= f+1 for some f, then certainly J“(H)# 9.
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T oa=1 9 (H) = A
%= lim B, then J® (H)AﬁQDJ(H), and JU(H)# @ for every

f < a. Thus since each J*H) is compact J°
! . s 2 s pact JU(H)# 0. Now J*® i
a continuum and therefore by remark 2.1.2 JUH) is a hereditarilgrffinis

coherent i M 4 'V
rent continuum. Finally, observe that we must have JNH) =g

by the definition of «,. Therefore
(%) 0 =J""H)=J(JH)) = I(w @) .

(%) impliey in particular that N(7H i ;
A 2 ar that N(J“(H)) = 0, i.e. that J°(H) is locally
connected. The lemma now follows from th,em’em 2.2.9, (.) el

Leva 8.8. J°(H) C f(J°(H)).

Proof. By proposition 2.1.13 J*® (™ i
sasioctive Fiit P A3 JU(f(H)) CfJ™(H)). But since f is

LEMMA 3.9. f(J"“(H)) 8 t()po:log'ioally chained.
., ];;roof. Slfme FII™(H)) is a subcontinuum of H, it is hereditarily
micoherent. Sinee J™(H) is locally connected (theorem 2.2.9), f(J"“(Hj)

is locally connected. Thus b
13 cted. $ by theorem 2.2.9 f(J™(H) ix a tree
rem 2.2.8 now implies the desired result. B l ( : )) e e

X mgiﬁ?mf ?10 ]:aor the remainder of this section we let #, denote
2 baa leniar pomt in J*(H) and let 4 denote the set of all points in H
¢h can be joined to @, by a topological chain in H
Leama 8.11. fl4)C A4. '

P P N 7 1

wd mlo ];)f : tI}‘let oo € Ao Thfn ther'e 1s & topological chain ¢ in H joining &
o f.ool;om}‘ig lemhem d.2.}‘ I '(J). Is topologically chained. Therefore there
i f(J”“(g_H al e gln ¢, in H joining f(z) and f(,). Now lemma 3.9 states
o )) 18 topologically chained and lemma 3.8 implies that z
LI re 1 a ) . X
e ﬁ(x(,; a;e 11n Il (}-I)). Therefore there is a topological chain ¢, in H
ot dg tg};;(f f(:z:,))‘.t Since H is hereditarily unicoherent, ¢, ~ C. i;; con-
efore it is clear th ) in ical chai
Joining 5, snd 1(2), 16, T A‘at. 0, v 0, contains a topological chain

R i . .
- Eri)lra;;:; t30.1?£ Certainly A4 ig topologically chained and Hausdortf.
Perbe ﬁnio 2 sfow that f has a fixed point in A it will suffice to show
o -1(3;11 (})1 any nest of topological chains in 4 is contained
Do 9% ig ¢hain in 4 (applying theorem 2.2.18). Note that the full
Pt d(.i; falcst niie(?ed her.e since in general we cannot expect 4 to be
donst 2 2 > 18 possible to constryct' an example where A is
DE.FINITION 3.13. Given a,
topological ‘chain in 4 joining
= I({a,b}) in H).

bed, we let [a, b] denote the unique
a and b ([a,b] iy unique since [a, b]
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We now make another series of standing assumptions. For the vest
of this section {[da, bal}aer Will denote a mnest of topological chains in 4
with the aq/s being the “left” endpoints always (we can define left as
follows: Fix some interval [ao, b,] in the nest and call a, its left endpoint.
Tf [, Do) is another interval in the nest and [a,, by] C [@q, b.], then a.
is the left endpoint if ag € [@u, bol. If [@u, ba] C [, Do), then a, is the left
endpoint if @u € [@y, bs]). Now since the [a., b.]'s are nested it is clear
that it # is any point in {J{{@, bo]: « eI}, then

#®  Uflae bl aelt = U {{a0, bl @ € [aa, bal}
= | J{[@a, #]: 2 €[aq, baJ} v \J{[#, bal: @ €[, bal .

DrriNitioN 3.14. For the remainder of this section we will let €
denote CL(|J {[@a, Dal: a e I'}). Tt @ e ) {8, bal: ael} we set R(z)
= CL(U{lw, bal: @ € [tay bo]}) and L(z) = CL({ {[8e, ]: @ € [aa, ba]}) Where
all three of the above closures are taken relative to H.

Remark 3.15. From (%) above and the fact that the [aa, b.)'s are
nested it is clear that € = L{z) v R(z) for any @ e (J{{d, bsl: ael
Note that ¢, L(z) and R(x) are all subcontinua of H.

LmmmA 3.16. If
e | {{au, ba]: a el

and for some o e I' @ € [, ba]\{tt, ba}, then there is a y eI’ such that [a,, by}
J .
contains an open set relative to C about .
Proof. Suppose the lemma is not true. Then given any neighbor-
hood U (velative to €) of # and any [ay, b, such that @< [a,, by1\{ay, b}
we can find an interval [#a, b,] in the nest such that [a,, b,] C [@a, ba] and

(1) ' ([0, bal\[@, D;]) U+0.

Then without loss of generality we may assume that given any neighbor-
hood U of « relative to L(«) and given any » such that @ e [ay, BN\{2},
there is an a such that [a,, #] C [ae, ®] and

(2) ([ @ay &Ny &) ~ U # O .

Now by theorem 3.5 L(x) must have a cutpoint p. Thus we ean find
non-degenerate subeontinua ¥ and F of L(z) such that BwF= L(x)
and B~ F = {p}. We suppose (without Joss of generality) th%i,t zel.
Certainly 2 p (the connected set |J{[a, s\{w}: » €[, b} is dense
in L(x)), so we can find a neighborhood U of # such that CHT)nF=6.
Now let 4 be any point of |J{[a, @13 @ €[t b.J}. Then there must be
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a y such that » €[a,,d,] and y €[a,, #]. By our hypothesis about L(x)
we can then find an interval [a., b,] containing [a,, b,] and such that (2) is
satistied. Let 2 e([aq, #]\[a,,#]) » U. Then y e[z, s]. Moreover since
UnF=0 we must have z¢E. Now F is a continuum containing
and z. Therefore B must contain I({x, 2}) = [, «]. But this implies that
¥ € E. Since y was arbitrary in {J {[da, #]: @ € [au, bo]} We have shown that

(3) U {[@a, #]: @ e[, b} CE.

Since F is closed in H, this implies that

(4) Ol {[ta, ©]: # € [aa, beJ}) CE 5

i.e. L(x) C B, contradicting the assumption that F was nondegenerate. B

Imvs 317, If we U{{@, ba): ael} and  e[au, b\{aa, ba} for
some ael, then  is a cutpoint of (.

Proof. Let » be as above. The last lemma implies that [@a, be] con-
tains an open set relative to ¢ about #. Thus & has small neighborhood
with two point boundaries. Moreover @ is a cutpoint of [@a, ba)]. We can
now infer, as in the proof of 3.6, that # is a cutpoint of C. B

CoroLLARY 3.18. If ® is as in 3.17, then L(w) » R(x) = {z}.

Proof. Since » cuts C, there must be two non-degenerate sub-
continua, B and F, of ¢ such that B v F= (¢ and B~ F = {#}. Now
L{z) v R(z) = € and @ cuts neither L(z) nor R(x) (this was observed

in the proof of 3.16). Therefore the two continua E and F' must be L(x)
and R(x). B ! :

Leywa 3.19. Suppose that

@ e\ J{[@a, ba]: a eI,
Y e LN\ U {[aa, 2] @ € [aq, b]} 2 e R@\U {[z, b]: © € [aa, b} -

Then C is irreducible between 2 and y (i.e. O=1I({z,9}) in H).

Proof. This follows immediately from corollary 3.18. @&

We now state four lemmas about R(z) which are analogous to the
last four lemmas about €. The proofs are strictly analogons to the proofs
of the last four lemmas and are therefore omitted here.

Levna 3.20. If 6 € | J {[aa, ba]: a e I'} and y e[, b \{, ba} for some a
such that @ € [a,, ba], then there is a y such that o [a, b,] and [2, b,] contains
an open set relative to R(2) about v.

Lumma 3.21. If 4 is as in 3.20, then y is a cutpoint of R(x).

CorOLLARY 3.22. If 4 is as in 3.20, then [@,y] v R(y) = R(x) and
[z, 91~ RB(y) = {y}.

and
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TeMMA 3.23. If
wel) 8o, Del: ael}

then R(w) is irreducible between @ and 2 (i.e. R(x)= ({, 2}1)).
TmMMA 3.24. If R{w) is locally connected at some

. ze R@N\ U {[#, ba]: # e[aa, bal},

then R(w) is a topological chain.

Proof. Suppose that z is as above. Wg will s.how tl:zut the set
RN\ {®, bl # € [aq, b.]} consists Of, jnhe mngle_pomt z. For suppo.(se
that g # # is another point of this set. Since I\’:(w) is locally connected ab
2, we can choose & connected neighborhood (in R(x)) U of z such that
y ¢ CL(U). Since z ¢ ReN\\J {{#, b]: & € [6q, ba]} there must be some

we U {[w) ba]: &Ze [aa; bu]} ~T.

ollary 3.f z) = [o if w¢[#, ba\{x, ba} for some g,
By corollary 3.22 R(x) = [#, w] v K(w) (i s :
then R(@\ U{[#, ba: @ € [aq, ba]} = ©). By lemma 3.23 R(w) = I({w, (,];).
Since w,2e U and U is connected, we must have I({w,2}) C CL(T).
That is, R(w) C OL(U). Therefore

and 2z e R(e\U {{#, bal: @ €[, ba]},

z

R(s) = [, w] v B(w) C [w, w] v CU(T).

But clearly y ¢[x,w] and y ¢ CL{U) _This_ contradiction shows- ;ghat
R@N\U{[®, bal: @ € [a, ba]} = {z}. This implies by lemma 3.21 thafj ()
has at most two non-cutpoints, namely @ and . But every continuum
has at least two non-cutpoints. Therefore E(z) has exactly two mnon-
cutpoints and is a fopological chain. B .

Levna 3.25. If @ € | J{{aa, bal: ael}, then either L(x) or R(z) is
o topological chain (or a point). .

Proof. Suppose that z e | J{{oa, ba: ael} Elﬂ.ld neither L(Am) ?‘01;1R ()
is a topological chain. Then by lemma 3.24 and its dual we can fins .

2 e ([L{@N\ UG, 2: @ € [aa, bJ}) A N (0) 5 ‘

) w e (R(w)\U{[m, bal: % € [y bu]}) ~N().

Therefore z, w e N(0). Thus I({z,w})CI(N('O))’zJ(c"). Bllto(ié)J?(]_;;l
lemma 8,19 imply that I({z,}) = C. Therefore G-CJ(Gé’ 1.e..oO ’];ut b.
But then ¢ = J(C) for every ordinal number y, i.e. (0) . ¥
proposition 2.1.12

7(0) <T(H)= o7 .

This contradiction establisies the lemma. B
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By virtue of the last lemma we may assume without loss of generality
that R(z) is a topological chain for some z e U{[@, b.]: « € I'l. That is,
there is some g, ¢ €' such that the topological chain [z, Yol = R(2). If we
set L(yy) = CL({{[@a, %o]: a €l}), corollary 3.22 implies that

O=L(@) v R(z) = L(x) v [, y,] = L(y,) .

We now show that L(y,) is a topological chain. This will sutfice o establish
the desired fixed point theorem.
LEMMA 3.26. L(y,) is a topological chain.

Proof. For suppose not. Then by the dual of lemms 3.24 L(y,) fails

to be locally connected at every point of the get Lo\ U{lta, 9o]: a € I}
Let

%) B =sup [y: Lo\ U {lta, yo]: a e Iy CJ ) .
Then it easily follows thaf

1 LN\ lae, yol: a e I} C ()
and
(2) LoNU{lae, yol: a eI} ¢ o Y my .

So J‘f(H) is locally conmnected at some point z, € LYo\ U {[@a, Yo): ael'}.
Crane 1. J%H) A (U {{ta, 1,]: « el =0,
Proof of claim. For Suppose not and let

(%%) : @ e JUH) (U {{aa, v a e}
Since J7 (H) is a continuum. we must have

(3) I({z, 2}) Co(H) .

Now by the dual of Iemmay 3.23,

) L I, a)) = L(x).

And by the dual of corollary 3.22,

(5) L(yy) = L(z) e
‘and
(6) L) A [, y,] = {w} .

. ane
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Thus sinee Li(yo) fails to be locally conneeted at 2y, L(x) must alsc; fail
to be locally connected at z,. But (3) and (4) imply that L(x) CJ(H).
Therefore, proposition 2.1.6 implies that J*(H ) fails to be locally connected
at 2. This contradiction establishes the claun: ‘ .
- Now clearly 4, e 4 (see 3.10 for the definition of 4 and x,). So let
[y, ¥o] be the unique topological chain in H joining @, and y,. .
Lemma 2.1.9 states that J(H)C J°(H). Therefore, , fJ”(H). This
implies that {wg, yo} CJ“(H) v L(y,). But Jp(H) UL(y.“) is rconne.cted
(both J”(H) and L(y,) are connected and both sets contain 2,). Theretore,

(7) [0, 9ol = I ({#g; yo}) CJ"(H) © L(y,) .
SpAIM 2. [y, Yol N L(Ye) = L(Yo)- o
Proof of claim. Suppose that e [ J{{aq, yol: a.eI.’}. We wish to
show that [@, 9] CL(y,) M [, yo]. For suppose that this is not the cas)e;
Then for some z e [, ¥,l, # ¢ [%, ¥o] » L(5,). By the .Flual of corollary 3.22

(8) L(y,) = L(z) v [2, 5]
and
(9 L(z) n [z, 4] = {7} -

Now L(y,) m [@y, ¥o) is a continuum by the hereditary unicohgrgnee of}Ht.;
Therefore, since z¢.L(y,) N [, ¥ol, (8) and (9) allow us to infer tha
(10) L(yy) ~ [0, 401 C 2, 9o] -

(10) and (7) now imply

(11) (@, 961 C [2, yol © J(H) .

But claim 1 implies that [z, y,] ~J'(H) = O. .

Therefore, [z, 4,] v J?(H) is disconnected. .’I‘hen, since [.mo, yo_lr;j
[z, 9] #= @, we must have [xy,y,]C[e, %0]. But this ‘1mp11'e.s ’pllzb
[tgy ¥o] nJ(H) = O, a contradiction (o e J'(H)). Therefore, we mu
have

(12) [, Yol C L (yo) ™ [0, ¥ol
for every we |J{[aq, ¥olt ael}. But then
(13) Liyy) = CL{{lta, yo1: @ I'}) CL (o) » [20; 0]

Le. L(yy) = L(yg) ~ [io, Yol . "
Ogifin 2 im}';lie.s 13]‘1;1; L(y,), being a subcontinuum %f~>t]11§ t;pologlc, 1]
chain [z, ¥,], must be a topological c'h-aﬂn by lemma 2.2.12.
The desired fixed point theorem is now clear. . o
THEOREM 3.27 If H is a hereditarily uwicoherent conbinuwmy such
that ©(H) # oo, then H has the fiwed point property.
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On the topology of curves I

by
A. Lelek (Warszawa)

By a cwrve we mean a 1-dimensional compact connected metric
space. Thus all curves are non-degenerate continua. Although a theory
of curves had Dbeen established at the early stage of set-theoretical
topology by Karl Menger and P. 8. Urysohn, some set-theoretical aspects
of the theory seem to be far from heing explored. Among them are various
cardinality problems concerning topological structure of curves and their
subsets. For non-compact subsets a classification relevant to connectivity
properties had been elaborated by A. D. Taimanov [5]. A countable
ordinal which we call the non-connectivity index of a space (see § 1)
indicates the level on which quasi-components become compouents of
4 given point. Solving a problem raised by P. S. Novikov (see § 3) we
show that there exists a plane G;-set whose non-connectivity indexes
are arbitrarily high. This is done by constructing a subset of a pseudo-are,
and we use a result of Howard Cook [2] to prove that an uncountable.
compact bundle of psendo-ares is embedable in a pseudo-arc itself (see § 2).
On the other hand, it is shown (see § 4) that non-connectivity indexes
of a subset of a rational curve are bounded by a countable ordinal. The
results of the present paper were partially announced in [4].

§ 1. Non-connectivity indexes. Let us recall that the quasi-component
@ (X, z) of a topological space X at a point # ¢ X is the intersection of
all closed-open subsets of X that contain z. We write %X, z) = X, and
we use a transfinite induction to define Q%(X,x) for each ordinal a,
namely
QX 2) = Q(Q"(X, ), o
and

QA(er) = ¢%(X, x)

a<i

for limit 4. The set Q°(X, #) is said to be the guasi-component of order

of the space X at the point #. Observe that Q*(X, ) is a closed subset

of X, and therefore the decreasing transfinite sequence
PX,2)2QX,)D...00%X,2)D ..
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