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On extending homeomorphisms
on zero-dimensional spaces *

by
Jean Pollard (Baton Rouge, La)

1. Imtroduction and notation. A metric space is zero-dimensional
if for each peX and each &> 0, there exists an open and closed
seb U such that pe U, and diam U< e. In this paper we shall
be concerned primarily with zero-dimensional separable metric spaces.
We define a 0-space to be a non-null non-degenerate zero-dimensional
separable metric space. ]

In considering the problem of extending homeomorphisms on
topological spaces, a basic question is whether or not each single point
homeomorphism is extendable, ie. for p,qe X whether or not there
exists & homeomorphism F of X onto X such that F(p)= ¢. A space
having the above property is said to be homogeneous. If the space is not
homogeneous, then, inevitably, special cases arise in formulating general
homeomorphism extension theorems. Therefore, in what follows, we
shall be primarily concerned with 0-spaces which are homogeneous and,
indeed, which we show to satisfy a much stronger homogeneity property.

A topological space is said to be perfect if every point is a limit point
of the space. Under the requirement that a space X be homogeneous,
it is elear that if X has one limit point, then X is perfect; also if X is locally
compact at one point, then X is loeally compact.

We define a separable metric space X to be an absolute Gy if X is
a @, subset of a compact metric space. Under the condition of separability,
this definition is equivalent to the standard one ag found in Kelley [1].
Tt is known that any such absolute G5 space is homeomorphie to a complete
metric space; thus such a space is called topologically complete. However,
the fact that an absolute @5 separable metric space is metrizable as
a complete metric gpace is not used in this paper. Indeed, for the special
types of zero-dimensional spaces, this result follows as a corollary. Further,
we note that if a space X is countable and perfect, then X is not locally

* The results of this paper are contained in the author’s Master's Thesis written
at Louisiana State University. '
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compact and not topologically complete. Also, either compactness or
local compactness implies topological completeness.

The preceding remarks may be considered to provide a proof of the
following theorem which gives a classification of homogeneous 0-spaces.

TEEROREM 1.1. If X s a homogeneous 0-space, then exactly one of the
Sfollowing s true:

(1) X ds discrete;

(2) X is perfect and compact;

(3) X is perfect and locally compact, but not compact;

(4) X is topologically complete (an absolute Gs) and is nowhere locally
compact;

(5) X is countable and perfect;

(6) X is mot countable and not topologically complete.

In what follows we shall be primarily concerned with 0-spaces of types
(1) to (5), but without the assumption of homogeneity. In fact we prove
& theorem of which homogeneity of all 0-spaces of types (1) to (5) is a trivial
corollary. .

As examples of 0-spaces of types (1) to (3), we have:

(1) Any non-null, non-degenerate subspace of the space of integers;
(2) The Cantor Set;

(3) The Cantor Set minus a point;
(4) The space of irrationals on the line;
(5) The space of rationals on the line.

The methods developed in this paper are, in general, only applicable
to 0-spaces of types (1) to (5). However, the product of the rationals
with the irrationals and the produet of the rationals with the Cantor Set,
both with the product topology, supply us with two examples of homo-
geneous, uncountable and non-topologically complete 0-spaces of type (6).
Note that these two examples of 0-spaces of type (6) are not homeomorphic
to each other since the latter is the countable union of compact sets,
while the former is not. )

Since we wish to derive, as corollaries to the main theorems, that
certain 0-spaces are homeomorphic, we state all theorems as if we are
dealing with two distinet 0-spaces or two copies of the same space.

DerFmNiTION. Two 0-spaces X and Y are said to be compatible if X
and Y are both of the same type (1) through (5) as given in the conclusion
of Theorem 1.1. In this definition neither ¥ nor ¥ is assumed to be homo-
geneous.

It is a consequence of simple limit point considerations as to whether
or not a homeomorphism on an arbitrary set can be homeomorphically
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extended to the closure of the set. Hence in what follows we consider
the domains of the given homeomorphisms to be closed.

The principal result of this paper is the following homeomorphism
extension theorem. The proof involvés a number of lemmas and theorems
to be given later.

TeEoREM 1.2. If X and X are compatible 0-spaces, if H and K are
closed proper subsets of X and Y respectively, and if f is a homeomorphism
carrying H onto K then f can be extended to a homeomorphism F of X onto ¥
if and only if (A) f carries X\NH ~ H onto Y\K ~ K and (B) X\H and
INE are homeomorphic. Moreover, condition (A) is unnecessary for 0-spaces
of type (1) and condition (B) is unnecessary for O-spaces of types (2), (4),
and (B).

For X and Y of type (1), the proof of the theorem on the basis of
condition (B) above is obvious. It depends only on the cardinality of
X\H and the cardinality of ¥\K. Since under a homeomorphism of X
onto Y open sets are carried onto open sets, it is immediate that for all
other types, condition (A) is a necessary condition for f to be extendal?lg.
The proof of sufficiency for types (2) through (5) reduces to the following
theorem by making three observations. First, if flzz.y can be E{Ended
to X\H, then f can be extended to X. Secondly, X\H n H and Y\K ~ K
are closed and nowhere dense in X\H and Y\X respectively. Thirdly,
X\H and Y\K are compatible 0-spaces. Tn the case where X and Y are
of type (3), condition (B) of the theorem insures us that X\H and nNK
are compatible, both being of type (2) or both being of type (3).

TaEoREM 1.3. If X and Y are compatible 0-spaces of type (2), (3), (4),
or (5), if. H and K are closed nowhere dense (possiblg‘/ null) subsets of X
and Y respectively, and if f is a homeomorphism carrying H onto I, then f
has a homeomorphic extension I of X onto Y.

In Section 2, we give lemmas which are generally a,pplica;b.le to all
0-spaces under consideration. In Section 3, we prove the.speclal cases
of Theorem 1.3 on the basis of the lemmas given in Section 2.

The particular case of Theorem 1.3 where X and ¥ are compact
and perfect has already been proved by Knaster and Reichbach [2].
However, this case is included here as a special case of’the methods
developed. As a special case of Theorem 1.3, where H and K are regarded
as null, we have the well known characterization of certain types of
0-spaces; that is, every pair of non-diserete compatible 0-spaces are homeo-
morphic. See, for example, [3] and [4, p. 287] for theorems on 0-spaces
of types 4 and B respectively. }

Tt is obvious that cardinality alone determines when twtf discrete
0-spaces are homeomorphic. Thus, any 0-space of type (1) t? (5) is homeo-
morphic to one of the examples of 0-spaces as cited earlier.
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At this point we give special definitions and notation which will
be used in this paper. A clopen set refers to a set which is both open and
closed, and by a clopen cover of a space, we mean a cover consisting of
non-null clopen sets. Also, a cover will be called disjoint if its elements
are pairwise disjoint. If U is a subset of a metric space X where the
distance, d, between any two points of U is bounded, then diam [7
= sup {d(»,y): ®,y e U}, and if W is a collection of subsets of X with
bounded diameters, then mesh U = sup {diam U: UeU}. If U andds
are covers of a space X, then W is a refinement of A if for each element
U €W, there exists an element Ve 6 such that U C V. If W is a disjoint
cover of a space X, then for p ¢ X, U(p) will refer to the element of U
containing p. If a cover U is asserted to exist, we say it is arbitrarily
finite if there exists ¥ > 1 such that for each n > N, U can be constructed
in such a manner as to consist of exactly n elements. Tf X is a metric space
and p ¢ X, then 8(p) = {w e X: d(z, p) < e}. X is defined to be a 0-subset
of Y if XCY and X is separable as a space and zero-dimensional
in itself.

2. Lemmas. In this section we state lemmas on which the proofs
of the theorems in Section 8 will be based. Lemmas 2.1 through 2.5 are
either known in forms similar to the ones stated in this paper or the
techniques used in proving them are standard topological techniques.
Thus, the proofs of these lemmas are omitted. The lemmas are given
in their natural order although only Lemma 2.2 and Lemma 2.5 are
actually quoted in later proofs.

Lemma 2.1. If X 4s a O-subset of a metric space Y and F is a closed
subset of Y such that X ~ F = @, then for each ¢ > 0, there exists o countable
clopen basis B of X such that mesh B <& and if Be®B; then there exists
an open set B' CY such that B=B' ~ X and B’ ~ F = 0.

Lemma 2.2. If X is a non-compact [compact and perfect] 0-subset
of a metric space Y and F 4s a closed subset of Y such that X ~F = @,
then for each &> 0, there ewists a disjoint clopen cover A of X such that:

1) mesh M < &,
2) M is countably infinite [arbitrarily finite],
3) If M € Mo then M = M’ ~ X where M’ is openinY and M’ ~ F = @.
- Lemma 2.3. If A and B are disjoint closed subsets of a 0-space X,
then there ewists a clopen set U such that A C U and UnB=0.

LEvMA 2.4. Let X be a O-space and let H be o closed nowhere dense
subset of X. If U’ = {Ufiz1, a=co (a is finite), is a disjoint clopen,
relative to H, cover of H then there exists a disjoint clopen cover Us = {U;}5mo
of X where for each i =1, Ui= Ui~ H.
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Lemuma 2.5. If in addition to the hypothesis of Lemma 2.4, Mo = {M}_,
is a disjoint clopen cover of X and U’ is a refinement of M, then we can
require that if U;C M, then Uy C M; and for each iz1, M;n U, #

While Lemmag 2.1 to 2.5 were concerned with only a single space
and one subset of it, Llemmas 2.6 to 2.9 are stated for two spaces and
a subset of each.

LevmA 2.6. Let X and Y be mon-compact (compact and perfect)
0-spaces, and let H and K be closed nowhere dense subsets of X and ¥
respectively. If f is a homeomorphism of H onto XK, then for each &> 0,
there ewist disjoint clopen covers s and B of X and Y respectively and a one-
to-one onto function h: s->%B such thai:

1) mesh £ < ¢ and mesh B < e,

2) for each p e H, h(A(p)) = B(f(p)).

Proof. By Lemma 2.2, there exist disjoint clopen covers 4" and B’
of X and Y respectively such that mesh 4’ < e, mesh B’ < ¢ and A4’ and 5’
are countably infinite (arbitrarily finite). Thus let A = {4;}7-, and
B’ = {Bi}i-1 where ¢« = co (« is finite). For each 7 > 1 such that A.g ~H #@,
f(ds ~ H) is a clopen set in K since A; ~ H is clopen in H and f is a homeo-
morphism of H onto K. Let {Bj: j=1,..,8}={f(4in H)ln Bj:
k>1 and f(d;~H)~ By #0}. For each j=1, let Ai;=f "(Bij)-
{4;: 1,5 =1} is a disjoint clopen, relative to H, cover of H and
{Bis: i,j =1} is a disjoint clopen, relative to I, cover of K..]E.[ence,
by Lemma 2.5 there exist disjoint clopen covers &, = {4,, A;;: 7,j > 1}
and By = {By, By;: 1,j > 1} of X and Y respectively such that:

1) for each 1)8:i)f ’L,j = 1, A,{’j = Ai,]' ~H, B,Ii,j = Biﬂ' [a) K;

2) if A’,m'C A’m and B%JCB;L, then .A«L',j CA'm and Bi,j C B;”

3) for each 1> 1, Ain 4, # @ and B;~ B, #@.

Tet o, = {As: 4,5 =1}, B, = {B;;: 1,j > 1} and define h:. #& =B, by
h(A,jJ') = B,[,j. Let .:fez = {A; n -An: i = 1}, 332 = {B; mn Bol K] 2 1} and

define h: #£,—+%, in any arbitrary one-to-one and onto fazshmn. Then
=Sy U sy, B=3B, v B, and h: £+ sabisfy the properties as stated
in the lemma.

LemMA. 2.7. If in addition to the hypothesis of Lemma 2.6, we have
that F and Y are subsets of a metric space X' with F closed and F ~ ¥ = @,
then the conclusion of Lemma 2.6 can be strengthened to assert, additionally,
that for each B ¢ B, there is an open set N in Y’ such that B= N ~ Y and
NAnF=0.

Proof. We refer to the proof of Lemma 2.6. By using the fu]'ler
strength of Lemma 2.2, we can require that for each B’ e $’, there exists

an open set N’ in Y’ such that B'=N'n Y and N' nF =0. Since
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for each B e &, there exists a B’ ¢ B’ such that B C B’, we can find an
open set ¥V in ¥’ such that B= N ~ ¥ and ¥ C N'. Hence, if N’ ~ F = o,
then ¥ ~n F = 0.

In setting up the apparatus we shall need for the extension of homeo-
morphisms on the 0-spaces under consideration, the following lemma, will
play an important role. Since this is the case, it will be stated in full,
and although the statement is long, the proof esentially involves no more
than the inductive use of Lemmas 2.6 and 2.7.

Lemma 2.8. Let X be a nowhere locally compact (compact and perfect)
0-space, and let ¥ be a nowhere locally compact (compact and perfect) 0-subses
of a metrie space Y'. Let {Fpluzy be a collection of closed subsets of ¥’ where
for each n 21, ¥ nFp= G. Let H and K be closed nowhere dense subsets
of X and Y respectively, and let f be a homeomorphism of H onto K. Then
there exist sequences (#n)yz1 and (Bu)us1 of disjoint clopen covers of X and ¥
respectively and a sequence (hn)usy where for each n > 1, hy is o one-to-one
Sfunction of A, onto B, such that:

1) mesh #&,—>0, mesh By->0;

2) #ns1 and Byry are refinements of #, and By respectively;

3) for each n =1, Ani C Ay if and only if hyri(Anis) C ha(A4a);
4) for each p e H and each n > 1, ha(4a(p)) = Bu(f(p));

5) if Bune Bn, then there ewists am open set Bl in Y’ such that B,
=By,nY and By, nF, =0,

Proof. The hypothesis of Lemma 2.7 is satisfied, hence there exist
disjoint clopen covers £, and $, of X and ¥ respectively and a one-to-one
funetion kb, of #, onto $, such that mesh # < 1, mesh %, <1 and for
each p e H, h{dy(p))= B,(f(p)). Since X and ¥ are nowhere locally
compact (compact and perfect), each clopen subset is non-compact
(compact and perfect), hence we may reapply Lemma 2.7 to each A, e 4,
and hy(4;) ¢« B;. In this way, using induction, we may construct sequences
of disjoint clopen covers (#,) and (B,) of X and ¥ respectively and a se-
quence of one-to-one functions (h,) all having the desired properties.

The following lemma gives conditions for two 0-spaces to be homeo-
morphic and actually a method for constructing the homeomorphism.
Once the lemma is stated properly, the proof is merely an easy verification
that the function defined ig a homeomorphism.

Lenma 2.9. If X and Y are 0-spaces and there emist sequences = (Ap)n=1
and B = (Bu)nz of disjoint clopen covers of X and Y respectively and a se-
quence (ha)n>1 having the following properties:

1) mesh 4,0 and mesh B, =>0;
2) Ani1 and Buyy are refinements of #n and B respectively;

. v s 4 5 N =
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3) for each n =1, hy 18 a one-to-one function of #, onto By such that
for any sequence (An)nz1 where, for each n, Ay e &y and Anyy C Ay, then
M An # D if and only if [ ha(da) # O;

nZ=1

n=1
then X and Y are homeomorphic under the function h induced by the se-
quence (hn)ns1.

Proof. For each 2 e X, ¢ () Au(x), where An(x) € ,. Mesh 0

nz=l

implies {w} = 7[ glAn(w). By property 3, 1@1 hﬂ,(A.n(x)) # 0. Define h: X »Y
by k(@) = [) hu(da(x)). Since mesh B,—0, b is a function of X into Y.
For each qi;le Y, {y}= Qan(y), Bu(y) € B, and hence by property 3,
,Ql P (Bay)) # @;let {x} =n@1h;1{Bn(y)). Thus by definition of 7, h(z) = ¥.
Hence & is onto. Let z, %' ¢ X, o = a', {z} = }L;]lAn(w), {x'} = 7@1 Ap(2')-

Then there exists k>1 such that Ax(s) = Ar(s’) so that hk(A;c(w))
# Ti(4i(@) and Tu(dr(@)) ~ Tldr(e')) = @. Thus h(z) # h(z') so that h
is one-to-one. For each z ¢ X and for each V, open in Y, such that h(z) ¢ V,
there exists & > 1 such that hu(4x()) CV. Hence h[Ax(®)] CV and there-
fore h is continuous. Similarly, & is open. Thus % is a homeomorphism
of X onto Y.

3. Theorems. In this section we prove Theorem 1.3. We do this
by proving four theorems each of which is the special case of Theorem 1.3
for the type of 0-gspace under consideration.

TagorEM 3.1. (Knaster—Reichbach). Let X and ¥ be compact, perfect
0-spaces, and let H and K be dosed nowhere dense subsets of X and Y re-
spectively. Let f be a homeomorphism of H onto K. Then there exists a homeo-
morphism F of X onto ¥ such that Flg=f.

Proof. By Lemma 2.8, there exist sequences (#u)nz1 and (Bn)nza
of disjoint clopen covers of X and ¥ respectively and a sequence (fin)nz>1,
where for each n > 1, hy is a one-to-one function of #, onto B, such that:

1) mesh s, -0, mesh $,—>0;

2) Apy and B,y ave refinements of £, and B, respectively;

3) for each n =1, A,y C A, if and only if hnii(dats) C hu{4dn);

4) for each p ¢ H and each =1, hodn(p)) = B,,,(f(p)).

If {Au}ns1 i8 & collection of sets such that for each n > 1, Ay«

Ay C Ay, then M) 4, # O since X is a compact metric space. The same
n=1 '
is true for a collection {By}yz: Where for each n > 1, By e By and Bpy1 C By,

Thus the hypothesis of Lemma 2.9 is satisfied and the induced function F
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defined by F(x) =
if x ¢ H, then F( x)

A
ﬂ hn(AW('E ) = ;ngﬂ(f('”))

THEOREM 3.2. Let X and Y be perfect and locally compact but not
compact 0-spaces and let H and K be closed nowhere dense subsets of X
and Y respectively. Let f be a homeomorphism of H onto K. Then there
exists a homeomorphism F of X onto Y such that Flg=f.

)} is a homeomorphism of X onto ¥. Also

= f(#), so that F|g=f.

Proof. Let X’ be the one point compactification of X and let ¥~
be the one point compactification of ¥. Then X' and ¥’ are compact
perfect 0O-spaces and H' = H v {co} and K’'= K u {co} are closed
nowhere dense subsets of X’ and Y’ respectively. Also, since f is a homeo-
morphism of H onto K, H is closed in X’ if and only if K is clogsed in Y".
Thus [+ H'-~K' defined by f'|z = f and f'(co) = oo is a homeomorphism
of H' onto K'. Thus, by Theorem 3.1, there exists a homeomorphism F’
of X’ onto Y’ such that F'|g = f'. Now define ¥ by F = F'|x, then F
is a homeomorphism of X onto ¥ such that F|g = f.

TeEOREM 3.3. Let X be a complete, nowhere locally compact 0-space
and let Y be an absolute G5, nowhere locally compact 0-space, and let H
and K be closed nowhere dense subsets of X and Y respectively. Let f be
a homeomorphism of H onto K. Then there exists a homeomorphism F of X
onto ¥ such that Flg = f.

Proof. Since Y is an absolute G; metric space, there exists a compact

metric space Y’ and a collection {Fy}us; of closed subsets of Y’ such that
= [ Y"\F»n. The hypothesis of Lemma 2.8 is satisfied, thus we can

n=1
find sequences # = (#y)y>1 and B = (Bppsr of disjoint clopen ecovers
of X and Y respectively and a sequence (hy),»; where for each n > 1,

hn I8 a one-to-one function of 4, onto $, such that:

1) mesh 4,0, mesh $,—0;

2) #p+1 and Bpi; are refinements of 4, and B, respectively;

3) for each m > 1, 4,.1C 4, if and only if hyyy(An) C ha(An)s

4) for each p ¢ H and each n > 1, hu(da(p)) = Bu(f(p));

5) for each B, 1€ By there exists an open set Bj in ¥’ such that
Bn=B,~Y and B, ~ T, — 0.

If {An}n>1 is 2 collection of sets where for each n > 1, Ay ey, and
Any1C 4y, then M) Ay 3 O since X is a complete metric space and each 4,

n=1
is closed. For each o > 1, hu(d,) = ha(4y) ~ Y where hy(Ad,)’ is open
in ¥’ and hn(4dn) ~F = @. Also hny1(Ani1) C ho(Ay). Thus ﬂ h(dn) # O
n=1
since ¥' is a compact metric space. Let y ¢ M ha(Az). For each n.3> 1,
721
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FnlAn) A Fyp= 0. Thus y ¢ U T, and hence y ¢ Y since ¥ = O T\Fy.
Therefore, ¥ = [ ha(A4x)

n=l
Define F: X ¥ by F()

Slnce Ta(An) A Y = ha(An) and mesh B, -0.
= () hm{4a(®)). By Lemma 2.9, F is 2 homeomor-
n=1

1, T(Aa(p))
. Thus Flg = f.

phism of X onto Y. Also, since for each p < H, and each » >

= Balf @), F(p) =) Falda(p)} = ) Bulf (»)) = f(p)

CoROLLARY 3.1. If X is a complete, nowhere locally compact 0-space
and Y is an absolule Gy, nowhere locally compact 0-space, then X and ¥
are homeomorphic.

THEOREM 3.4. Let X and Y be countable perfect metric spaces and let H
and K be closed nowhere dense subsets of X and Y respectively. Let f be
@ homeomorphism of H onto K. Then there exists a homeomorphism F of X
onto Y such that Flg = f.

Proof. Since every countable perfect metric space is nowhere locally
compact and zero-dimensional, by Lemma 2.8 there exist sequences
£ = ()1 aNd B = (Bn)us: 0of disjoint clopen covers of X and ¥ re-
spectively and a sequence (ha)n>: Where for each n =1, iy is a one-to-one
function of &, onto B, having the following properties:

1) mesh s, >0, mesh $,-0;

2) #ny1 and Byyq are refinements of £, and By respectively;
>1, 4p11C A4y if and only if hyis(Ani) C ha(4da);

4) for each peH and each n3>1, ha{da(p)) = Balf(p)).

Since X and Y are countable, we can write X = {@:}is1, ¥ = {Yi}izr-
Now, &, = ﬂ Apn{®,). If 2, € H, then f(2,) = ﬁ Bn(f(ml ) so define F(z)
= f(=,). There exists %k, > 1 such that f(ml) = Yr, € Y. Relabel yz, as y;
and y, as Yr,. I @, ¢ H, just define F(z) = y1.

3) for each n >

Now suppose that & is an odd positive integer and for all 1 < k, F (2
has been defined. Since for all <<k, @ # xx and 2 =,Q1 An(s), Tx

= ﬁ Aq(2p), there exists m, > 1 such that for all 1 <<k s Ang(e) 5 Ano{ k).

Also if @ e H and zx € An(2:) for n < ny and ¢< k, then f{w) € ) € ha(An(@:).
Otherwise, cho0se Ym € hino{dno(®r)) such that if zx e Aa(wy) for 4k, then
Ym € hn(An,(iUi)). Depending on the case, relabel f(x) or ¥ as yx and vice
versa. Define F(wx) = y&-

Now if % is even, we consider yx and reverse the previous procedure
to obtain an #x such that if Bu(yr) % Balys) for 4 <k, then An(wx) # An (1),
and if y € Bu(y:) for i << &, then g e An(es). Also, if Yz E‘K then @ = f~(yx)-
Define F(az) = yx. By this procedure, each element in X, ati some stage,
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is paired with a unique element in Y and vice versa, so that F is a function
of X onto Y. The hypothesis of Lemma 2.9 is satisfied so that F is a homeo-
morphism. Also, since »; ¢ H implies F(x;) = f(2:), it follows that F|y = f.
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More decompositions of #" which are factors of "

by
Donald V. Meyer * (Pella, Ia)

1. Introduction. Let ¢ be a monotone upper semicontinuous decom-
position of E", @ De the collection of nondegenerate elements
of @&, and assume G is countable. We show in this paper that E"/G x B
is topologically BE™* if either (1) for each element g e @, there exists
a positive integer n, such that g is an ny-frame, or (2) G, is a null col-
lection and if g € G4, there exists a positive integer n, such that g is an
ng-cell which is flat in E™.

Bing proved [5] that the product of the dogbone space [4] and B
is B*. Thus E* has non-manifold factors. Using analogous techniques,
Andrews and Curtis [1] have shown that the product of E' and a de-
composition of B" whose only non-degenerate element is an are is ™
Gillman and Martin [8] announced an extension of the result of Andrews
and Curtis by proving case (1) above if each element of ; is an arc.
Recently Bryant [6] has shown that if D is a k-cell in E” that is flat
in B"* and @ is the decomposition of " whose only nondegenerate ele-
ment is D; then B/ x B* is topologically E"*'. For a more complete
summary of related results, the reader is referred to [2].

In Section 3 we show that if @ is countable and each element in ¢
(6" = {g x w| g e@ weB'}) that corresponds to a given element of G
can be shrunk in a certain way (condition I), then all the elements of G
can be shrunk simultaneously (condition II). Using this we show -that
if @ is countable and & satisties condition I, then E™/@ isafactor of B
The result for n,-frames referred to above is proved in Section 4 by first
showing, using technigues of Andrews and Curtis [1], that the product
of B' and a decomposition of B* whose only nondegenerate element is
a k-frame is Z™'. The result is then obtained by noticing that G satisties
condition I. The case for certain null collections of cells is shown in
Section 5 by using Bryant’s work [6] and condition L.

2. Notation and terminology. The statement that & is an upper
semi-continuous decomposition of B" means that (1) & is a collection of sub-
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