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Subdivision rings of a semiring
by
Mireille O, Poinsignon Grillet (New Orleans La.)

A semiring R is a non-empty set together with two associative
operations called addition and multiplication and denoted by (4) and ()
respectively such that the multiplication is distributive with respect
to the addition. By (R, +) ((R, -)) we denote the additive (multiplicative)
semigroup of R. Recall that a (distributive) near-ring is a semiring whose
additive semigroup is a group. We first show that the maximal sub-
near-rings of any semiring R are just the maximal subgroups of (B, +)
whose identity f satisfies f> = f. Let Ny be such a maximal sub-near-ring
and H, be a maximal subgroup of (R, -) having e(s f) as an identity;
then exists a subdivision ring of R having f as a zero and e as an identity
if and only if ¢ e N; and ne ¢ H, v {f} for all positive integers n. Then
(H,~ N {f} is itself a subdivision ring of R if and only if it is additively
closed. As an application of these results, we obtain a characterisation
of semirings which are union of subdivision rings.

1. Maximal sub-near-rings of a semiring. The additive identity
of a near-ring is clearly a multiplicative idempotent. A mnecessary con-
dition for an element f of a semiring R to be the zero of some sub-near-
ring of R is therefore: f--f = f and f*= f. Conversely, -if this eondition
holds, then f is the zero of some sub-near-ring of R, namely {f}. Thus
we have:

PROPOSITION 1. A semiring R contains subrings (sub-near-rings) if
and only if the subset F = {f e By f+f=Ff,f* = f} of R is not empty.

For any additive idempotent f of E, we shall demote by N the
maximal subgroup of (&, 4) having f as an identity. The following lemma
precises the multiplicative properties of the Ny.

LevmA 2. Let f be an additive idempotent of E. Then:

(i) For any » ¢ R, fo and af are additive idempotents of R.

(ii) For any « ¢ R, we have: Nyw C Ny and Ny C Ny

(iii) If furthermore f* = f, then fo = xf =f for any ze Ny :

Proof. (i) for any <R, fo+fo= (f+f)=fz and dually, af+
+af = af. |

S
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(ii) ¥y is the set of all ¥ ¢ R such that y+f=7-+y =y and y+y’
=y’ 4y = f for some y' e R with ' --f = f+y’ =y Then, for all 3¢ R,
we have yz-fr=fot+yo=yz, y'ot+ys=yoty's= o, y'otfo=fot
49w =yw It follows that yzeNy. Therefore N;» C Nyz. Dually,
aN; C Noy.

(iii) if f2=f and « e Ny, then «f is an additive idempotent by (i)
and is in Nsf C Np= Ny by (i), whence zf = f since a group contains
only one idempotent. Dually, fo = f.

TEEOREM 3. The mamimal sub-néar-rings of & semiring R are the ma-
zimal subgroups of (R, +) whose identity is a multiplicative idempotent of R,

Proof. Take feF, @,y ecN;. By 2, xy eaN; C Nyy= N;, which
proves that N; is closed under multiplication. Therefore N; is a sub-
near-ring of R since it is already an additive subgroup. Conversely any
sub-near-ring of R is an additive subgroup of B and ity zero f is in ¥,
so that it is contained in N;. Therefore each N, with fe F is a maximal
gub-near-ring of R and conversely, any maximal sub-near-ring of R has
this form.

COoROLLARY 4. Let R be a semiring with a commutative addition. Then
the mazimal subrings of R are the mamimal subgroups of (R, +) whose
identity 18 a multiplicative idemp otent.

2. Subdivision rings of a semiring. We shall first study wunder
what conditions there exists a subdivision ring having as identity and
zero two given elements of the semiring R. We keep the notation of
Section 1.

THEOREM 5. Let ¢ and f be two elements of & semiring B such that
¢ = ¢, f+f=fandf? = f. Then there exists a subdivision ring of R having e
as an identity and [ as a zero if and only if the following condilions are
satisfied

(i) ee Ny and e 5= f;

(ii) for all positive integers n, ne e Hy w {f}.

Moreover, under these conditions the smallest subdivision ring of R having e
as an identity and f as a zero is the set D of all pan, where n s a positive
integer such that ne # f, a, is the inverse of ne in H,, p is any integer and pay
is the opposite of (—p)an in N; if p <0, 0an= 1.

Proof: If there exists a subdivigion ring K of R with identity e
and zero f, then K C Ny since K is a subgroup of (R, +), so that ee Ny.
Also, since K —{f} is a multiplicative subgroup of B, K—{f} C H,,
whence ne € H, whenever ne 7= f. For the converge, let us suppose that (i)
and (ii) hold. Call ¢’ the opposite of ¢ in Ny, whose existence is insured
by (i). Observe that ¢ = a, 5o that 0¢ = f and pe = (—p)¢’ it p < 0. By
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Lemma 2 (iii); ¢f = fe = f since ¢ ¢ Ny, which clearly implies that (pe)f
= f( pe )= f for all mteoels P.

y (i) there exists a unique a, ¢ B such that aye = ean = an and
a,,(ng) (ne)an = e for each positive integer n such that ne s f. At once
we have: anf = an(ne)f = ef = f, and dually, fa, = f.

Now we proceed to show that D is a subdivision ring of R. This will
complete the proof since then D will be the smallest subdivision ring
of B with identity e and zero f.

First we have: pag+f= (pe)ay+f= (pe+f)aqg= (pe)ag = pag and
similaxly f-+paq = pay 80 that f acts as a zero on the elements of D. By
definition of ag, it is easily seen that, for all integers p and all positive
integers ¢ such that ge s f, pa, i3 the unique element of R such that
q(pag) = pe and e(pag) = (pag)e = pag. Then considering the following
equalities:

(g¢') (pag+p'ay) = (q0'e) (pag+p'ay) = (qq'e) pag- (99" )P ae
= pg'(geay) +qp'(q'ay) = pq'e+qp'e = (pg' +qp')e,

for all integers p,p’ and all positive integers g, ¢’ such that ge #f,
¢'e # f, we obtain pag+p‘ay = (pg’ +p'q)a, provided that gq'e # 7.
Now qq'c # f, or else f= as(qq’e) = (agqge)(q'e) = ¢’¢ which is impossible.
Thus we can conclude that D is additively closed. Furthermore it is
clear that (—p)a, is the opposite of pa, in D so that D is a subgroup
of (R, +).

Tt remains to show that D —{f} is a subgroup of (R, ). Since ag ¢ H,
whenever defined, we have e(pag) = p(ea;) = pa, for any pag e D. Also,
for any two elements pag and p'ay of D, the following equalities hold:
99'(pag) (p'ag) = pp'(gaq) (¢ ay) = pp'e. Therefore (pag)(pay) = PP'tur,
since gq'e = f results from ge #f and ¢'e s f. In particular, for any
Pag + f, pe #~ f (or else pag = peag = f) so that (pag) (qap) = peap,= ¢ p
is positive, (pay)((—q)@-p) = (—PQ) 8-y = ¢ if p is negative. This shows
that pa, has a right inverse in D, which clearly is also a left inverse.
Therefore D is a subdivision ring of R, which completes the proof.

The following lemma precises the structure of H,~N; when ¢ eXN;.

Lemnva 6. Assume that f = e and feF are such that ¢eN; and
e f. Then:
() HonNy={wecH,;of =f} = {w e He; fo = f}.
(il) H, ~ Ny is a subgroup of (R, ).

(iil) If e’ is the opposite of ¢ in Ny, then &’ = we' = ¢'s is in Hon Ny
and is the opposite of x in Ny for all @ e Ho s Ny

(iv) For any w,y e H, n Ny, --y =y +2.
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Proof. First we prove that ¢ ¢ H. ~» N;. We have the following
three relations

1) ¢e+f=f+e=o,
2) e+ =¢é¢+o=f,
(3) ¢+f=f+e=¢.

Multiplying these relations on each side successively by e and ¢, we
obtain, by uniqueness of the opposite in N;: ¢’ = ¢¢’ = ¢’¢ and ¢ = ¢'e’
Therefore ¢ ¢ H, n N,

To prove (i) and (iii), assume that » ¢ H, ~ N;. By 2 (iii), we have
of =fe=F whence ®e{yeHy,;yf=Ff and @ e{yeH,;fy=7f. Con-
versely, let @ ¢ H, be such that of = f (for instance). Multiplying (1), (2)
and (3) on the left by x, we obtain: ze+uf = af +-xve = we, zet-ze'
= xe’'+-me = af, w6’ +of = xf+we’ = we’. Since af=f and xe= 1z, we
conclude that «eH,~ N; and that xe’ iz the opposite of x in N;.
Dually, if v« H, and fo =f, then ¢ H, ~ N; and e’z is opposite of
in N; (whence xe¢’ = ¢'z). This completes the proof of (i) and (iii).

Since both H, and 4;= {x ¢ R; of = f} are closed under multipli-
cation, it follows from (i) that H, ~ N;= H, ~ A; is closed under multi-
plication. For any % ¢ H, ~ N;, denote by #~* the inverse of z in H,;
then —1f = ¢~'wf = ef = f, 50 that ¥~ ¢« H, ~ Ny. Thus H, ~ N, is a sub-
group of (R, ) and (ii) is proved.

Finally, take #,y ¢ H, ~ Ny. By distributivity we have:

oy +oetey+ 6= (r+e)(y-+e)= a;y-l—ey—{—em—{—eﬂ .
Adding e'wy and ¢ to the left and the right respecmvely, we obtain
ve+-ey = ey +we; since x,y e H,, 2-+y = y+ax.

) Remark. (H, ~ Ny) v {f} need not to be closed under addition as
it is shown by the following example.

ExAmrLE 7. Consider the semiring given by the tables:

+| 0 a f be 1 ] 0 af b e 1
0 0 af bec 1 0 00 0 0 0 O
a a 0 b f 1 ¢ al 0 0 0 0 a a
f f pf be 1l £t 0 0 £ £ £ f
b b f b f 1 ¢ b,y 0 0 £ £f b b
¢ e 1 ¢ 1 £ D c{ 0 a f b 1 ¢
1 1 e 1 ¢ b f 1/ 0 a f b e 1

We see that f+f=f, f*=f and Ny= {f, b, ¢,1}; also 1*=1eN;
and H; = {1, ¢}, s0 that ¢ =1 and f satisfy the assumptions of Lemma 6;
but (Hy, n Ny) v {f} is not additively closed, since 1+¢= b. Observe

icm®
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however that {1,f} is a (maximal) subdivision ring of E contained in
(H, ~ Ny v {f}

THEOREM 8. Let ¢ and f be two elements of a semiring R such that
f+f=1 f*=f ¢¢=¢ e#f and eeN;. Then the following conditions
are equivalent:

(i) (H,~ Ny) v {f} is a subdivision ring of R;

(i) (H, ~ Ny) v {f} is additively closed;

(111 ) for oll ® e H, ~ N; such that e+ ;ﬁf

(4) ¢=a(é+t+a)=(et+x)a" for some a,a k.

Under -any of these conditions, (H,r Ny w {f} is a mazimal subdivision
ring of R with identity e and zero f.

Proof. By Lemma 6, (i) implies (i). Clearly, (i) implies (iii) (take
a=a = (e+z) " in H,). To prove that (i) implies (ii), take =,y
e (H, ~ N;) w {f}; we may assume that & 5 f,y # f, o-+y # f. Set yo—* = c.
Clearly, e+csf (or else a+y= (¢-+ec)w=f) and ce H,~N; by
Lemma 6 (ii). By (ili) therve exists a, e’ ¢ R such that e= a(e+x)
= (¢e+®@)a’. We may suppose that ea=a¢=a and ea’ = a'e=da'; if
this is not the case, replace a and o' by eae and ea’e respectively, and (4)
still holds since e(e-+¢) = (¢-+¢)e = e+c. Then e+e¢ eH,~ N; so that
#+y = (e+¢)m e H, ~ N7, which completes the proof since the last
assertion is trivial.

Observe that the conditions in Theorem 8 hold in case H, is additively
closed. Algo, in case R is a near-ring, we must take f = 0 and then H, C N;y.

3. Semirings which are union of division rings. The following charac-
terization of division rings results naturally from Lemma 6.

TeroREM 9. Let R be a semiring with zero. Then R is a division ring
if and only if R—{0} is a multiplicative group whose identity 1 satisfies:
l14+w=y-+1=0 for some x,yeR. ‘

Proof. Clearly the condition is necessary. For the converse, we
have to prove that (R, +) is an abelian group. By the condition on 1,
1¢XN, By Lemma 6 (i), Hy n Ny = {» e H;; 0 = 0} = H,, since 20 = 0
for all # € R; hence N, = R. Finally it follows from Lemma 6 (iv) that
the addition of R is commutative.

Levma 10, If K and E' are two subdivision rings of a semiring R
with ¢ and ¢ (f and ') as identities (2evos) respectively, we have:

() EnK =0 if f£[}

M) E~nE ={ftif f=F, e#¢};

(iii) X ~ K’ is a subdivision ring of B if f=1 and ¢= €.

The proof is straightforward.
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LemMA 11, If R 45 a semiring which is the union of dts subdivision
rings, then any additive idempotent of R is also a multiplicative idempotent,
Furthermore, for all feF, the maximal subgroup of (R,-) having f as
tdentity is reduced to one element.

Proof. Let f be an additive idempotent of R. Then f belongs to
gsome subdivision ring K of R, which implies that f is the zero of X,
Therefore f is a multiplicative idempotent. Let now f e I and take z ¢ H,,
x is an additive idempotent of R; by the first part of the proof, x is
a multiplicative idempotent of R, whence # = f since @ « Hy. Therefore H;
is reduced to one element.

LeMMA 12. If R is a semiring which is the union of its subdivision
rings, then B is a union of multiplicative subgroups of the form H, where
e e B, each of them being comtained in a maximal sub-near-ring of R.

Proof. Clearly R is the union of its multiplicative groups, so that R
is the union of its maximal subgroups (Hg)eer. Let now e be a multi-
plicative idempotent. If ¢ is also an additive idempotent, then ¢ ¢ F and,
by Lemma 11, H, is reduced to e; in particular H, iy contained in N,
which is a maximal sub-near-ring of R, by Theorem 3. Assume now
that ¢ is not an additive idempotent. Since ¢ belongs to some subdivision
ring of R, ¢ ¢ N; for some maximal sub-near-ring N; of R. To show that
H, C Ny, let = e H,; then « belongs to some subdivision ring K of R.
Let ¢ and f' be the zero and the identity of XK, respectively. TFirst,
K—{f}C Hey; also @ s f', since H, contains a unique multiplicative
idempotent e which is not an additive idempotent, so that no element
of H, can be equal to f' ¢ F. Thus @ e K—{f'} so that v e H, ~ H,. It
follows that e = ¢'. Since KX C Ny, ¢ = ¢ ¢ Ny~ Ny so that f=§ and
@ € Ny. Therefore H, C N; which completes the proof.

TurorEM 13. Let R be a semiring which is the uwion of its subdivision
rings, and B be the st of all multiplicative idempotents of R. Then F(C B)
is the set of all additive idempotents and, if (Ki)ier @5 a family of subdivision
rings of B such that | _JI K= R, then there exists a partition (I));ep of I such

1€

that | ) Ki= N; for every feF. Furthermore, there emists a subparti-

iely
K
. . s e . > o - iSI‘
is the mazimal subdivision ving of B with identity e and zero f, where f is
determined by e e N;. The set of elements of the mazimal subdivision ring
equals H, v {f}. :

Proof. It follows from Lemma 11 that, if R is the union of its sub-
division rings, then F' is the set of all additive idempotents of R.
. Let now (Ki)zer be a family of subdivision rings of R sueh that
[ JHi="R. For all feF, set I;={ieI; f is the zero of Ki}. Clearly,

i€l

tion (I)eex-r of the partition (Ij);ep such that, for any ee B —IF,

icm
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(I)jer is & partition of I. Let feF; then, for all iel;, KiC Ny by
Lemma 12, whence | JX;C N;. Conversely, if #e Ny, then ®eH; for
ielf
gome % e I; again by Lemma 12, since x ¢ Ky~ Ny, we have K;< Ny 50
that ¢ e I;. Therefore L% K= N,
iely )

For all e e E—F, let I,= {i e I; ¢ is the identity of K;}. If ¢ e Ny,
by Lemma 12, then K; C Ny for all i e I,, so that f is the zero of K; and
I, C Iy; thus (ILe)ecs is a subpartition of (I{)jer, where f is determined

by ¢ e Ny. Clearly, if ¢ ¢ B—F', ¢ € Ny for some f e I, then H, v {f}= .UIK,-.
1€lg
Finally, to prove that | J K is the maximal subdivision ring of R with

1€le
identity e and zero f, it is enough to show that H, v {f} is a subdivision
ring of R. By Theorem 8, we only have to prove that, for all » e H, such
that ¢+-@ £ f, e= ale-+2) = (¢+x)a’ for some a, a’ ¢ B. For any » ¢ He
such that e+ %= f, © e Kx for some %k el,; then we may take a= a’
= (e+o)", then inverse of (¢+u) in Ky.

DerNITION 14, Let R be a semiring and (Ki)ie; be a family of sub-
division rings of R. We say that B is P-disjoint union of the family (K:)ier
if |JXi= R and the intersection of any two K; is empty or reduced
to 1051_26 element of I

PROPOSITION 15. Let R be a semiring which is an F-disjoini union
of a family (Ki)ies of subdivision rings of R. Then CardI = Card (B —TF)
and {Ki;iel}={H, v {f}; eeB—F,eeNy.

Proof. By Theorem 13, there exists a partition (L)ecr-r of I such
that {JK:= H. v {f} (where ¢ < N;). To prove the result, it is enough
to shgx{r’ that, for all ¢ e ¥#—F, I, has only one element. Let us suppose
on the contrary that there exist j, k e I, such that j s k. Since B is an
P-digjoint union of the family (K:)ier, Ki ~ Ky has at most one element;
but this is impossible since by 10, K; ~ K 18 & division ring.

The next theorem is the main result of this section.

TuporEM 16. Let R be a semiring, F be the set of its additive idempotents
and E be the set of its madtiplicative idempotents. Then the following are
equivalent:

(i) B is the union of its subdivision 1ings;

(i) R is F-disjoint union of a family of subdivision rings of R;

(iii) (R, -) is a uwion of groups, ' C B, and there exists a mapping ¢
of E—F onto F such that H, v {p(e)} is a subdivision ring of B for all
ceB—TF, .

(iv) (R, ) is-a undion of yroups, B C I, and there exists a mapping @
of B—F onto F such that, whenever f = p(e), e e Ny, af =f for all e H,
and H, w {f} is additively closed. )
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If furthermore any of these conditions holds, the mapping ¢ of (ii)
and (iv) s wunique.
4 .Pr(.)of. .vaiously, (ii) implies (i). By Lemma 11 and Definition 14
(i) implies (m) By. Theorem 8, (iii) is equivalent to (iv). It remains to’
show that (iii) implies (ii). By Lemma 11, F' C F implies that Hy is reduced
to f for any feF. Since (R,-) is a union of groups, we have

R = H,= H = =

MLJE ¢ EEEL-J—II‘ e fLe%‘Hf (“%J_Fﬂe) v F —aelL'LJ—F(He ¥ rp(e))

and this is obviously an F'-disjoint union of subdivision rings of R, which
completes the proof. ’
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An example of a meonostratiform i-dendroid

by
J. J. Charatonik (Lexington, Ky.)

A metrie compact continuum is said to be a dendroid if it is heredi-
tarily unieoherent and arcwise connected. It follows that it is heredi-
tarily decomposable (see [21, (47), p. 239). A hereditarily unicoherent
and hereditarily decomposable continuum is called a A-dendroid. Note
that every subcontinuum of a 1-dendroid ig also a A-dendroid.

Tt is proved in [3]. Corollary 2, p. 29, that for every A-dendroid X
there exists a unique decomposition D of X (called the canonical de-
composition): :

X = {8z dedX)}
such that
(i) D is upper semicontinuous,

(ii) the elements Sq of D are continua,

(iti) the hyperspace 4(X) of D is a dendroid,

(iv) D is the finest possible decomposition among all decompositions
satisfying (i), (i) and (iii).

The elements Sz of D are called strate of X. The question arises
whether there exists a A-dendroid X with trivial eanonical decompo-
sition, i.e. such that X has only one stratum.

The purpose of this paper is to give the affirmative answer to the
above question.

Call a A-dendroid to be monostratiform if it consists of only one
strabum. Thus the hyperspace of the canonical decomposition of a mono-
stratiform A-dendroid is a point. It follows from [3], Theorem 7, p. 29
that:

(1) A A-dendroid X is monostratiform if and only if every monotone
mapping onto a dendroid is trivial, i.e. the whole X goes onto a point.

(See also [4], Corollaries 1 and 2, p. 933).

Construction. The decription of the example is based upon the
description of Lelek’s example of a dendroid with 1-dimenional set of
end points (see [9], § 9, p. 314).
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