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Orbits of denumerable models of complete theories
by
Y. Suzuki * (Warszawa)

Let 8, T, ... be first order theories with infinite models. We denote
by M (8) the set of all models of § whose universes are the set of natural
numbers. We can introduce a topology on M (8) which, roughly speaking,
expresses elementary types of elements of models [6]. Consider, for
example, the theory S, of arithmetic which is closed under w-rule. The
theory S, is necessarily complete. The set M, of w-standard models
of 8, forms a co-meager Gs-set [6]. By orbits we mean quotient classes
of models in M (8) with respect to isomorphisms. We say that a model U«
generates an orbit, if % is in that orbit. All w-standard models of S,
are isomorphic and, therefore, they form an orbit which is a co-meager
Gs-seb in the space M(S,). A model U of a complete theory 7 is called
prime, if it can be elementarily embedded into arbitrary models of T.
The prime models are denumerable and mutually isomorphic [14].
Therefore, they form an orbit, which we shall call prime, in the space M (T).
In the example above, the orbit M, is really prime. In many examples
of complete theories with prime models, the proof which we gave above
in the case of theory §,, does not seem to work in order to decide whether
the prime orbits are co-meager. Therefore, the following two questions
naturally arise for complete theories: (1) Can a non-prime orbit be
co-meager? (2) Does the prime orbit always form a co-meager set? The
main purpose of this paper is to answer these questions. We ghall prove,
first, that each non-prime orbit forms a meager set and, second, that
the prime orbit forms a co-meager Gs-set. The idea of proof is to combine
the following two facts: (1) We can suitably generalize the notions of
w-closedness of theories and w-standardness of models. (2) A model is
prime if and only if it is denumerable and atomic [14],

We should like to remark that the presentation of this paper is
reversed. This work was started from a problem of Mostowski, i.e. “What
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thanks to Professor A. Mostowski for his stimulating guidence and constant en-
couragement.
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topological properties does the space of denumerable f-models have?”
The result of the final section was first obtained.

1. The space of models. We shall recall some notions and results from
[6]. Let § be a theory with an infinite model. We denote by M (S) the
set of models 9 of § whose universes || coincide with the set of natural
numbers. Let 4 be the mapping of the variables into natural numbers

in such a way that A(v:;) = 7. We denote by [¢] the set of models ¥ in M (8) .

such that =yg[4]. The family [¢] generates a topology on M (S). When
we speak about a topology on M(S), we mean always this topology
introduced by formulas. The set M(S) is a 0-dimentional, separable
Hausdorff space which carries a complete metric.

Let us denote by Fn(S) the set of all formulag whose free variables
ATe among ¥y, ... Um-y. We can introduce a Boolean struecture, i.e. Linden-
baum’s algebra, on. Fy(8). Speaking strictly, this Boolean structure is
not defined on the set Fin(S) itself, but on the quotient classes of Fu(8S)
with respect to the theory S, however we speak as if it were introduced
on Fn(8). Let IT= {ma}neu be a sub-set of F,,:(S). A model 9% of & is
called IT-standard, if for any sequence ay, ..., ay of elements of || there
exists an n such that |=ymalay, ..., @s]. Let ¢ be a sequence of natural
numbers of length % and 4 be a formula in F(8). We denote by p(e) the
formula (v, ..., Dek-n)- The theory § is called I7-closed, if the
following holds: For any sequence e of natural numbers of length m 41
and for any formula ¢ of 8, the condition that ts7a(e) @ for n=0,1...
implies that |- s¢. If a sequence I, ITY, ... is given, we can define. simi-
larly (IT)c,-standardness of a model and (IT%;,-closedness of a theory.
A model U is (1T, - standard, if it is IT*- standard for each [ and a theory §
is called (IT%);.,,- closed if it is I7- closed for each I. As in [6], we can prove
the following

TEEOREM 1. If § is IT-closed, then the set M m(8) of its IT-standard
models in M (8) is a co-meager Gy-set. Similarily, if 8 is (IT)e,-closed,
the set of (IIl),s,,,-standard models 1is a co-meager Gs-set in M M

) Proof. The proof of the Theorem is verbally the same with that
in [6], but we shall repeat it here for the convenience of readers. Let us
assume. that I7 is a sub-set of Foua(8).

My =, N Ln,f [a(e)] .

epm+l

It is sufficient to show that each of the open sets [ J[ma(e)] is dense
n

in M (8), i.e., that for no ¢ this set is disjoint from [¢] unless [¢] = 0.

(*) A similar version of the o -completeness theorem for the case when 7% c Fyi(8)
appeared in [7]. N

e _© | .
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Otherwise we would have 0 = [¢] ~ [mx(e)] = [p& male)] for n = 0,1, ...
whenee we would obtain for every Win M (8)

=2t (Vegey) - (1‘.5(”1)) (n:n(e) - ~rp) .

By the completeness theorem and the agsumption that § is II- clo?ed,
we would obtain g~ and [¢] would be void. The set of the (II )'m,
standard models is-identical to the seb O M. A countable intersection
of co-meager Gs-sets is evidently a co-meager @G5-set. The theorem is
therefore proved. .

The following Lemma is sometimes useful.

Levma 1. Let T be a complete theory with a IT-standard model. Then T
is IT-closed. |

Proof. Let % be a IT-standard model. Let us assume that - rpaa(e) >
g for n=0,1,.. Since A is a model of T, |=u(vew) .+ (Ve(m)) {n(e) —9)
for n= 0,1, ... Since % is /T-standard and 7' is complete, we have —r¢.

2. The orbits of denumerable models. Henceforth T' denotes a co‘mplete
theory with an infinite model. A model o of T is called m:-on-nc,'lf each
finite sequence of elements of || of any length m+-1 sg.tlsflfes in A an
atom of the Lindenbaum algebra Fi,. (T). A model % is prime if and
only if it is denumerable and atomic [14]. .

THEOREM 2. Fach non-prime orbit forms o meager set in M (1.

Proof. Let us consider an orbit which is generated -by 2 non-pr.ime
model o in M(T). Since ¥ is not prime, it is not atomic. T]'lere eglsjos,
by definition, a finite sequence ag; ..., dm of elements of |U| which satisfies
in 9 no atom of Fei(T). Consider the prime filter P = {p; ILQ[(P[.@O s or Om)
& ¢ € Fpa(T)}). Since P does not contain atoms of Fmﬂ(fl')‘, Pis a non‘-
principal filter. By the Theorem of Ehrenfeucht [11], there is a denumer-
able model B of T which omits the filter P, i.e. for any sequence by «os b
of elements of |B| there is a ¢ in P which is not satistied by the sequence‘
By v b in B. Let IT be the set of the 'Eorl{mlas ~g for g e P. By;l}l
choice of B, B is a IT-standard model. T' is complete and hel;cef is
IT-closed by the Lemma 1. The set M (T) of IT -_standa,r.d n:1.0¢‘1g s (f)rms
a co-meager set by the Theorem 1. Since the orbit of ¥ is disjoint from

it i er in M (T). _
MH(%\)T’e I:hill(llﬂ (i?]fe to mem(;ioza the fact that the abo?e proof is »a, zestate-
ment in another terms of the proof of a Theorem .m [14] which shows
that prime models are atomie. We have the following

COROLLARY. A theory which has no prime model has uncountably many
non-isomorphic denumerable models (%).

(2) This corollary is not the best possible. ACf, [14], Theorem 5.1, for sharper
results originating from Mostowslki’s talks in Paris.
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Proof. If the theory T has no prime model, then each orbit ig
meager. Since the space JM(T) darries a complete metric, by Baire’s
category argument, it eannot be meager on itself. Therefore there exist
uncountably many orbits, ie. uncountably many non-isomorphic de-
numerable models.

We shall prove a theorem which is inverse to the Theorem 2.

TrmorEM 3. The prime orbit forms a co-meager Gy-set on I (7).

E’zroof. If o is prime, it is denumerable and atomic [14]. Let 1™
= {n,.‘}m,,, be an enumeration of all the atoms of lf’m.H(T)'. Since 9 is
atomic, U is (II™)yeq-standard. By Lemma i, the theory 7' is (II"™) )
-closed and, by Theorem 1, the set of the (IT™) ne0-standard models foxfnr;g
a co-meager Gs-set. Let B De a (IT™)e0-standard model. By the defini-
tion of (]l{'m)mgm-standardness, any sequence by, ... bn of elements of |B|
of any finite length m+1 satisfies 7, in B for some u. Since IT™ was an
atom of F,.4(T), B is atomic. Therefore the set of the (I -gtmnélard
models is nothing but the orbit of the prime model A. e :

<Comp1ete theories without prime models are known [5]. Mostdwski
conjectured that the theory 7' described below has no prime models
We shall establish his conjeeture: By the height of a complete model iTt
of ZF, we mean the set of the ordinal numbers in N. Let M be a denumer-
;b}ﬁ(]sl ecﬁ}p}et; model for rZ}i‘-_]—V: L of the minimal height. Indeed
M) Whr;;l;l .model forAAF [2,10]. Let us consider the generic extension
- e a is a generio set of natural numbers over I [1]. M(a) de-
tﬁl:(})lrmes; 3 complefiwn T of ZF. We must notice that the complete
e ¥y T' is determined independently of the choice of generic sets [4].
s an example of a complete theory without prime models. We ean
show th‘:\:t a stronger assertion holds for T, ie., T has no mO(‘iel which
;a.n b(;, 1somorphically embedded into any model of 7. Let %A be such
th:;owelisoi T. Celrzaﬂnly A is well-founded and therefore we can. assume
e tha:on;p ;ﬁ ¢ model. By our choice of 1, the height of 9 ig the
e o seto . . Lc?t' us ?ecal} the notion of generic sets (over M).
thows s o : 0 ‘eondltlons is s.ald .dense, if for any set p of conditions,
e 18 A0 Xtension p of p which is in D. A set a of natural numbers
g pe_:ne, if ff)r any dense set D eonstructible in 9%t there is a set i
conditions which is compatible with & [12]. ’ re
. dei(:s:t icl?nﬂ}lz),l’e!:e moFIel N of the.same height as that of 9, “D is
fore, e o & fls equl}ralent {:,o “D is a dense constructible set”. There-
i ’fo ) OL generic sets is absolute for such a model 9t. Consider
rmal statement (Exz)y(s) where w(®) iy intended to mean “z is

a generi
g ¢ set of natural numbers and every set is constructible from #”.

The sta; i
e ; ;{:t;ﬁ;nt Eoljlzfvi)w(m) ho.lds in M(a) and also in 9. ‘Congider an element
satisties () in . By the absoluteness of notions mentioned

- ©
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above, b is really a generic set of natural numbers over 9 and, therefore,
9 is a generic extension (D). Let b, be the intersection of b with the
get of even numbers. By the transform Lemma [4], the set b is not con-
structible from b,. The set b, is generic and hence M (b,) is & model of T.
M (b) can not be embedded into Mi(b,). This result implies a known fact
that there is no definable well-ordering of reals in 9t(a), since the existence
of such a definable well-ordering implies the existence of prime models
for the theory 7 (see, p. 6).

3. p-models. The Theorems 2 and 3 were concerned with complete
theories with infinite models. Nevertheless we can apply it to some non-
complete theories.

Let A be the theory of analysis as formulated in [8]. We denote
by A, the set of all statements valid in all w-models of A. Similarily,
the seb A, is the set of all statements valid in the f-models of A. For
any consistent extension § of 4, we denote by M(8) and MP(8) the
sets of the w-models and of the f-models of § whose universes are the
set of integers. By calculating hyper-arithmetical degrees of theories,
we can prove that MP(A) is nowhere dense in M (4) and, similarily,
that MP(4,) is nowhere dense in' M (4,) [13]. This shows simply some
defect of the theories A and A, in the consideration of §-models and
thig proof does not go through for the theory A,. In fact, we can show
that MP(4p) is co-meager on some open set of M (Ap) and therefore, that
MP(4;) is not meager on M(4p). In order to prove this, we need
a lemma.

Tet % be a model of T. We shall say a formula ¢ in Fy(T) defines
an element @ in %, if - 7{(Ftw,)d and & is satisfied by e in A We shall say
an element a of || is definable in %, if it is definable by some formula
in 9. We can prove the following:

LevmA 2. If all dlements of W are definable in U, then A is a prime
model.

Proof. It is clear that ¥ is an atomic model and, therefore, it is
a prime model [14]. '

Remark. We can prove directly that the models in which all
clements are definable are isomorphic and that they coincide with the
{8:}sen-standard models for some sequence {i}ica of formulag from Fy(T).
Therefore, we can prove that the orbit of such a model forms a co-meager
@,-set, by applying the Theorem of [6] to the sequence {6:}1c0, without
relying on the result of Section 2.

We can prove the following

THEoREM 4. The set MP(Ag) is co-meager on some non-emply open
set of M(Ap).
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Proof. The existence of a statement y which satisfies the following
two conditions is known [8](%): (1) Ap+{y} has f-models which are
unique up to isomorphisms. (2) v implies a version of the axiom of con-
structibility to hold. The first property implies clearly that the theory
I'= A4p+{y} is consistent and complete. Let % be a f-model of 7. The
second property implies the existence of a definable well-ordering of the
universe |U|. If we take Skolem-hull € of 9% with respect to this definable
well-ordering in 9, every element ¢ of § is definable in . Since @ is an
elementary sub-structure of %, every element ¢ of § is definable even
in ¢ itself. Since € is an elementary sub-structure of a B-model A, it
is & p-model of T, too [8]. By the first property, € is isomorphic to 9.
Since every element was definable in €, every element of 9 which is an
isomorphie image of @, is definable in %. By Lemma 2 and Theorem 3,
the f-models form a co-meager set on the non-empty open set [yw].

Theorem 4 was also proved by Mostowski. Let us make some Te-
marks on it. By the completness theorem, it-is clear that there exist
models 45 which are not «-models, i.e. M?(44) C M(Ag). However, we
can not exclude w-models which are not f-models even for the theory
Apt-f} 7, 9.

Finally, we remark that all the considerations in this section can
be parallelled for models of Zermelo—Fraenkel sef theory [Cf. 7, 9]. In
order to prove Theorem 4 for set theory, we take as y the statement
which asserts the minimality of the universe [2, 10].

Note added on February 5, 1969. Professor R. L. Vaught kindly called my

attention to the fact that a similar work on prime. models like his [14] was also done
independently by Professor L. Svenonius in Teoria 25 (1959), pp. 82—84.
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