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Inverse limit spaces
defined by only finitely many distinct bonding maps
by
R. F. Jolly and J. T. Rogers, Jr. (Riverside, Cal.)

1. Introduction. Prior to the advent of the paper by Anderson
and Choquet [1], most topologists regarded inverse limit spaces as a sort
of curiosity, void of real interest or applications, say, to continna problems.
Even after its appearance, inverse limit spaces were largely ignored,
since the descriptions of the bonding maps were regarded as being syn-
onymous to the definitions of a chain eonstruction. Moreover, these
descriptions involved infinitely many distinet functions and consequently
were at least as complicated to use as chains. This attitude was greatly
shaken by the Henderson paper [4] in which he described the pseudo-arc
as an inverse limit space on arcs where only one bonding map is used.
In 1967, Mahavier [5] gave an example of & chainable continuum which
is not homeomorphic to any inverse limit space on ares with only one
bonding map; in addition, by making use of a result by Schori [7], he
showed that there is a universal chainable continuum, defined as an
inverse limit space on arcs with only one bonding map, in which every
chainable continuum can be embedded.

In view of these results, a natural question would be: Can chainable
continua be subdivided into infinitely many distinet types according to
the number of distinet bonding maps required for their description?
Another question would be: If # is a positive integer, does there exist
a chainable continuum which is not homeomorphic to any inverse limit
space on ares with only » distinet bonding maps? If the answer to this
latter question were yes, then the property of being the inverse limit
of n maps, but not of n—1 maps, would be a meaningfully descriptive
property of chainable continua. However in this paper, we answer these
question in the negative. In fact we show the following theorem:

There exmist four maps such that every chainable continuum 8 homeo-
morphic to some inverse limit space on arcs which uses only these four maps.

By a continuum we mean 4 nondegenerate, compact, connected sub-
set of a metric space. A map is a continuous single-valued funetion. It is
well known that a chainable continuwm may be regarded as an inverse
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limit space on arcs [3], [6]. In the case where {X,} is a sequence of topo-
logical spaces and {f} is a sequence of functions such that for each positive
integer m,fn: Xn41—>Xn, then the inverse limit space (which may be
empty) defined by this system is the subspace X of the cartesian product
X, XX, x Xgx... (with the topology derived as the relative topology
from the product topology) where the elements of this subspace are the
Sequences &, &, &, ... such that for each positive integer n, e X,
and fa(®@ps1) = @n. The space X, is referred to as the nth coordinate space
and the functions fi, f,, fs, ... are called the bonding functions. When f,
is continuous, it is said to be a bonding map. We will use the notation

X = lim(X < X« X< )

to express the fact that X is the inverse limit space determined by this
system of spaces and bonding functions. We will also denote the unit
‘number interval [0, 1] by I. In view of an earlier remark, it is clear that
all chainable continua may be regarded as inverse limit spaces on I.

2. Inverse limits using only four bonding maps. We now want to prove
the theorem mentioned in the introduction, but first some definitions will
be in order. Suppose that 0 < 2, <2, <1, 0 < ¥ < ¥ <1 and g is a map
from I into I. By a copy of gin [@, %3] X [¢1, ¥2], we mean the map &
from [a4, #%,] into [¥,, y.] defined by

h(®) = Y1+ (Ya—y) FU&—m1)/ (23— 21)] .

Let {fu} denote a countable dense (in the topology of uniform convergencej

subset of the collection of all maps of I into I. For each positive integer n,
let ay = 27%", by = 2™ and h, denote the copy of fu in [an, ba] X [0, ax).
Let j denote the map from I onto I defined by

(1) §(0)=0 and j(1)=1,
(ii) if # < [an, by), then j(#) = ha(z) and
(iiiy § is linear on each interval [by, @n—1].
" Further define the maps p, ¢ and k of I into I by

p(%) = minimum {4z, 1}, g(x)=2/4 and k@)= (zf+1)/4.

THEOREM. Hvery chainable continuum is homeomorphic to some in-
verse limit space on I which uses only the maps j, k, p and q.

~Proof. Suppose
X=lim{T<2- T2 12 ).

Now since the functions of {fu} are dense, it follows that for each positive
integer m, gm can be approximated arbitrarily closely by some fu. Ac-
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cording to Brown [2], there exists a sequence n(1),n(2),%(3),.. of
positive integers such that X is homeomorphic to the inverse limit space

Y = im0 p e g ey

However a routine calculation reveals that f, = p"jg»—'%. Since each f, is

a composition of the mappings j, k, p and g, X is homeomorphic to an
inverse limit space

¥ =lim(I< T2 18 )

where each uy is one of the maps j, k, p and ¢. This completes the proof
of the theorem. : .

COROLLARY 1. Every chaimable continuum is homeomorphic to some
inverse limit space X defined by

X — lim(I ayip1 1 azjfa I agips )

where each an and By are monotone functions.
COROLLARY 2. Bvery chainable continwum 4is homeomorphic to some
inverse limit space X defined by
) i, oy i,
X = lim(I<—I<«—1I<+—..)

where each @n s a monotone funclion.

One of the questions which naturally arises is whether four is the
minimal number of maps. We may modify the proof of the theorem
to obtain a partial result in this direction. :

COROLIARY 3. Each chainable continuum may be regarded as on in-
verse limit on arcs using only two maps and a function with o single point
of discontinuity.

Proof. Modify the definition of j in the following way: let each ks
be a copy of fn in [as, bx] X[0,1]. In this fashion, each chainable con-
tinuum may be obtained as an inverse limit using only the functions j,
k and q.
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On continua which resemble simple closed curves

by
H. H. Stratten (Albany, N. Y.)

1. Tntroduction. Consider the following well-known theorems concern-
ing simple closed curves: (for the definition of simple closed curves
and arcs, see Moore [3], PD- 44 and 33 respectively)

THEOREM 1. M is a simple closed curve if and only if for w, y e M,
M=HuEKu{z} v {y} where H and K are irreducible continua between %
and y and Int(H) ~ Int(K) =@. (In fact, H and K are arcs.)

(It stands for “the interior of”)

TamoRrEM 2. M is a simple closed curve if and only if no single point
of M cuts, but every collection of two points of M do cut. (Bing [1], also refer
to this reference for the definition of cut).

TrEOREM 3. Let M be a simple closed curve. If O is a ‘subeontinumm
of M and Int(0) 5= @, then M—C is a continuum. (For the purposes of
this paper, we shall say that any continuum which satisties the condition
expressed in the conclusion of Theorem 3 is C.C.)

The first two of these theorems both express equivalent conditions

.for M to be a simple closed curve, whereas the third is a rather weak

necessary condition for M to be a simple closed curve. The question
that is poised in this paper is how “close” to a simple closed curve, ie.,
how “ring-like”, is a compact metric continuum M which is C.C. Tt will
be shown that if one essentially replaces the point & by the set

I, {y e M: there is no continuum ¢ C M with y < Int(C) and @ ¢ C}

in Theorem 2, then we have a characterization of C.C., and if we replace &
by, Ly in Theorem 1, then either M is 0.C. or M belongs to & Very gpecial
clags of continua which “look” very “ringlike” indeed.

This idea of replacing a point @ by L, was used by Thomas [4], where
he showed that if M is irreducible between two closed sets, and contains
no indecomposable subcontinuum with interior, then a certain collection
of these L,’s forms an upper semi continuous decomposition of M that
is an ‘are. )
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