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On continua which resemble simple closed curves

by
H. H. Stratten (Albany, N. Y.)

1. Tntroduction. Consider the following well-known theorems concern-
ing simple closed curves: (for the definition of simple closed curves
and arcs, see Moore [3], PD- 44 and 33 respectively)

THEOREM 1. M is a simple closed curve if and only if for w, y e M,
M=HuEKu{z} v {y} where H and K are irreducible continua between %
and y and Int(H) ~ Int(K) =@. (In fact, H and K are arcs.)

(It stands for “the interior of”)

TamoRrEM 2. M is a simple closed curve if and only if no single point
of M cuts, but every collection of two points of M do cut. (Bing [1], also refer
to this reference for the definition of cut).

TrEOREM 3. Let M be a simple closed curve. If O is a ‘subeontinumm
of M and Int(0) 5= @, then M—C is a continuum. (For the purposes of
this paper, we shall say that any continuum which satisties the condition
expressed in the conclusion of Theorem 3 is C.C.)

The first two of these theorems both express equivalent conditions

.for M to be a simple closed curve, whereas the third is a rather weak

necessary condition for M to be a simple closed curve. The question
that is poised in this paper is how “close” to a simple closed curve, ie.,
how “ring-like”, is a compact metric continuum M which is C.C. Tt will
be shown that if one essentially replaces the point & by the set

I, {y e M: there is no continuum ¢ C M with y < Int(C) and @ ¢ C}

in Theorem 2, then we have a characterization of C.C., and if we replace &
by, Ly in Theorem 1, then either M is 0.C. or M belongs to & Very gpecial
clags of continua which “look” very “ringlike” indeed.

This idea of replacing a point @ by L, was used by Thomas [4], where
he showed that if M is irreducible between two closed sets, and contains
no indecomposable subcontinuum with interior, then a certain collection
of these L,’s forms an upper semi continuous decomposition of M that
is an ‘are. )
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Discussions of the set L, may be found in Jomes [2], but for our
purposes, we shall only need the following fact given in this reference:
it M is a compact metric continuum, then Ly is a continuum for all # ¢ M.

1. Definitions and necessary background. For the sake of completeness
and convenience, let us define here all the notions we shall work with:

DerrNrrIoN. M is said to satisfy Condition 1 iff for = ¢ M, & does
not eut M—L, and yet if # and y ¢ M with Ly ~ Ly, = @, then {#} u {y}
does cut M — (Lz v Ly). i

DerFINITION. M is said to satisfy Condition 2 iff for # and y € M such.
that L, n Ly, =@, then M = Ly w H v K vI, where H and K are ir-
redueible subcontinua between Ly and Ly and Int(H) ~ Int(K) = @.

DeriniTION. M is said to be Comtinuum Complemented, i.e., C.C., iff
for each subecontinuum € with Int(C) # @, M —C is a subcontinuum.

Results which we shall use extensively throughout this paper are
the following: (In each result we take M to be a compact metric space,
and we take H and K to be two closed subsets of M.)

ResurT 1. If there does not exist a subcontinuum G of M such that
CnH+#0,and C ~n K # @, then M = L v V where L and V are separated
sets and HCL and KCV.

Resurr 2. Let ¢ be a subcontinuum of M such that H ~ G =0
and K ~ ¢ 5= @. Then there exists an irreducible subcontinuum ¢’ of ¢
from H to K. (For a definition of irreducible see Moore [3].)

ResuLT 3. Let € be an irreducible subcontinuum of M from H to K.
Then C—(H u K) is connected. ’

REsurr 4. Let € be a subcontinuum of M, and let U be an open set.

Then every component of U ~ ¢ has a limit point in 8T. (8U means the
boundary of U).

M. Equivalence of C. C. and Condition 1.

Lewwia 1. Let M be a compact metric continuum which is ©.C. If C,
and Gy are two disjoint continua with nonvoid interiors, then there emist
fwo disjoint continua, H and K, which are irreducible between €, and Cy, and

M=CUHUCUE

Proof. Let 0, and O, be two continua as in the hypothesis. If is

elementary that since M is a 0.0. continuum, 3 — C, v (; is not a con-
tinnum and so let

-0, v C,=HOUE

where H and K are two disjoint closed sets.
We will now show that H is an irreducible subcontinuum from (04
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to C,. The same arguments will apply to K and then the lemma will
be proved.

(laim 1. There does not exist a continuum V & H such that ¥ ~ C;
#0 and Vn C# 0.

Suppose the contrary holds. We note then that by the definition
of H and by the fact that V ¢ H

Int(H—V) 2@ .

Trom this we gee that M —C; v O = K v (H-V) which, sinee H and K
are disjoint, clearly contradicts M being C.C.

Claim 2. H is a continuum.

This claim is proved by considering the following two ?ossible cases:
¢, v K v 0, is a continuum and C,uvEKuv(is no‘t a continuum. In the
first cage the claim immediately follows from M being C.C. In the second
case we agsume the claim is false, then using standard arguments that
include Result 1, we arrive at a contradietion.

(Note. It is not diffieult to show the converse of the above lemma
does not hold.)

TEMMA 2. Let M be a compact metric C.C. continuwum. Ifzand y e M,
and Ly ~ Ly = @, then there exists continua Cg and C, such that € Int(Cy),
y eInt(0y) and Czn Cy='0.

Proof. It z ¢ Ly, then 2z ¢Ly and so by the definition of Ly we see
that there exists a continuum K, such that 2 e Int(K,) ajnd ye 1;.
Since L, is closed and therefore compact, we see that there exists a finite
number of these K.,'s, Ky, Ks, ..., Kn such that

L, CInt(K) and y¢K.

where K = L"j E;. Now L is a continuum and so we 'see that K is

i=1 —_—

2 continuum. So we let ¢, = M —K which is 2 conbinuum because M
is C.C. Also, by the definition of K we see that ¥ e Int(Cy)- L
Now repeat the above argument where we replace & by ¥ an Vm
by C,, thereby getting a continuum V such t]:“xafc ¢, C Int(V) arnd‘ o (¢} O.
Now let (,== M—V which we see ig 2 continuum because M is C.C.
Clearly 0, and C, satisfy the conclusion of the lemma. ‘ )
TEEoREM 1. Let M be a compact metyic continuum. M is C.C. if and
only 4 satisfies Condition 1. '
y;‘frfif. Oxj:ly if. First we show 11;}1&1}’ % doesn’t cut any two points
-, oesn’t cut M —Lg. )
o MLe{JL Z :Eg ; I;elll./‘[3 ferex .dBy the definition of L, there exist eontgmj g,,
and 0, such that v e Int(Cy), § ¢ Int(C) and @ ¢ Cov Cp. IOy Co# 1y
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then the continuum O, « 0, shows that # doesn’t cut g and v. If Oy~ 0, # 0,
then the use of Lemma 1 guarantees that « doesn’t cut v and g.

Second, we show that if Ly ~ Ly = @, then {z}  {y} cuts M — (L, U L,).

Since L ~n L, =@, we see by Lemma 2 that there exists two con-
tinua Oy, and Oy, with @ ¢ Int(Cy), ¥ € Int(0y) and Oy ~ Gy = @.

So by Lemma 1, there exist two continua H and K irreducible
between O, and €y and M= C,vH v 0,v K. Let gecInt(H) and
velnt(K). If {#} v {y} doesn’t cut M —(L,v L,), then there exists
a continuum V such that g and veV, and @ and y¢V. Now HUV U K
s & continwum, but B= M —-H oV v K C U;n 0y with 3¢ 0, v R and

Yy eCyw R which is a ‘clear contradiction to M being C.C.

If. Assume to the contrary, ie., assume there exists a continuum ¢
with Int(C)# @ and M— 0= A+ B where 4 and B are two closed
disjoint sets. Let # e Int(4) and y e Int(B), then it is clear that L, C A
and L, C B, ie., Iy~ L, = @. By hypothesis then there exists r and
0 e M —(L; v Ly) such that {z} v {y} cuts r and o.

Claim. If 2e M—(C v Ly v Iy), then there exists a continuum C,
such that 2¢C;, 0: ~» 0@ and x and y ¢ C,.

Without loss of generality, let z e Int(4). Let geInt(C). Since 2
and _q.g‘Lx we see that the hypothesis implies the existence of
& continuum €' for which 2 and ¢ e ' and » ¢ ¢". Now using the fact
that Inft(4) is an open set, 80’ C €, and result 4 we see that O, can be

taken to be the closure of the component of ¢ ~ Int (4A) which contains 2.

Ita. is now a stf‘aightforward argument that shows the existence of
@ continuum C” which contains # and » but not z and y. This is a contra-

- diction and completes the proof of the theorem.

IV. Relationship between C.C. and Condition 2.

i LEna 3 Let M be o compact metric C.C. If 2 ¢ L. v L, then there
exists & continuum Cy such that z  Int(C,) and = and y¢ .

Proof. Using the fact that z ¢ Ly v Ly and that M is C.C., we have

 the exigtence of two continug C; and O, for which » € Int(C,), ¥ € Int

et O, and C,

and zg’ozu Oy- (07’)
-0y ~ 0, @, then take C, of the conclusion to be 0, v C,.
If C; ~ Oy = @, then the choice of C, follows directly from Lemma 1.
Limarva 4. Let M .be @ continuum, let H and G be two closed subsets of M,
be two irreducible subcontinua between H and @ such that
Int(C) ~nInt(0)) =0 and M= CGGuH U uG.

If R 4 ; i i
. gz . v an ureducible continuum between H and G, then R — 0, or

Proof. Clear by Result 3.

iom®
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LeMMA 5. Let M be a continuum satisfying Condition 2. Then & ¢ Ly
implies v € Lip.

Proof. Suppose v ¢ L. Then there exists a continuum C, such that.
v ¢ Int(Cp) and @ ¢ C,. Since » ¢ L, we have

M—Co=RuUB

where R ~ S = @. Without loss of generality let # ¢ B. Choose ¥ € Int(S)..
¢, v Rand ¢, v S areconfinuaand so L, C Band Ly C §,1.e., Ly » Ly= @.
Let H and K be the two continua, mentioned in Condition 2, which are.
irreducible between Ly and L,. Without loss of generality let v ¢ Int(H).
Because # € Ly, and K u L, v Ly is a continuum we have that » < H.

Case 1. Oy~ (LyuIy) #+ 0.

8HCIL,uL, and so by Result 4 each of the components of
¢, ~ Int(H) have a limit point in either L, or Iy. Define then

H, = L, < {all components of 0, ~Int(H) with limit points in L},
H, = L, v {all components of 0, ~Int(H) with limit points in Iy} .

Since @ ¢ H, # ¢ C, and H is irreducible we see that H, and H, are.
disjoint -continua. (Without loss of generality, let o € H;.) This combined
with Result 1 shows that H— 0, is a continuum snd therefore so is
H—0,u L,u K u Ly v Hy which violates @ ¢ Ly.

Case 2. Cyn (Lpw Ly) = 9.

H Deing irreducible quickly implies that H—C,= Rv § where B
and § are disjoint continua with B ~ L, @ and 8 n L, # 9. But then
Rul,vEulLyu 8 is a continuum that violates @ e L,. °

LEvuA 6. Tet M be a compact metric continuum which satisfies Con-
dition 2. Then = cuts {v} v {w} implies. v or w e Ls.

_ Proof. Assume to the contrary. Then there exists v and w € M—L,
tor which # cuts {¢} w {w}. By Lemma 5, # ¢ Ly u Iy,. But L, and L, are
continua, and 5o Ly~ Ly= 0. Now a straightforward application of
Condition 2 gives a contradiction. .

In the next two lemmas, let M De a compact metric continunum
satisfying Condition 2. Also, let » and y ¢ M with Ly ~ Ly = 9. Finally,
let H and K Dbe the two irreducible continua between Ly and Ly as
guaranteed to us by Condition 2.

Leva 7. If © ¢ Int(H) and Ly~ Lo = O, then ¢ H.

Proof. First we note that Int(H) » (Ls v K uly)=9 and so we
see that L,C H. _

Second we note by Lemma 5 that since v ¢ Ly, then @ ¢ Ln.

Third we note that since v ¢ L, there exists a continuum O such that

v eInt(C) and ¢ 0.
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Using now the hypothesis L, n L, = @, Result 4, and the irreducibility
-of H, it becomes clear that » ¢ H.

Lemma 8. If there ewists v e Int(H), 2 eInt(K), and a continuum ¢
with {v,2}C C and {z,y} C M—C, then

(1) L, = H for all r ¢ Int(H)

@ HAK#0.

Proof. As in the first note of Lemma 7, we see that L, C H for all
r e Int(H).

We first show L, = H before verifying that L,= H for all »  Int(H).

Claim 1. L, ~n L, +# @.

Assume the claim false, and let H’ and K’ be the two continua as-
Sociated with L, and L, as specified in Condition 2. By Lemma 4, we see
that ¢ contains either H' or K’ and so let it contain H'. By hypothesis
{#,4}C M—C, and Lemma 5 implies {#,y} C M — (L, ~ L,) and so we
see that L, L, CK" Let K, be an irreducible subcontinuum of K’
between L, and L,. By Lemma 4, K = K, and therefore v ¢ Int (F) which
is & contradiction. .

Since 0K C L, L, we assume without loss of generality that
Ly & Ly C L. Therefore by Lemma 7 we see that x ¢H UK.

Claim 2. L, ~n L, # @. :

Again we assume the claim is false and let H* and K* be the two
continua associated with L, and L, as specified in Condition 2. From
Claim 1, we see that L, ~ K 5 @ and so let Hy,KEbe irreducible subcontinua
of K,H between L, and L,. By Lemma 4 we see that we can take K,=K*
and Hy= H*. But M = L, v H* U L, u K* and yet # is not an element
of any of these sets—so the claim holds.

" R0Ly ALy £ @, Ly~ Ly £ 9, L, is a continuum and L, C H. Therefore
the irreducibility of H implies I, = H.

Now let r e Int(H)C L,. By Lemma 5, v eL,. But then ¢ u L, is
a continuum between r and 2 missing # and Y—8$0 now we just let #
take v’y place in the above arguments.

HAK#@ follows from Claim 1.

THEOREM 2.
Condition 2 iff

1y M is C.0.

Let M be a compact metric. continuum. Then M satisfies

or

(2) There exists Jour indecomposable continua {BYs=1 such that
4

M= l;J B:, B, and R, are irveducible between By and R,, and R, ~ R, ~

1
N Ry # O,

-

o ‘
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Proof. Only if. Since (2) clearly implies that M satisfies Condition 2,
we only need show that C.C. implies Condition 2. So we let # and y ¢ M
be such that Ly ~ Ly = O.

If v e M, then define

H,={meM: {g} v {y} does not cut v and m}.

It is clear that H, is connected and H; ~ H; # @ implies Hy, = H;

for s, tem. _
{Ehis combined with Theorem 1 implies that if v € M —(Ly v Ly) then

(*) HvDM_(Lz\{Lv)-

Claim 1. If ve M = (Lp v Ly), then 6H,C Ly v Ly .

Suppose there exists w e 9Hy—Ly v Ly. Then by Lemma 3, there
exists a continuum O, with w e Int(Cyp) and = ?mnd Y ¢ Co- .Glearly then
by the definition of Hy, Int(Cy) C Hy which is impossible since w e 8Hy.

Olaim 2. If » and w e M— (L, v L,) are such that H, +#+ H, then:
there exist continua C,, Cy, K and H such that v e Int(C,), w e Int(Cy),
H and K are irreducible subcontinua between O and Cw, HNnK =0,
Oy Cp=0, L,CH, Ly CK and

_MzHUO,,QKUGw.

By Lemma 3, there are continua Oy and Cyp, with » e Int(Cy), w e'Gw
and » and ¥ ¢ Cy w Cy. Since Hy # Hy we know that Hy ~ Hy =@ which
in turn implies Cy ~ Oy = @. Using Lemma 1, the fact v ail é-'[w , and the

i ei the claim is valid. -
agsumption of M being C.C., we see that & ; .
AE this point it is convenient to introduce the following notation:
Hy=H,— (L. v Ly -

Olaim 3. If » € M —(Lz v L), then Hj is an irreducible continuum
between L, and Ly. ’

From Claim 1 we know that 8H, C Lz v L.y- Asgsume for the mom;nt
that éH,C L. Then by (*) we know there ezufsts weM _(If” 'u.Ly Uf HE.).
Now an az)plica,tion of Olaim 2 and a recollection of the definition 0(1 Lu,
we find a contradiction. Therefore, Hy is & con@nuum betweexl_p, a.]? N ,;s
By Result 2 we know there exists a subcontinuum H, _Q,f H, w mbme
irreducible between LIy and Ly. Now if we assume H, # H, anctir ggfstion
this with Claim 2 and the definition of C.C. we are lead to a con .
We thus see that the claim holds. ) o

Theorem 1 says that there exist two p01r}ts Vg :Efli Wy € £ éﬁi nef;ﬁ
which are eut by # and y. Therefore by Ql.avlm, 33 H, and th th:t
as the H and K in the definition of Condition 2 if we can show

M:LzUEULyU'H__L—D'
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But if there were » e M — (Ly UED vilyu -.HT',,,,), then we could apply
Claim 2, Claim 3 in reference to H,, and the fact that v, and w, ¢ H, to
arrive at a contradiction to M being C.C. This then completes the sufficiency
part of this theorem. :

To establish the necessity half of this theorem, we will agsume that I
is not C.C. but it does satisty Condition 2 and deduce that it is of the
form expressed in 2.

Lemma 6 shows that Condition 2 implies (2) of Theorem 1, and so
assuming M is not C.C. means that there exists # and y ¢ M such that
L;nLy,= @ and yet {o} v {y} cut no two points of M — (L, v L,).

Since Lz n Ly = @ we know that there exist two continua H and K
which are irreducible between L, and Ly and M =1L, v H vI,u K.
Letting ¢ e Int(H) and 2z <Int(K) we see by the above comments that
there exist a eontinuum O such that 7, z « € and %, y ¢ (. So by Lemma, 8,
L,= H for each 7 ¢Int(H), therefore using the fact that Int(H)= H
(Result 3), we see that H is indecomposable. Analogous comments hold
for K. Also we know from Lemma 8 that H ~ K == @.

Now L, = H for each r e Int(H) implies by Lemma 5 that @ e Int(L,)
and y e Int(ZLy). It is not difficult to see that Int(L,) = L, and Int(L,) = L,

.

So to finish the proof we only need show that for each r e Int(Ly), Ly = L. -

Clea,r?y L, C ‘.Ez' Therefore, Ly ~ Ly = @. Let H’ and K’ be the continua
associated with I, and L, mentioned in the statement of Condition 2.
Clearly we can take K C K’ and H C H'. Letting ¢ ¢ Int(K) and v ¢ Int(H)
we know that Iy~ L, # @, by Lemma 5 # and y ¢ Ly~ L,, and so by
Lemma 8
: H=IL=H and K =IL=K
Bu’t M=HvwlvEvL, and so Int(L,) C L, which implies L,C L,.
Thls then completes the proof of the theorem. ' B
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Dilating mappings, implicit functions
and fixed point theorems in finite-dimensional spaces

by
M. Altman (Warszawa)

Tt is the purpose of this paper to investigate some properties of
non-linear mappings of a finite-dimensional Euclidean spaces into itself.
The argument presented here consists in a combination of two facts:
Borsuk’s theorem on s-mappings in the narrow sense and Banach’s
contraction principle. By means of this method several theorems con=
cerning non-linear mappings of finite-dimensional Banach spaces into
themselves are obtained. In particular, an implicit function theorem
for dilabing mappings, & generalization of the contraction principle and
some results concerning the non-linear eigenvalue problem are included.

Let f be a continuous transformation of a finité-dimensional Euclidean
space X into itself. The transformation f is called an s-mapping in the
narrow semse if it has the following property:

(B) there exist two positive pumbers #z and ¢ such that the

condition

, If@)—fleM<n, o,a"eX
implies )

o' —="l| <.

In paper [1] K. Borsuk proved the following

TaroreM. If f(#) has property (B), then f is a mapping onio, i.e.
fX)=X. :

Implicit functions. In order to make use of Borsuk’s theorem
et us observe that if the mapping f possesses the following property:
there exists a positive number ¢ such that

cflay— @l < fIf () —f (@)l

for arbitrary @, @,

consequently, f(X) = X. Moreover, fis a homeomorphism of X onto itsel.

After this remark we shall prove the following implicit function

theorem.

£y

of X, then fis an e-mapping in the narrow sense and,
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