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Bimeasurable maps*

by
John G. Michaels (Pittsburgh, Pa.)

1. Introduction. All spaces considered in this paper are assumed

‘to be metrizable and % will denote an infinite cardinal. We further

assume the generalized continuum hypothesis.

A map f between two absolute Borel (metric) spaces is bimeasurable
if both f and f~* preserve absolute Borel sets. R. Purves [6] has shown
the following: '

TaroreM 1.1. If f is a bimeasurable map between two separable ab-
solute Borel metric spaces, then F7(y) is countable except for at most countably
many points in the range of f. : v

The purpose of this paper is to obtain generalizations of this theorem
for non-separable spaces. In place of countability we are led to con-
siderations of the cardinality and o-discreteness of the sets f'(¥)-
Summarizing Theorems 4.3, 4.4, 5.1, and 5.2, we obtain the following
(definitions are given in Section 2):

TeEoREM. Let f be an a-bimeasurable map defined on an absolute
Borel space X of weight k. Let

B = {y f(X): () not o-discreie}
and ‘let :
' B* = {y e f(X): card f(y)> %}

Then ‘
(i) cardB <k,
(ii) card B* <k,

(ili) 4f B is absolutely s,-analytic, then B is o-discrete,

(iv) if B* is absolutely w,-analytic, then B* is a-discrete.

Each of the four conclusions in this theorem reduces to the theorem
of Purves if the spaces in question are separable, ie. if k= %.

* This paper is a revised portion of.a doctoral dissertation written under the
direction of Professor A. H. Stone at the University of Rochester.
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In Section 3 we prove that the set B is absolutely k-analytic.
result (Theorem 3.3) partially generalizes a classical theorem of Ma
kiewicz and Sierpinski [5]. We use both this result and Theorem 1.,
prove the main theorems in Section 4 (ef. (i) and (ii) above).

In Section 5 we put additional hypotheses on the sets B and
(ef. (ili) and (iv) above). We also study the bimeasurability of projecti
maps and diseuss the problem of finding sufficient conditions that a measu
able map be bimeasurable.

2. Definitions and notation. The terminology follows [8], and we
assume the reader is familiar with the definitions and basic properties
- of the Borel classification of sets and measurable (= Borel-measurable)
" maps, as in [8]. For future reference and to fix notation we repeat some
of the definitions in this section.

A (metric) space X is an absolute Borel set it X is Borel in any metric
8pace in which X is embedded, or, equivalently if X is Borel in some
complete metric space. For a countable ordinal o, & bimeasurable map
f is a-bimeasurable it f iy measurable of class o.

If the range and domain spaces are abgsolute Borel, then every Borel
isomorphism (1-1 map which is measurable in both directions) between
them is bimeasurable and every generalized homeomorphism (1-1 map
which is measurable of bounded class in both directions) between them
is a-bimeasurable for some o. Also every measurable map from an ab-
" solute Borel space onto a o-discrete space is bimeasurable. (A (metric)

space A 18 o-diserete if A = | A; where each set Aqgis relatively discrete,
=1

i.e. each point of 4, is isolated in 44.)

We have the following result concerning measurability and weight
(assuming the generalized continuum hypothesis):

THEOREM 2.1. Iff is a measurable map from a space X onto a space ¥
and if X 4is of weight &, then Y has weight at most k.

- Proof. Let m be the weight of Y, and assume m > k. Then ¥ hag 2™
Borel subsets ([7], D. 106). By considering the inverse images under f of
these sets, we conclude that X has at least 2™ Borel subsets. But X hag 2°
Borel subsets, and under the generalized continuum hypothesis 2% < 2™,
Hence a contradiction, and therefore m < k.

Baire space B(k) is the countable product of discrete spaces, each
of which is of cardinal . B(k) is given the product topology; and if
t={(l, %, ...) e B(k), a typieal basic neighborhood of ¢ in the product
topology is

Vit iytn) = {8 = (81, 82, ...) e B(k): s
The space B(k) is metrizable,

15 b1y ey Sy = Uy} .

and may be given the metric g where, for

icm°
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distinet s, ¢ € B(k), we define d(s, t) = 1/nif s; = &y, ..., $p1 = fuy, 8p 5% Tne
The -Oantor set C(s,) is the countable product of two-point diserete spaces.
We regard the Cantor set as a subspace of any space B(k), and so has
as its metric the restriction of the metric for B (k).

The following three theorems of A. H. Stone will be used often sub-
sequently:

TH:EOREM 2.2 ([9], p. 660). If X is an absolute Borel set, then one and
only one of the following alternatives is true: X-is o-discrete, or X contains
a subset homeomorphic to C(x,).

THEOREM 2.3 ([8], p. 10). If X is an absolute Bord set of weight < k,
then there is a continuous generalized homeomorphism from a closed subset
of B(k) onto X. '

THEOREM 2.4 ([9], p. 661). If X is an absolute Borel set which is Borel
isomorphic to a o-discrete space, then X is o-diserete. -

Assume a space X and a cardinal k are given. Write B(k) = [] Tn

n=1
and assume that for each finite sequence ty,...,%, (f; € T;) a closed seb

Bty ...;ta) C X ig given. Fort = (t;, 15, ...) e B(k)1let H (1) = Ql Pty ey bn)y
andlet A = (_J {H(): t ¢ B(k)}. Then A4 is a k-analytic swl,bset of»X._ A space
is absolutely k-analytic if it is k-analytic in any metric space in which
it is embedded, or, equivalently ([8], p. 36) if it is k-analytic in some
complete metric space. In particular, if k¥ = &, and the‘spaee X is com-
plete and separable, the classical analytic sets are obtained.

3. A theorem on o-discreteness. The following theorem is due to Mazur-
kiewicz and Sierpiniski [5]: If f is a continuous function defined oln a sepa-
rable, absolutely analytic space X, and if B = {y ¢ f(X): card f(y) > %o},

i alytic.
thmlﬁ gaigbzgf:g?g :%pa,zﬁial generalization of this theorem is obtained
for non-separable spaces. This extension is obtai.ned in three steps. The
result i then used in Section 4 to obtain the main theorem of the paper.

LEMwmA 3.1, If f is a continuous map defined on a complete space X of
weight k, and if

' B={y ef(X): f(y) not o-discrete},

then B is absolutely k-analytic.
Proof. Let
B, = {y e f(X): f(y) contains a dense-in-itseli sequence
of distinct points} -

We shall show that B = B, and then that B is absolu’qely k-analytic.
10
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Let 4 e B. Then f™(y) is a nop-c-discrete absolute Borel set ang ~
hence by Theorem 2.2 contains a homeomorph O of C(s,). Since € i
separable, then C contains a countable dense get D. Then D containg no
isolated points, and hence ¥y € By.

" Conversely, if y e By, then say @, %y, ... is a dense-in-itself sequence
contained in f~*(y). Let B be the clogure in f () of this sequence. Then B
is dense-in-itself since it is the closure of a dense-in-itself set. Since f is
continuous then f () is complete; and hence by [2], p. 444, B contains
a homeomorph of €(x;). Hence (by Theorem 2.2) F (%) is not o-discrete,
and so y ¢ B. )

Thus B= B,, and it only remains to show that B, is absolutely
k-analytie. .

Now let ¥ be the completion of f(X) and let W be the product space
formed by taking the product of X with itself s, times. Define

By={{y, (%, &, ...)) ¢ Y X W: @, @y, ... is & dense-in-itself sequence} ,”

By={(y, (@, @, ...)) € T XW: f(@) = f(@s) = ... =y},
and
By={(y, (1, %y ...)) € ¥ XW: it m o n, then @y, # @4} .

Then each of the sets B;, B;, and B, is Borelin ¥ x W (for a proof that B,
is Borel, see [2], p. 368), and hence so0 is B, ~ By ~n B,. Note that W is
of weight <, and also Y is of weight < k by Theorem 2.1. Hence ¥ xW
i3 of weight < k. Finally note that B, = n(B, ~ By ~ B,) where x is the
projection from Y XW onto Y. Therefore. B, is the continuous image
of an absolute Borel set of weight < % and so B, is absolutely k-analytic
by 18], p. 37.

Hence B is absolutely %-analytic, and the lemma is proved.

We now extend this lemma to continuous maps whose domains are
absolute Borel sets. )
. Lewvma 3.2. If f is o comtinuous map defined on an absolute Bord
st X of weight &k, and if B = {y ¢f(X): f™y) not o-discrete}, then B is
absolutely k-analytic. :

Proof. Let g be a continuous generalized homeomorphism from
& closed subset A of B(k) onto X (Theorem 2.3). Let

B, = W efogld): (fo9)™(¥) not o-discrete} .

Using Theorem 2.4 we see that B = B,. Applying Lémma 3.1 to the

continuous map f o g defined on the complete space 4, we obtain that B
is absolutely k-analytic.

We now extend this lemma to obtain the main theorem of this section.
THEOREM 3.3. If f is' a measurable map of bounded class defined on
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an absolute Borel set X of weight k, and if B = {y « f(X): f*(y) not o- discrete},
then B is absolutely k-analyiic.

Proof. Let ¥ denote the completion of f(X), and let I'C X xY be
the graph of f. By [2], p. 384, I' is absolutely Borel (since f is measurable
of bounded class). Let = be the projection from I" into ¥ and let B,
= {y en(I"): @ Y(y) not o-discrete}. Lemma 3.2, applied to I" and =, yields
that By is absolutely %-analytic. But it is easily seen that B = B,. Hence
the theorem is proved. ‘

4. Necessary conditions for a-bimeasurability. In this section we obtain
two extensions of Theorem 1.1. We first prove two lemmas, and then
use these together with Theorem 3.3 to obtain the main Theorems 4.3
and 4.4.

LevMA 4.1. If f is a bimeasurable map defined on an (absolute) Borel
set X C B(k), and if for every y ef(X) the set f'(y) contains a homeomorph
of O(sq), then f(X) is o-discrete.

Proof. The proof proceeds by contradiction. If f(X) is not ¢-discrete,
then by Theorem 2.2 f(X) contains a homeomorph of the Cantor set,
say C. Index € Dy an index set % to obtain C = {y,: e eA}. By the
hypothesis of the lemma, each set f (y.) contains a homeomorph, say C.,
of the Cantor set. Let D= [ J{Cas: aes#}

" There are two cases to consider:

(a) 7a(D) is countable for all positive- integers -n {where s, is the
projection from B(k) onto its mth coordinate space Tn);
(b) 7ma(D) is uncountable for some #.

We shall show that in either ecase we are led to a contradiction.

00

In case (a), let BE= [] (na(D)) and let 4 =f(C) ~ B. Since for
n=1

every #, m,(D) is Borel in the discrete space Ty, then the countable
product, E, is Borel in B(k). Hence A is Borel in X, and therefore ab-
solutely Borel, Now let g be the restriction of f to 4. Then g is bimeasur- ..
able. Since E is the countable product of separable spaces (each factor
7x(D) is countable by hypothesis), then F and hence 4 is separable. Also,
g(4) = C. Finally note that if y € C, say ¥ = 9., then CaCg7'(4.); and
hence the inverse image of every point in the uncountable set C is un-
countable. But this contradicts the theorem of Purves (Theorem 1.1).

We now proceed to obtain a contradiction in case (b).

Let m be a positive integer such that mm(D) is uncountable; let
T = (D). For each u ¢ T choose a point #(u) e D such that mmlt (w) = u3
say () € Cawy. Since Oy Cp=9 if a and B are distinet indices in £,
then a(w) is uniquely determined. Let %= {a(u): e T}. Since T is
uncountable and since mm(C,) is finite for all a (because each mn(0,) 18
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a compact subset of a discrete space), then 3 is uncountable. For each
B € B, choose u; € T' such that § = a(us). Let F = {{(up): § e B}.

Let h be the restriction of the map f to F. Then & is 1-1 and bimeagur-
able, hence, a Borel isomorphism. Also note that F is o-discrete; in fact
any two distinet points In ' are of distance at least 1/m apart. By Theo-
rem 2.4 kh(F) is also o-discrete. Since $ is uncountable then F is un-
countable, and therefore so is A (F). But h(F) is a subset of the Cantor
set 0, and hence we have a contradiction since any o-discrete subset
of a separable space is countable.

Cases (a) and (b) both lead to contradictions, and therefore f(X) is
in fact o-discrete. .

‘We now extend this lemma from Borel subsets of B(k) to arbitrary
Borel sets.

Lemva 4.2. If f is a biméasurable map defined on an (absolute) Borel
set X, and if for every y e f(X) the set f(y) contains & homeomorph of C(x,)
then f{X) 48 o-discrete. )

Proof. Let X be of weight ¥, and by Theorem 2.3 let g be a gener-
alized homeomorphism from a closed subset H of B(%k) onto X. If
yefog(H), then (fog)7(y) contains a homeomorph of O(s,) by
Theorems 2.3 and 2.4. By applying Lemma 4.1 to the map fog and the
set H, we obtain that f(X) (= f.g¢(H)) is o-discrete.

‘We now prove the main theorems of this section.

TerorEM 4.3. If f is an a-bimeasurable map defined om an absolute
Borel space X of weight k, and if B= {y ¢ f(X): f ) not o-discrete}, then
card.B < k. )

Proof. By Theorem 3.3, B is absolutely k-analytic. By Theorem 2.1,
f(X), and hence B, has weight at most k. If cardB > &, then by [8], p- 37,
B contains a closed subset D homeomorphic to a Baire space of cardinal k™.
Henee D contains a set ¢ homeomorphic to ¢ (%) Let g be the restriction
of f to the Borel set f(C). Then if ¢ C, g(y) contains a homeomorph
of G(x,) by Theorem 2.2. Hence Lemma 4.2 applied to the map ¢ and
the set f*(C) yields the result that 9(f(0)) = ¢ is o- discrete, a contra-
diction since the Cantor set C is not o-discrete. Therefore card B < k.

TEEOREM 4.4. If f is an a-bimeasurable map defined on an absolute
Borel space X of weight &, and if B* = {y e f(X): cardfy) > k}, then
card B* < k.

Proof. We shall show that B* CB, where B is the set defined in
the hypothesis of Theorem 4.3. If y ¢ B*, then by [8], p..37, F(y) contains
& homeomorph of C(s,). Therefore () is not ¢-discrete and hence y € B.
Thus B'C B. If cardB* >k, then ycard B > & also—a contradiction of
Theorem 4.3. Hence cardB* < k.

Note that Theorems 4.3 and 4.4 each reduce to the theorem of Purves
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if the spaces are separable. For if k = s, then the property of being
a-bimeasurable for some ordinal a is equivalent to bimeasurability; also
B=B'={y<f(X): f ) uncountable} since o-discreteness and count-
ability are equivalent in separable spaces.

Note also that Theorems 4.3 and 4.4 can be extended from a- bimeasur-
able to bimeasurable maps if it can be shown that Lemma 3.2 holds for
continuous maps defined on absolutely w,-analytic sets. For it is not
difficult to verify that the graph of any measurable map is %,-analytic,
and using this in connection with the suggested extension of Lemms 3.2
would yield a new Theorem 3.3 valid for any measurable map (of bounded
class or not). .

Finally note that neither Theorem 4.3 nor 4.4 yield any result
regarding the Borel structure of the sets B and B*. In the next section
we study cases in which they do have a strong Borel structure.

5. Further generalizations and applications. In this section we study
the sets B and B* of Theorems 4.3 and 4.4. We also consider the
bimeasurability of projeetion maps and the preservation of o-discreteness
under bimeasurable maps. We then discuss the problem of finding -
a sufficient condition for bimeasurability.

THEOREM 5.1. If f is a bimeasurable map defined on an absolute Borel
space X of weight &, and if B = {y  f(X): f(y) not o-discrete} is absoluicly
Ro-analytic, then B is o-discrete.

Proof. The proof turns on a theorem of El'kin ([1], p. 874) which
extends Theorem 2.2 of Stone from the class of absolute Borel spaces

- to the class of absolutely s,-analytic spaces.

If B is not o-discrete, then by the theorem of El'kin B contains
a homeomorph C of C(x). Let g be the restriction of f to the space f~(C).
Applying Lemma 4.2 to g and f7'(C) yields that g{f™{(€))= C is
o-discrete—a contradiction. Therefore B is ¢-discrete.

THEOREM 5.2. If f i8 a bimeasurable map defined on an absolute Borel
space X of weight k, and if B* = {y e f(X): card f"y) > k} is absolutely
8- analytic, then B* is o-discrete.

Proof. If B* is not o-discrete, then the theorem of El'kin gives
a homeomorph C of C(x,) in B*. By [8], p. 37, if ¢ € then f () contains
a homeomorph of O(x,). Now restrict f to f~*(0) and nse Lemma 4.2 to
obtain a contradiction.

If additional assumptions are placed on the map, we obtain the
following:

THEOREM 5.3. If f is a closed, 0-bimeasurable map - defined on an
absolute Borel space X of weight k, and if B = {y ef(X): X y) uncountable},
then card B < k. '
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Proof. The proof is basically a piecing-together of Theorem 4.3

and the following theorem of La¥nev ([3], p. 1505): if f is & cloged, continy-
ous map defined on a metric space X and mapping into a T,-space, then
fHy) is compact except for a o-discrete set of points in f(X).

Using this theorem we write f(X)= 4, v 4, where 4, is o-discrete
and if y e A, then f'(y) is compact. Applying Theorem 4.3 to the Te-
striction of f on the absolute Borel set f~*(4;) yields that 4, = As v 4,
where card 4, < %k and if y ¢ 4, then f'(y) i o-diserete. Hence if Yyed,
then f~'(y) is both compact and o-discrete; therefore f~*(y) is countable.
Hence BC 4,u 4,. But 4,"is a o-discrete subset of f(X), a space of
weight <% by Theorem 2.1, hence A4, is of cardinal < k. Since the
cardinal of 4, is also <k, then card B < k.

We. now study the bimeasurability of projection. maps.

TaeoreM 5.4. Let X and Y be absolute Borel spaces and let = be the
projection map from the product space X x Y onto X. If = is bimeasurable,
then either X or Y is o-discrete. :

Proof. Assume that ¥ is not o-discrete. Let B — {eX: a(z)
not o-discrete}. Since n~'(s) is homeomorphic to ¥ for all z eX, and
since Y is not o-discrete, then B = X. Applying Theorem 5.1 yields
that X is o-discrete.

As a partial converse we have the following:

THEOREM 5.5. Let X and Y be absolute Borel spaces and let m be the
projection from the product space X x Y onto X. If Xis o-discrete, then n is
bimeasurable. )

Proof. Since x is continuous, it is measurable. Since X' is o-discrete
then every subset of X ig absolutely Borel by [9], p. 660. Hence s is
bimeagurable. :

Piecing together the results of both Theorems 5.4 and 5.5 we have
the following: :

COROLLARY 5.6. Let X be an absolute Bor
Jection from the product space X xX omto X.
and only if X is o-discrete.

 In Theorem 5.5 if ¥ is o-discrete but X
bimeasurable. To see this, let X be the Cantor set and let 4 be a non-Borel
subset of X. Let ¥ be the set A with the discrete topology. If B
={(#, 2): © ¢« Y}, then B is Borel in X XY, but #(B) = A which is not
Borel. Hence « is not bimeasurable.

THEOREM 5.7. If f is a bimeasurable
space X, then f(X) is o-discrete.

Proof. If not, then since
a homeomorph of ((s,)

ol space and let = be a pro-
Then n is bimeasurable if

is not, then & need not be

map defined on a o-discrete

F(X) is absolutely Borel, f(X) contains
by Theorem 2.2 and hence 2 non-Borel set, say 4.
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Then f(4) is not Borel—a contradiction since every subset of the
o-diserete space X is Borel.

TEEOREM 5.8. If f is a continuous map defined on o space X such.
that f(X) is o-discrete and f(y) is o-discrete for all y < f(X), then X is
o-discrete. :

Proof. Write f(X) = Cj Y., where each Y, is relatively discrete..
n=1 )
(=]

For y «f(X), write iy = "ngm(y) where Xp,(y) is relatively discrete..

Let Xmn= U {Xmly): ¥ € Yu}. Then X = {J {Xma: m,n = 1,2,..}. To
show that each set X, is relatively discrete, let & € Xpmn. Let.yoz fl@)..
Then 9, belongs to the relatively discrete set Y., and so there is an. open
get U such that y,e U and U ~ ¥, = {y,}. Since & € Xpn(y,) which is.
relatively discrete, there is an open set V such that » ¢ Vla,nd V ~ Xulyo)
= {}. Then & belongs to the open set f(T) A V, and (f~ (0) ~ 7) A X
= {z}. Hence Xmn is relatively discrete, and thereforg X is q-dlsel:e!:e.

We finally comment on the open problem of finding non-trivial
sufficient conditions that a measurable map be bimeasurable.

If the spaces in question are separable and absolutely Bore‘l, such.
a condition is known and is due to Lusin [4]: na@ely, that the inverse
image of every point be countable. In fact it is easily seen that th.IS con-
dition may be weakened so that the condition in Purves’ theorem is both
necessary and sufficient.

This “countable-to-one” condition fails if the spaces are not separ-
able: let D be the Cantor set with the discrete topolog':y and l_et f be the.
identity map from D onto the Cantor set. Then f is continuous but
not” bimeasurable. Hence even a 1-1 -continuous map need not be

i le. )
blme;lsg;?‘;hat an open, closed, continuous map need not be bln‘leg,surabley
For if = is the projection from the unit square onto the unit 1nt:erva«1,
then = is open, closed, and continunous, yet by Corollary 5.6. @ is not
bunefi};:}i’ﬁ thank Professor A. H. Stone for suggest.il?g the topi.c treated
here and for his encouragement throughout the writing of this paper.
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Non-manifold factors of Euclidean spaces

by
A. J. Boals* (lowa City, 1a)

1. Introduction. The object of this paper is to define a class of

factors of Euclidean n-space which contain some non-manifolds (i.e.,
Theorems 3.6 and 4.3). These factorizations will be general enough to
include those given by R. H. Bing [4] and John Hemple [5].
. Throughout this paper wé will use the following terminology: (i} Any
subset of a topological space which is homeomorphic to I”, where I = [0,1],
will be called an #-cell. (ii) An n-manifold will be a paracompact Haus-
dorff space in which every point has a neighborhood whose closure is
an n-cell. (iil) If "X is a topological space and .DC X then by intD is
meant the set X —X —D, where X —D is the closure of X—D in X.

2. Separation Theorems. - ]

Lemma 2.1. Let Oy, Cs, ..., Cp e disjoint compact subsels of a Haus-
dorff sjoace X. Let Dy, Dy, ..., Dy be (not necessarily disjoint) n-cells such
that for each i = 1,2, ..., 9, Cs CinbDy. Then for any [a,b]CE and > 0
there exist disjoint (n--1)-cells By, Hy, ..., Bp contained in X X (a—e, bte)
such that for each i=1,2,..,p

(1) O;x[a, b]C int Ey;

(2) ILE,= Ds;
where IT, is the projection of X xE' onto X.

Proof. Let f: [—e&,r+el->la—s, b+e] be the homeomorphism
given by

: atw © it me[—e, 0],

b—a .
={l—|z+a £ @e[0,r
flo) ( - ) + [0, r],
b+x—7 if we[r,r+e].
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