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Decompositions of a 3-cell
by

Lloyd Lininger (Ann Arbor, Mich.)

The main result of this paper is a generalization of Theorem 3 of [2]
and a result announced by R. H. Bing. It states that any 3-dimensional
crumpled cube can be obtained from an upper semi-continuous de-
composition of a 3-cell using ares which are locally polyhedral except
at one end-point, which is not on the boundary of the 3-cell, and the
projection of the non-degenerate elements is a 0O-dimensional seét.

1. Terminology and notation. If A is a set in a topological space
then Cl4 will denote the closure of A. If § is a 2-sphere is R, then -
Int § and Ext 8 will denote the interior and exterior, respectively, of §.
If 4 is an n-manifold-with-boundary then Bd.A will denote the set of
points in A which do not have neighborhoods homeomorphic to B" and
Int A will denote 4 —BdA. A set C is a erumpled cube if and only if C iy
homeomorphic to the union of a 2-sphere S and IntS in B2

If 7 is a positive number, B(r) will denote the ball in E* with center
at the origin and radius r. If § and T' are 2-spheres in R® and 8 C Int T,
then [S, T'] will denote Cl (IntT—1IntS). Suppose r and s are positive
numbers and 7 < s. A cellular subdivision {F,, ..., By} of [BAB(r) , BdB(s)]
is a canonical subdivision of [BAB (), BdB(s)] if and only if there exist
disks Dy, ... and D, on BdB(r) such that

(1) for each 4, there exists a j such that if p is in By, then there exists
a point ¢ in D; and a real number ¢ such that P =dt,

(2) it 4 5 j and Dy ~ D; is non-empty, then D; ~ D; C Bd.D; ~ BAD;,

(3) for each i, By ~ B(r) is non-empty,

(4) for each ¢ and j, the diameter of D; is at most twice the diame-
ter of Dj. S

Suppose 8, and 8, are tame 2-spheres in R* and §, is contained in
the interior of §,. A cellular subdivision {B, ..., B} of [8s, S:] is an
A -subdivigion of [y, §,] if and only if there exists a homeomorphism 7
from [8;, 8;] onto [BdAB(1), BAB(2)] such that {h(B), oy h(Bp)} is
a canonical subdivision of [BAB(L), BAB(2)]. If X is a topological space
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and G is an upper semi-continuons decomposition of X, fhen X/G will
denote the decomposition space associated with G.

TrEOREM. If C is @ crumpled cube in R®, R'—IntC ds homeomorphic

* with the closure of the esterior of a tame sphere in R®, and {d:} is a sequence

of tame finite linear graphs such that for each i, a; C @tir1, ;i C BAC and

BdG—(Dai) is 0-dimensional, then there ewists an wupper Semi-continu-

i=1

ous decomposition & of B(1) such that, each non-degenerate element of G is

an arc which intersects BAB(1) at one end-point and is locally polyhedral

except possibly at the other end point, B(1)/G is homeomorphic to C, end

the projection from B(1) to C takes no non-degenerate element of G to o poini

wn G ;.
i1
Proof. The proof is similar to the proof of Theorem 3 of [2]. Let S
denote the boundary of C, and let ¢, denote min{l,1/10 diam C}. There
exists a polyhedral 2-sphere §; in Ext§ such that 8, is homeomorphically
within e, of 8. Now let e, be (1/2)d(C, 8;). By Theorem 2 of [1] (Theo-
rem 2 of [1] holds if A is a tame fmlte linear graph), there exists a poly-
hedral 2-sphere Sy with the following properties:
(1) 8y; is homeomorphically within ey of §, )
(2) there exist disjoint disks Dy, ..., and Dy on 8, each of diameter
n(1)
less than e, such that Cl(S— (JDy) is contained in ExtS8,,,
i=1
(8) there exist disjoint disks Ky, ..., a,nd Kimay on 8y, each of

diameter less than ey, such that CI1(S, U Ky) is contained in Int S,

4) ( .L_JIDM-) o
ExtSy.
Let ¢;, denote

(1/3) min {min {d(Dy;, Dyg): i % j, 1 < i <n(l), and 1<j < n(1)},
min {d (K, Kyj): i#j: <i<m(l), and 1<j<m(l }7
min {&(Dy, 8y — U Klg 1<i<n(d)}, day, ('L~J1 Dig) v ('U1 Kn«))} .

Let T, be a triangulation of R® with mesh less than e, let N be the
union of all 3-simplexes of 7, which intersect [§, 8;], and let My, be the
union of all 3-simplexes in the 2nd baryecentric subdivision of T, which
intersect N. Then My is a polyhedral 3-manifold-with-boundary and it
can be assumed that Bd M, and §;; are in relative general position.

Let M, denote the union of M;; and [y, S,]. Now M;—[8y, 84] has
a finite number of components, and let Fy, ..., and Hiqy be the com-

(U.Kli) is disjoint from @; and @, is contained in
=1 :
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ponents of CL(M;—[S8y;, 81]). It follows that for each 4, F,; has diameter
less than 4e,4 26, which is less than 5e,.
There exists an .4 -subdivision {#,, ...
(1) for each ¢, i <n
BdDy; C Int By,
(2) for each 4,

s Bagny} of [8y, 8] such that
(1), there exists a positive integer j such that

i< ¢(1), the diameter of E,; is less than 5e,,

3) U {Fre: B a5 0} and J {Bis: Bug N T+ @ for some j} are
digjoint.

Let Af; and Ay, 1< g(1), be defined as follows: A% = | {X:
X e{Bu, oy Brgy} or X e {Fy, .., Py} and d(X,Ey) < e} and Ay
is the component of A}; that contains Fi;. Note that for each p in S,
there exists an integer j such that p is in 4,;. For each p.in §—a,, denote
U {Bvi: D € B1i} by Apm. Now for each 4, the diameter of A, is at most 34e, .

Then there exists a homeomorphism &, from §, v IntS; onte B(1.1)
with the following properties: .

(1) M([Su, 8:]) = [BAB(.9), BAB(1.1)],

(2) hy(C) is contained in Int.B(1.01),

(3) {PFr), eny Ri(Brgw)} is a canonical subdivision of [BAB(.9),
BdB(1.1)] into ¢(1) cells,

(4) hy(a,) is contained in BAB(1),

(5) for each p, the image of the union of Ay and a small product
neighborhood of Ay ~[8y, S;] under A, is the union of two sets, ay
and By, where diamaey <2 diamAd,, By is homeomorphic with the
product of a subset of Bday, and [0, 1], and By » ap is homeomorphic
with the cross-section of f,;.

Now M, is a 3-manifold-with-boundary and S is a compact subset
in Int M,. It follows that there exists a positive number ¢;; such that,
if @ is a set with diameter less that 34e,; and the intersection of @ with §
exists, then there exists a 3-cell B such that @ CIntR C R CInt M.

Let e, denote min{d(S, Bd M,), 6,5, 1/4}. There exists a polyhedral
2-sphere 8, in ExtS such that 8, is homeomorphically within ¢, of §.
Let e, be

1/3 min{d(8, 8s), min{d(BdD;, BdFy): BdDy; C IntByj}} .

By Theorem 2 of [1] there exists a polyhedral 2-sphere Sy such that
(1) 8,y is homeomorphically within e, of 8§,
(2) there exist disjoint disks Dy, ...
less than ey, such that Cl(§— TDL()?D“) C BExt 8,
. iz

, and Danesy on 8, each of diameter

1*
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. zund Komez, on Sy, each of
U Kz, CIntS,

(3) there exist disjoint disks Ky, ...

diameter less than 6y, such that CL(S8s—
( t(j’Dm-) v UK»@) is disjoint from a, and a, is contained in

i=1 i=1
Ext 8.
Let ey, denote

1/3 min{min {d(Ds;, Dy): ¢ #J, 1 << n(2), and 1 <j <n(2)},

min{d(KZiiKZi)' U 7&.7’ 1< m(2), and 1 Q] < m(2)} ’

{2) n(2)

@)}, dlas, (1) Do) o (1) Ka)

=1 i=1

'm..
min{d(Dai, Spe— U Kps): 1K <1
j=1

If
Mo ={2: 28y Int S, and d(z, ExtS) < 65}

then in the same way as My, was obtained a polyhedral 3-manifold-with-
boundary M,, exists such that [S, 8,] C Int M,, and My C Mse. It can
be assumed that Bd My and 8 are in relative general position. Let M,
denote the union of M,, and [S., S;]- Now M,—[8:, S;] has a finite
number of compouents, and let ¥y, ..., and Fae) be the components
of CL(M,—[S;s, S2]). It follows that for each ¢, the diameter of Iy is ab
most 5e,. It follows from the definition of M, that §CInt M, C M,
CInt M, and that {z: e C and d(z, §)> ¢} is disjoint from Int M,.

There exists an 4 -subdivision {Ej, ..., Huyge} of [Sp, 8] such that

(1) for each 4, 1 < ¢ < n(2), there exists a positive integer j such that
Bd.Dm C IntEg,-,

(2) for each 4, 1 < ¢ < ¢(2), the diameter of Hy; is less than 5e,,

(3). 4(2) = 44(1),

) U {Bait Bag @y % @) and | {Bay: Boy ~ Fay # @ for some §} are
disjoint.

Let A%, Asi, and A, be defined in the same manner as 4 in the
first construetion: Then for each pin §, the diameter of A is at most 34e,,
and hence for each p in 8, ApC IntAy. Furthermore, if p e[Sy, 8]
and Zp is the component of A, ~ [8,,8,] that contains p, then
[8s, 8:] ~ Ape is contained in Z,, and for each p in 8, there exists
2 3-cell Cps such that A, CIntCpe C Cpe C InbAy.

o1
Now 8, ~ {{BdE,;} exists and has one and only one component
i=1

with diameter greater than 1/2 the diameter of C. Denote this component
by W,. It follows that for each 4, 1 < i < ¢(1), the intersection of W,
and Hy; exists.
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There exists a homeomorphism %, from &, v IntS, onto B(1.01)
with the following properties:

(1) ho([8s2, 8s]) = [BAB(.99), BAB(1.01)],

(2) hy(0) is contained in IntB(1.001),

(3) if #e W, then hy(®) is equal to the radial projection of h( )
onto BdB(1.01),

(4) if # is in C—M,, then Ry(z) = hy(z),

(B) hy differs from h, only at points close to [S, , Sal,

) {Pa(Ba1)y ey Bo(Bogeey)} is 2 canonical subdivision of [BAB(.99),
BdB(1.01)],

(7) hy(a,) is contained in BAB(1),

(8) if & is in @, then hy(z) = hy(z),

(9) for each p, the image of the union of 4, and a small product
neighborhood of Ay ~ [8,,, 8,] under h, is the union of two sets, aps
and Pp2, where diamop <2 diam A4y, B2 is homeomorphic with the
product of a subset of Bday and [0, 1], g ~ By is straight in fu, am
C ap, ape N fpz 18 homeomorphic with the cross-section of B2, and the
cross-sectional diameter of f, is at most the diameter of ays.

The process is eontinued by induction as in Theorem 3 of [2]. It

follows that B(1)= ﬂ hi(8; w Int8;). Let @ be the following de-

= {g: either (1) for some point p of B(l) there
) there

composition of B(1)
exists a positive 1nteger n such that p ¢ hu(Mn) and g = {p}, or (

exists & ¢ in § such that g = ﬂ hi(Ag:)}. Then G is an upper semi-continu-
i=1

ous decomposition of B(1). It follows from the way the A,;’s and the A;’s
are defined that the intersection of each non-degenerate element of @&
with BAB(1) is a one-point set.

If g is a non-degenerate element of @, then there exists a ¢ in § such

that g = ﬁ hi(Ags). Butﬁ hi(Ag;) is equal to ﬁ hi(Cgs) and hence is

cellular. ﬂ hi(Ag) is also equal to ﬂ ag; ¥ Bg:) and hence is an arc which

can be assumed to be locally polyhedral except at ﬂ Ogi.
=1

Define a function % from C into B(1 /G ag follows. If » e Int 0, h(x)

= {limhy(x)} and if 2e8, iz ﬂ hy( 4

not there exist points p and ¢ in 0 such that p 5 ¢ and h(p) = h(g).
Clearly, neither p nor ¢ can be in IntC. If p and ¢ are in § then there
exists an integer # such that A, and A4, are disjoint, and hence hn(Apm)

. Then h is one-to-one. If
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and ka(4g) are disjoint. This is a contradiction. Clearly % is onto B(1)/@
and % is a homeomorphism on IntC. To show % is a homeomorphism it
suffices to show h is continuous at each point of 8. Suppose p is in §,
{b:} is a sequence of points in C, and {b;} converges to p. If T is an open
set in B(1)/G that contains % (p), then there exists a positive integer & such
that hx(Ayr) is contained in U. Since {b;} converges to p, all but finitely
many of the b,’s belong to 4,;. Therefore all but finitely many of the h;(b;)’s
belong to h;(Ap:). By the way the hy’s are constructed, if j > ¢ and &,(b;)
€ hy(Ap;), then hy(bi) € hi(4y), and hence all but finitely many of the
h(b;)’s belong to U. Therefore % is continuous at p and % is a homeo-
morphism.
=) o0
If p is an element in Ul a; then Ulhz(flm) is & one point set and
o= r=
hence the projection from B(1) to C takes no non-degenerate element

of ¢ to a point in Dla,d.

It follows that there exists a pseudo-isotopy H from R® onto R?
such that

(1) H: B*xI >R,

(2) for each t eI, H(R®x{t}) is R?,

(3) if # ¢ R® then H(w, 0) = m,

(4) i 0<?<<1 then H|R*X {#} is a homeomorphism,

(5) H(»,1)= H(y, 1) if and only if # and y are in the same element
of @ or z=y,

(6) H(B(1),1) = C.
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On subdirect embeddings in categories

by
R. Wiegandt (Budapest)

§ 1. In his paper [4] Sulifiski considers categories satisfying certain
natural, although strong, additional conditions, and asks whether every
object of such a category could be subdirectly embedded in a direct
product of subdirectly irreducible objects. Such a theorem for universal
algebras was proved by Birkhoff [1]. In the proof of this theorem it is
implicitly assumed that the lattice of all congruence-relations of any
universal algebra is a so-called algebraic lattice (1). However, the notion
of congruence-relation cannot be formulated inm a category-theoretical
manner; it is possible to consider factor-objects instead of congruence-
-relations. Among the factor-objects one can define a partial ordering.
Thus the condition that the congruence-relations form an algebraic lattice
means that the factor-objects form a lattice and its dual lattice is
algebraic. .

After the preliminaries we consider a category satisfying weaker
conditions than those of [4]. We assume, that every epimorphism is
normal, but we do not suppose that every map has a kernel. (Related
investigations are made in [5], where every map has a kernel, but an
epimorphism need not be normal. There the possibility of dualization is
also discussed.)

In § 3 we prove that an object of such a category can be subdirectly
embedded in a direct product of subdirectly irreducible objects if the
dual lattice of that of all factor-objects is algebraic. In § 4 we show that
this condition is independent of all the conditions assumed by Su-
lirigki [4]; moreover, in the category #*, which is dual to the category
of all abelian groups #, there are objects which cannot be subdirectly
embedded in a direct produet of subdirectly irreducible objeects.

§ 2. Let C be a category whose objects and maps will be denoted
by small Latin and Greek letters, respectively. By definition, the following
axioms hold:

(*) Algebrajc lattices are sometimes called compactly generated lattices.
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