

Decompositions of a 3-cell

by

Lloyd Lininger (Ann Arbor, Mich.)

The main result of this paper is a generalization of Theorem 3 of [2] and a result announced by R. H. Bing. It states that any 3-dimensional crumpled cube can be obtained from an upper semi-continuous decomposition of a 3-cell using arcs which are locally polyhedral except at one end-point, which is not on the boundary of the 3-cell, and the projection of the non-degenerate elements is a 0-dimensional set.

1. Terminology and notation. If A is a set in a topological space then ClA will denote the closure of A. If S is a 2-sphere is R^3 , then Int S and Ext S will denote the interior and exterior, respectively, of S. If A is an n-manifold-with-boundary then BdA will denote the set of points in A which do not have neighborhoods homeomorphic to R^n and Int A will denote A - BdA. A set C is a crumpled cube if and only if C is homeomorphic to the union of a 2-sphere S and Int S in R^3 .

If r is a positive number, B(r) will denote the ball in \mathbb{R}^s with center at the origin and radius r. If S and T are 2-spheres in \mathbb{R}^s and $S \subset \operatorname{Int} T$, then [S,T] will denote Cl ($\operatorname{Int} T - \operatorname{Int} S$). Suppose r and s are positive numbers and r < s. A cellular subdivision $\{E_1, \ldots, E_d\}$ of $[\operatorname{Bd} B(r), \operatorname{Bd} B(s)]$ is a canonical subdivision of $[\operatorname{Bd} B(r), \operatorname{Bd} B(s)]$ if and only if there exist disks D_1, \ldots and D_q on $\operatorname{Bd} B(r)$ such that

- (1) for each i, there exists a j such that if p is in E_i , then there exists a point t in D_j and a real number c such that p = ct,
 - (2) if $i \neq j$ and $D_i \cap D_j$ is non-empty, then $D_i \cap D_j \subset \operatorname{Bd} D_i \cap \operatorname{Bd} D_j$,
 - (3) for each i, $E_i \cap B(r)$ is non-empty,
- (4) for each i and j, the diameter of D_i is at most twice the diameter of D_j .

Suppose S_1 and S_2 are tame 2-spheres in R^3 and S_2 is contained in the interior of S_1 . A cellular subdivision $\{E_1,\ldots,E_q\}$ of $[S_2,S_1]$ is an A-subdivision of $[S_2,S_1]$ if and only if there exists a homeomorphism h from $[S_2,S_1]$ onto $[\mathrm{Bd}B(1),\mathrm{Bd}B(2)]$ such that $\{h(E_1),\ldots,h(E_q)\}$ is a canonical subdivision of $[\mathrm{Bd}B(1),\mathrm{Bd}B(2)]$. If X is a topological space

and G is an upper semi-continuous decomposition of X, then X/G will denote the decomposition space associated with G.

THEOREM. If C is a crumpled cube in R3, R3-Int C is homeomorphic with the closure of the exterior of a tame sphere in R3, and {a_i} is a sequence of tame finite linear graphs such that for each i, $a_i \subset a_{i+1}$, $a_i \subset \operatorname{Bd} C$ and Bd $C-(\bigcup a_i)$ is 0-dimensional, then there exists an upper semi-continuous decomposition G of B(1) such that, each non-degenerate element of G is an arc which intersects BdB(1) at one end-point and is locally polyhedral except possibly at the other end point, B(1)/G is homeomorphic to C, and the projection from B(1) to C takes no non-degenerate element of G to a point in $\bigcup_{i=1}^{n} a_i$.

Proof. The proof is similar to the proof of Theorem 3 of [2]. Let Sdenote the boundary of C, and let e_1 denote min $\{1, 1/10 \text{ diam } C\}$. There exists a polyhedral 2-sphere S_1 in Ext S such that S_1 is homeomorphically within e_1 of S. Now let e_{11} be $(1/2)d(C, S_1)$. By Theorem 2 of [1] (Theorem 2 of [1] holds if A is a tame finite linear graph), there exists a polyhedral 2-sphere S_{11} with the following properties:

- (1) S_{11} is homeomorphically within e_{11} of S_{12}
- (2) there exist disjoint disks $D_{11}, ...,$ and $D_{1n(1)}$ on S, each of diameter less than e_{11} , such that $\operatorname{Cl}(S-\bigcup_{i=1}^{n(1)}D_{li})$ is contained in $\operatorname{Ext}S_{11}$,
- (3) there exist disjoint disks $K_{11}, \ldots,$ and $K_{1m(1)}$ on S_{11} , each of diameter less than e_{11} , such that $\operatorname{Cl}(S_{11}-\bigcup^{m(l)}K_{li})$ is contained in $\operatorname{Int}S$,
- (4) $(\bigcup_{i=1}^{m(1)} D_{1i}) \cup (\bigcup_{i=1}^{m(1)} K_{1i})$ is disjoint from a_1 and a_1 is contained in ExtS₁₁.

Let e_{12} denote

 2

$$\begin{split} (1/3) \min \left\{ & \min \{ d(D_{1i}, D_{1j}) \colon i \neq j, \ 1 \leqslant i \leqslant n(1), \ \text{and} \ 1 \leqslant j \leqslant n(1) \} \,, \\ & \min \{ d(K_{1i}, K_{1j}) \colon i \neq j, \ 1 \leqslant i \leqslant m(1), \ \text{and} \ 1 \leqslant j \leqslant m(1) \} \,, \\ & \min \{ d(D_{1i}, S_{11} - \bigcup_{j=1}^{m(1)} K_{1j}) \colon 1 \leqslant i \leqslant n(1) \} \,, \ d \left(a_1, (\bigcup_{i=1}^{n(1)} D_{1i}) \cup (\bigcup_{i=1}^{m(1)} K_{1i}) \right) \right\} \,. \end{split}$$

Let T_1 be a triangulation of R^3 with mesh less than e_{12} , let N be the union of all 3-simplexes of T_1 which intersect $[S, S_1]$, and let M_{11} be the union of all 3-simplexes in the 2nd barycentric subdivision of T_1 which intersect N. Then M_{11} is a polyhedral 3-manifold-with-boundary and it can be assumed that Bd M_{11} and S_{11} are in relative general position.

Let M_1 denote the union of M_{11} and $[S_{11}, S_1]$. Now $M_1 - [S_{11}, S_1]$ has a finite number of components, and let $F_{11}, ...,$ and $F_{1r(1)}$ be the components of $Cl(M_1-[S_{11},S_1])$. It follows that for each i, F_{1i} has diameter

less than $4e_1 + 2e_{12}$ which is less than $5e_1$.

There exists an A-subdivision $\{E_{11}, ..., E_{1q(1)}\}$ of $[S_{11}, S_1]$ such that

- (1) for each $i, i \leq n(1)$, there exists a positive integer j such that $\operatorname{Bd} D_{1i} \subset \operatorname{Int} E_{1i}$,
 - (2) for each $i, i \leq q(1)$, the diameter of E_{1i} is less than $5e_1$,
- (3) $\bigcup \{E_{1i}: E_{1i} \cap a_1 \neq \emptyset\}$ and $\bigcup \{E_{1i}: E_{1i} \cap F_{1j} \neq \emptyset \text{ for some } j\}$ are disjoint.

Let A_{1i}^* and A_{1i} , $i \leq q(1)$, be defined as follows: $A_{1i}^* = \bigcup \{X:$ $X \in \{E_{11}, ..., E_{1q(1)}\}\ \text{ or }\ X \in \{F_{11}, ..., F_{1r(1)}\}\ \text{ and }\ d(X, E_{1i}) < e_1\}\ \text{ and }\ A_{1i}$ is the component of A_{1i}^* that contains E_{1i} . Note that for each p in S, there exists an integer j such that p is in A_{1j} . For each p in $S-a_1$, denote $\bigcup \{E_{1i}: p \in E_{1i}\}$ by A_{p1} . Now for each i, the diameter of A_{p1} is at most $34e_1$.

Then there exists a homeomorphism h_1 from $S_1 \cup \operatorname{Int} S_1$ onto B(1.1)with the following properties:

- (1) $h_1([S_{11}, S_1]) = [BdB(.9), BdB(1.1)],$
- (2) $h_1(C)$ is contained in Int B(1.01).
- (3) $\{h_1(E_{11}), \ldots, h_1(E_{1q(1)})\}$ is a canonical subdivision of $[\operatorname{Bd} B(.9),$ BdB(1.1) into q(1) cells,
 - (4) $h_1(a_1)$ is contained in Bd B(1),
- (5) for each p, the image of the union of A_{p1} and a small product neighborhood of $A_{p1} \cap [S_{11}, S_1]$ under h_1 is the union of two sets, a_{p1} and β_{p1} , where diam $\alpha_{p1} \leq 2 \operatorname{diam} A_{p1}$, β_{p1} is homeomorphic with the product of a subset of Bd a_{p1} and [0,1], and $\beta_{p1} \cap a_{p1}$ is homeomorphic with the cross-section of β_{v1} .

Now M_1 is a 3-manifold-with-boundary and S is a compact subset in Int M_1 . It follows that there exists a positive number e_{13} such that, if Q is a set with diameter less that $34e_{13}$ and the intersection of Q with S exists, then there exists a 3-cell R such that $Q \subset \operatorname{Int} R \subset R \subset \operatorname{Int} M_1$.

Let e_2 denote min $\{d(S, \operatorname{Bd} M_1), e_{13}, 1/4\}$. There exists a polyhedral 2-sphere S_2 in ExtS such that S_2 is homeomorphically within e_2 of S. Let e_{21} be

 $1/3 \min\{d(S, S_2), \min\{d(\operatorname{Bd} D_{1i}, \operatorname{Bd} E_{1i}): \operatorname{Bd} D_{1i} \subset \operatorname{Int} E_{1i}\}\}$.

By Theorem 2 of [1] there exists a polyhedral 2-sphere S_{22} such that

- (1) S_{22} is homeomorphically within e_{21} of S_{1}
- (2) there exist disjoint disks $D_{21}, ...,$ and $D_{2n(2)}$ on S, each of diameter less than e_{21} , such that $Cl(S - \bigcup^{n(z)} D_{2i}) \subset Ext S_{22}$,

- (3) there exist disjoint disks $K_{21}, ...,$ and $K_{2m(2)}$ on S_{22} , each of diameter less than e_{21} , such that $\operatorname{Cl}(S_{22}-\bigcup\limits_{i=1}^{m(2)}K_{2i})\subset\operatorname{Int} S,$
- (4) $(\bigcup_{i=1}^{n(2)} D_{2i}) \cup (\bigcup_{i=1}^{m(2)} K_{2i})$ is disjoint from a_2 and a_2 is contained in Ext S_{22} .

Let e_{22} denote

$$\begin{split} 1/3 \, \min \big\{ & \min \big\{ d(D_{2i}, D_{2j}) \colon \ i \neq j, \ 1 \leqslant i \leqslant n(2), \ \text{and} \ 1 \leqslant j \leqslant n(2) \big\} \ , \\ & \min \big\{ d(K_{2i}, K_{2j}) \colon \ i \neq j, \ 1 \leqslant i \leqslant m(2), \ \text{and} \ 1 \leqslant j \leqslant m(2) \big\} \ , \\ & \min \big\{ d(D_{2i}, S_{22} - \bigcup_{j=1}^{m(2)} K_{2j}) \colon \ 1 \leqslant i \leqslant n(2) \big\}, \ d\big(a_2, (\bigcup_{i=1}^{n(2)} D_{2i}) \cup (\bigcup_{i=1}^{m(2)} K_{2i}) \big) \big\} \ . \end{split}$$

Ιf

$$M_{22}' = \{z \colon z \in S_2 \cup \operatorname{Int} S_2 \text{ and } d(z, \operatorname{Ext} S) \leqslant e_{22} \}$$

then in the same way as M_{11} was obtained a polyhedral 3-manifold-with-boundary M_{22} exists such that $[S, S_2] \subset \operatorname{Int} M_{22}$ and $M_{22} \subset M'_{22}$. It can be assumed that Bd M_{22} and S_{22} are in relative general position. Let M_2 denote the union of M_{22} and $[S_{22}, S_2]$. Now $M_2 - [S_{22}, S_2]$ has a finite number of components, and let F_{21}, \ldots , and $F_{2r(2)}$ be the components of $\operatorname{Cl}(M_2 - [S_{22}, S_2])$. It follows that for each i, the diameter of F_{2i} is at most $5e_2$. It follows from the definition of M_2 that $S \subset \operatorname{Int} M_2 \subset M_2$ $\subset \operatorname{Int} M_1$ and that $\{x: x \in C \text{ and } d(x, S) > e_{22}\}$ is disjoint from $\operatorname{Int} M_2$.

There exists an A-subdivision $\{E_{21}, \ldots, E_{2q(2)}\}$ of $[S_{22}, S_2]$ such that

- (1) for each i, $1 \le i \le n(2)$, there exists a positive integer j such that $\operatorname{Bd} D_{2i} \subset \operatorname{Int} E_{2j}$,
 - (2) for each $i, 1 \leq i \leq q(2)$, the diameter of E_{2i} is less than $5e_2$,
 - (3) $q(2) \geqslant 4q(1)$,
- (4) $\bigcup \{E_{2i}: E_{2i} \cap \alpha_2 \neq \emptyset\}$ and $\bigcup \{E_{2i}: E_{2i} \cap F_{2j} \neq \emptyset \text{ for some } j\}$ are disjoint.

Let A_{2i}^* , A_{2i} , and A_{p2} be defined in the same manner as A in the first construction. Then for each p in S, the diameter of A_{p2} is at most $34e_2$, and hence for each p in S, $A_{p2} \subset \operatorname{Int} A_{p1}$. Furthermore, if $p \in [S_{11}, S_1]$ and Z_{p1} is the component of $A_{p1} \cap [S_{11}, S_1]$ that contains p, then $[S_{22}, S_2] \cap A_{p2}$ is contained in Z_{p1} , and for each p in S, there exists a 3-cell C_{p2} such that $A_{p2} \subset \operatorname{Int} C_{p2} \subset C_{p2} \subset \operatorname{Int} A_{p1}$.

Now $S_2 \cap \{\bigcup_{i=1}^{g(1)} \operatorname{Bd} E_{1i}\}$ exists and has one and only one component with diameter greater than 1/2 the diameter of C. Denote this component by W_1 . It follows that for each i, $1 \leq i \leq q(1)$, the intersection of W_1 and E_{1i} exists.

There exists a homeomorphism h_2 from $S_2 \cup \text{Int } S_2$ onto B(1.01) with the following properties:

- (1) $h_2([S_{22}, S_2]) = [BdB(.99), BdB(1.01)],$
- (2) $h_2(C)$ is contained in Int B(1.001),
- (3) if $x \in W_1$ then $h_2(x)$ is equal to the radial projection of $h_1(x)$ onto $\mathrm{Bd} B(1.01)$,
 - (4) if x is in $C-M_2$, then $h_2(x) = h_1(x)$,
 - (5) h_2 differs from h_1 only at points close to $[S_{22}, S_2]$,
- (6) $\{h_2(E_{21}), \dots, \, h_2(E_{2q(2)})\}$ is a canonical subdivision of [Bd B(.99), Bd B(1.01)],
 - (7) $h_2(a_2)$ is contained in BdB(1),
 - (8) if x is in a_1 then $h_2(x) = h_1(x)$,
- (9) for each p, the image of the union of A_{p2} and a small product neighborhood of $A_{p2} \cap [S_{22}, S_2]$ under h_2 is the union of two sets, a_{p2} and β_{p2} , where diam $a_{p2} \leq 2$ diam A_{p2} , β_{p2} is homeomorphic with the product of a subset of $\mathrm{Bd}\,a_{p2}$ and [0,1], $\beta_{p2} \cap \beta_{p1}$ is straight in β_{p1} , $a_{p2} \subset a_{p1}$, $a_{p2} \cap \beta_{p2}$ is homeomorphic with the cross-section of β_{p2} , and the cross-sectional diameter of β_{p2} is at most the diameter of a_{p2} .

The process is continued by induction as in Theorem 3 of [2]. It follows that $B(1) = \bigcap_{i=1}^{\infty} h_i(S_i \cup \operatorname{Int} S_i)$. Let G be the following decomposition of B(1): $G = \{g: \text{ either } (1) \text{ for some point } p \text{ of } B(1) \text{ there exists a positive integer } n \text{ such that } p \in h_n(M_n) \text{ and } g = \{p\}, \text{ or } (2) \text{ there exists a } q \text{ in } S \text{ such that } g = \bigcap_{i=1}^{\infty} h_i(A_{qi}) \}$. Then G is an upper semi-continuous decomposition of B(1). It follows from the way the A_{pi} 's and the h_i 's are defined that the intersection of each non-degenerate element of G with $\operatorname{Bd} B(1)$ is a one-point set.

If g is a non-degenerate element of G, then there exists a q in S such that $g = \bigcap_{i=1}^{\infty} h_i(A_{qi})$. But $\bigcap_{i=1}^{\infty} h_i(A_{qi})$ is equal to $\bigcap_{i=1}^{\infty} h_i(C_{qi})$ and hence is cellular. $\bigcap_{i=1}^{\infty} h_i(A_{qi})$ is also equal to $\bigcap_{i=1}^{\infty} (\alpha_{qi} \cup \beta_{qi})$ and hence is an arc which can be assumed to be locally polyhedral except at $\bigcap_{i=1}^{\infty} \alpha_{qi}$.

Define a function h from C into B(1)/G as follows. If $x \in Int C$, $h(x) = \{\lim h_i(x)\}$ and if $x \in S$, $h(x) = \bigcap_{i=1}^{\infty} h_i(A_{xi})$. Then h is one-to-one. If not there exist points p and q in C such that $p \neq q$ and h(p) = h(q). Clearly, neither p nor q can be in Int C. If p and q are in S then there exists an integer n such that A_{pn} and A_{qn} are disjoint, and hence $h_n(A_{pn})$

L. Lininger

and $h_n(A_{gn})$ are disjoint. This is a contradiction. Clearly h is onto B(1)/G and h is a homeomorphism on Int C. To show h is a homeomorphism it suffices to show h is continuous at each point of S. Suppose p is in S, $\{b_i\}$ is a sequence of points in C, and $\{b_i\}$ converges to p. If U is an open set in B(1)/G that contains h(p), then there exists a positive integer k such that $h_k(A_{pk})$ is contained in U. Since $\{b_i\}$ converges to p, all but finitely many of the b_i 's belong to A_{pi} . Therefore all but finitely many of the $h_i(b_i)$'s belong to $h_i(A_{pi})$. By the way the h_i 's are constructed, if j > i and $h_i(b_i) \in h_i(A_{pi})$, then $h_j(b_i) \in h_i(A_{pi})$, and hence all but finitely many of the $h(b_i)$'s belong to U. Therefore h is continuous at p and h is a homeomorphism.

If p is an element in $\bigcup_{i=1}^{\infty} a_i$ then $\bigcup_{i=1}^{\infty} h_i(A_{pi})$ is a one point set and hence the projection from B(1) to C takes no non-degenerate element of G to a point in $\bigcup_{i=1}^{\infty} a_i$.

It follows that there exists a pseudo-isotopy H from \mathbb{R}^3 onto \mathbb{R}^3 such that

- (1) $H: R^3 \times I \rightarrow R^3$,
- (2) for each $t \in I$, $H(\mathbb{R}^3 \times \{t\})$ is \mathbb{R}^3 ,
- (3) if $x \in \mathbb{R}^3$ then H(x, 0) = x,
- (4) if $0 \le t \le 1$ then $H|R^3 \times \{t\}$ is a homeomorphism,
- (5) H(x, 1) = H(y, 1) if and only if x and y are in the same element of G or x = y.
 - (6) H(B(1), 1) = C.

References

- D. Gillman, Side approximation, missing an arc, Amer. J. of Math. 85 (1963), pp. 459-476.
- [2] L. Lininger, Some results on crumpled cubes, Trans. of the Amer. Math. Soc. 118 (1965), pp. 534-549.

UNIVERSITY OF MICHIGAN

Reçu par la Rédaction le 7.5.1968

On subdirect embeddings in categories

by

R. Wiegandt (Budapest)

§ 1. In his paper [4] Suliński considers categories satisfying certain natural, although strong, additional conditions, and asks whether every object of such a category could be subdirectly embedded in a direct product of subdirectly irreducible objects. Such a theorem for universal algebras was proved by Birkhoff [1]. In the proof of this theorem it is implicitly assumed that the lattice of all congruence-relations of any universal algebra is a so-called algebraic lattice (1). However, the notion of congruence-relation cannot be formulated in a category-theoretical manner; it is possible to consider factor-objects instead of congruence-relations. Among the factor-objects one can define a partial ordering. Thus the condition that the congruence-relations form an algebraic lattice means that the factor-objects form a lattice and its dual lattice is algebraic.

After the preliminaries we consider a category satisfying weaker conditions than those of [4]. We assume, that every epimorphism is normal, but we do not suppose that every map has a kernel. (Related investigations are made in [5], where every map has a kernel, but an epimorphism need not be normal. There the possibility of dualization is also discussed.)

In § 3 we prove that an object of such a category can be subdirectly embedded in a direct product of subdirectly irreducible objects if the dual lattice of that of all factor-objects is algebraic. In § 4 we show that this condition is independent of all the conditions assumed by Suliński [4]; moreover, in the category \mathcal{A}^* , which is dual to the category of all abelian groups \mathcal{A} , there are objects which cannot be subdirectly embedded in a direct product of subdirectly irreducible objects.

§ 2. Let C be a category whose objects and maps will be denoted by small Latin and Greek letters, respectively. By definition, the following axioms hold:

⁽¹⁾ Algebraic lattices are sometimes called compactly generated lattices.