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Tree-likeness of hereditarily equivalent continua

by
H. Cook (Houston, Tex.)

A continuum is a compact, connected, metric space. An bereditarily
equivalent continuum is a non-degenerate continuum which is homeo-
morphic to each of its non-degenerate subcontinua.

Tn [5], S. Mazurkiewiez raised the question: “Un continu dans 'espace
3 m, dimensions qui est homéomorphe de tout continu qu'il contient,
est-il necessairement un are simple?>’ Moise, [6], has answered this question
in. the negative by showing that the psendo-are is an indecomposable,
planar, hereditarily equivalent continuum; however, .G. 'W. Henderson,
[3], has shown that each decomposable, hereditarily equivalent continnum
is an arc. The pseudo-arc and the arc are the only known hereditarily
equivalent continua. The author has heard, conversationally, speculation
that (especially in light of the proof of D. W. ‘Henderson, [2], that there
is a continuum each non-degenerate subcontinuum of which is infinite
dimensional) there may be an infinite dimensional, hereditarily equivalent
continuum. Lemma 3 of this paper shows that this is not the case.

A tree-like continuum is one which, for every positive number e,
can be s-mapped onto a finite tree. Fach tree-like continuum is one-
dimensional. Whyburn has shown, [8], that each planar, hereditarily
equivalent continuum is tree-like. In this note it is shown that every
hereditarily equivalent continoum iy tree-like.

LemMA 1. Suppose that M is an hereditarily equivalent continuum
and & 4s -a positive number. Then there is @ homeomorphism h of M onto
“a proper subcontinuum of M such iRat, for each point & of M, the distance
from @ to h(w) is less than e

Proof. Let G be an uncountable monotonic collection of non-
degenerate subcontinua of M (e.g., for some point p, let G be the collection
to which ¢ belongs if, and enly if, for some positive number 4, g iy the
component containing » of the closed §-neighborhood of p.) For each
element g of @, let hy denote 2 homeomorphism of M onto g. Let >4
= {hy| g €@} Then X is a subset of MY , the space of all mappings
(i.e. continuous transformations) of M into M, and, thus, is separable
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and metric. Since every uncountable subset of X has a limit element,
there is an element k& of @ such that hy is a limit element of {r)] g g
and g C &} and of {k;] g eGand kC g}, ([7], Theorem 6, p. 3). Thus there

is a sequence {g;} of distinct elements of G which are proper subcoritinug, -

of %k such that the sequence {h,} converges to h;. Then the sequence
{khoh;‘} converges to the identity mapping of % 0n.130 itself and, for
each 4, hy, o k() is a proper subcontinuum, g;, of k. Since M is homeo-
morphic to k, there also exists a sequence {fs} of homeomorphisms, each
throwing M onto a proper subcontinuum of M such that the sequence {f;}
converges to the identity mapping of M onto M. Thus, Lemma.\l
is true.

LemMA 2. If M is am hereditarily equivalent continuum, every mapping

of M into a connected one-dimensional polyhedron is homotopic to a constant.’

Proof. Suppose that ¥ is connected, one-dimensional polyhedron
and there is an essential mapping of M into Y. Since the space Y™ of
all mappings of M into ¥ iy an ANR ([4], p. 260), if we show that there
is an essential mapping of M into ¥ which is a limit point (in ¥™) of
the set of inessential mapping of M into ¥, we will have achieved a contra-
diction. Let f be a mapping of M onto Y which is essential; there is a sub-
continuum K of M such that f|K is essential but, if K’ is a proper sub-
continuum of K, f|K’ is inessential. Since K is homeomorphic to M, there
is an essential mapping g of M into ¥ such that, if. M’ is a proper sub-
continuum of M, g| M’ is inessential. Let ¢ > 0. Since ¢ is uniformly con-
tinuous, there is a positive number & such that, if % is a mapping of M
into M at a distance.in M™ less than & from the identity mapping of M
onto M then [g|k(M)] o his a distance less than & from g in Y™, But there
is a homeomorphism % of M onto a proper subcontinuum. M’ of M which
moves no point of M a distance greater than 6 and g|M’ is inessential.
Thus, the distance in Y* from g to [g|M'] o his less than & and is inessential.
Thus g is an essential mapping of M into ¥ which is a limit point in T
of the set of inessential mappings of M into ¥, our contradiction. Hence,
every mapping of M into a one-dimensional polyhedron is inessential.

LevwmA 3. Every hereditarily egquivalent continuum is one-dimensional.

Proof. Buppose M is an hereditarily equivalent continuum and
dim M > 1. Then ([4], p. 271) there is a subcontinuum M’ of M and an

essential mapping f of M’ onto a circle. But M’ is hereditarily equivalent,
a contradiction to Lemma 2. '

TEEOREM. Bvery hereditarily equivalent continuum is tree-like.

.Pro of. Every hereditarily equivalent continuum is a one-dimensional
fzox}tlnuum each mapping of which onto a one-dimensional polyhedron
is inessential and, thus, [1], Theorem 1, is tree-like.
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