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A representation theorem for distributive quasi-lattices™

by
Raymond Balbes (St. Louis, Mo.)

1. Introduction. In [4], J. Plonka introduces the notion of a
distributive quasi-lattice (DQL). Roughly speaking, they are algebras
which satisfy the usual axioms for a distributive lattice (considered as
an algebra wiﬁh two binary operations) except that the absorption laws
are deleted. The purpose of this paper is to obtain a representation theorem
for distributive quasi-lattices which is analogous to the representation
of distributive lattices as rings of sets. Indeed, in the case when a DQL
ig a digtributive lattice, our representation coincides with the classical one.

2. Definitions and lemmas. A distributive quasi-lattice (DQL) is an
algebra D = (D, +, -) with axioms:

(1) o+ =2; TT=1%;

(@) sty=y+o; Y=Ys;

{3) (@+y)+z=o++2; loyz=202);
(4) wly+2) = oy+oz; stye=(@+y)@+e).

For a finite non-empty subset 8 = {#, ..., @n} of a DQL, II(8) will
denote - ... %, and we adopt the convention that #-II(@)= . The
following properties of distributive quasi-lattices were proved “in [4]:
{5) IR Z(8)=I(8) (8+9);

(6) o)+ 28 =28 ’+9);

(7). For finite non-empty subsets Sy, ...y Sn

3 sy =| Smsy) -+ U S0

i=1 j=1 =

where S, ..., Sy, are the minimal members of {Sy, ..., Sa} under inclusion.
In order to simplify notation, define the relation: z <y iff oy = =

It is evident that (D, <) is a meet semi-lattice where ¥AY = &Y. Although

2+y may not be an upper pound for  and ¥ in (D, Z), v+y s S any

* The preparation of this paper was gupported: in part by a Summer Research
Grant from the University of Missouri-St. Louis.
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upper bound for # and y. Dually, define » <y iff a4y = y. (D, <) ‘a‘nd‘
(D, <) are isomorphic under &>z iff D is a distributive lattice.
THEOREM 1. There is a one-to-one correspondence between the class of
distributive quasi-lattices and the dass of relational systems of the form,
(D, 2, <), where (D, <,A) is a meet semi-lattice, (D, <<, V) is a Jjoin sem-
lattice and ) '
(8) sA(YVR) = (BAY)V(BAZ);
(9 Y (yAz) = (@Vy)A(wVe) .
The main result of this paper (Theorem 4) is possible because of
the variant of the “prime filter theorem?’’ which appears below.
DrFINITION 2. A filter F' in a DQL D= (D, 4+, -) is a non-empty
subset of D which satisties
(10) 22y, wvelF=ycl;
(11) s, yeF=>pyel.
If F#D.a,nd w4y eF=uelF or yeF, then I is a prime filier.

) A prime ideal i3 defined dually (that is; +, - and < are replaced
with o +, §respec’ﬁively). If @+ 8 CD, then the smallest filter, [§],
containing S is, as usual, {y € D| y > &, ... -, where 2y € S} go that for
#eD, [z]={y| y =} :

LeMma 3. If D 4s ¢ DQL and « ;E Yy them there is a prime filter F which
contains % and not y.

VPro of. By using Zorn’s lemma, it can be verified that the family ¢
gf ﬁ}ters that contain # and not y has a maximal member F. To show F
isprime, let u+v e, u ¢ F,v ¢ F. Then F C[F w {w}]implies y ¢ [F' v {u}],
80 ¥ > fiu for some f, ¢ 7, similarly y> f,v for some f, ¢ F. We have
already noted that this implies that ¥ = fiu+fw. Now by (6)

(hu+fo)fifs(utv) = Sihutfifoun +fifav-
=f1fz(u+'“'”+’v) = fifi(u+n).

»SO hif(u+0) < fiutf,0 < y, which means y < F, a contradiction.

3. Representation theorem.

¥ THEOREM 4. An dlgebra D is ¢ DQL if and only if it is of the form

é%:’)’:;?;: _,a . )dwke'rje Xpand Y are Jamilies of sets closed under finite inter-
nd unions i : i

satisgying ons respectively, 0: X~ is a one-to-one correspondence

(12) An~67HoB) v 0(0)) = 67(6(4 ~ B) w 0(4 ~ 0))

. for  A,B,0 e Xo;
13) Roho8) A (T = 6(67HR w 8) A 6~ (R u T)) °

Jor R,8,TeX

iom°®

and for A, BeXq:
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A4+B=67'(0(4) v 6(B), A-B=AnB.

Proof. It is immediate tha,t. the algebra described in the theorem

is & DQL. Now suppose D = (D, +, ) is a DQL. Let F be the set of.

prime filters and J the prime ideals in D. For each % ¢D, let
={FeF|loeF}; and o' ={clw¢l};
also
Xo={o*| <D} and Y= {z"| weD}.
By using Lemma 3, and its dual, 6: «* —>z" is seen to be a one-to-one
correspondence between Xg and Y. Clearly
(14) o Ayt = (ay)* and ot Uyt = (@+y)*.
For o*, y*, 2F e Xoy:
& ~ 07(8(y*) v 0(2%))
—a* 07yt v =a" n 67y +2))
— & A (Y +2)* = (Bly+a)* = (oy+o2)* = 6 {2y +a2)")
= ()" v (02)*) = 67 (6((a)")  {(ow)))
= 67 (8(z* ny*) v O(z" ~neY).

Similarly for (13). Finally the mapping &—>o* ig an isomorphism of D

onto (Xp, +, ). , . .
COROLLARY 5. In Theorem 4, D2(Xo, +, -) where 8™y = (2+¥)

ond o* -y = (oy)* = a* A Y" o
COROLLARY 6 (Birkhoff, Stone). Every distributive lattice D is s0-

mo'rg';hio with a ring of sets. . B
Proof. For each @ eD, where D is a distributive 1att1c:e, o =a"
50 Xp = Y and 9 = lxg- Hence 9 i isomorphic with the ring Xg.

ts. In order to show that prime filters in 2 DQL
consider the case of
. First observe that in
[#] where & is

4, Independent se . ]
can sometimes be explicitly determined, we will

a DQL generated by an independent set J, ([4], § 3!
any finite DQL, ¥ is a prime filter it and only if F=
subjoin irreducible (SII); that is

. <)
(15 s<ytes>s<yorwlzandzis not the least element of (D, =)

Since we want to consider the o
the section that D = (D, +, -) is a DQL generate

hout
he most general case, we assume thro'ug !
y a set J satisfying:


GUEST


210 R. Balbes

For 8, T finite non-empty subsets of J
(16) II(T)+ 2(T) =
(7) IN(8)+II(8) Z(T) =

(see [4], Theorem 6).
Levnma 7. Suppose 3 #ACBCJ and @ # 8:CJ for i=1,..,

Z(M)=>8nT+#0;
I8 Z(Ty=8~nT+#0

Then II{A)+II(B) < X II(8:) if and only if
i=1

-

(18) 8:CB

i=1

and

(19)

8, CA  for some dye{l,..,n}.

Proof. Suppose II(4)+II(B) < ZII 8i). Let s;e8; for i =1, ...

Then

I4)+1(B)< Y (%))

i=1

= IT{u+ ... +Un| Ui € 8 S 81+ oo +64.

Let o, ... . 8n) 80

)= I(A)si+ ) II(Byay
i=1 i=1

“Zm to obtain

» #m be the distinet members of (s, ..
(20) I(A)+II(B

Multiply (20) by II(B)-a;- ...
(21)  II(B)w,

Wp—1&pt1” e
» Bp1piit e Ty
= II(B)-&- ...

“Tp—1Ppi1” ...

T +II(B) ;- ...

Let T=. B {@yy ooy By Bypray ooy B}y, and add Z(T) to (21).
we obtain: 2(T) = Z(T)+II(T)z,. This means 2peT 50 {84, ..
and henee (18) is proved.

It (19) lS fa.lse, then there lS a non- empty subset S,CB“"-A Sllch
that 71 (A) JZ(B) = z s) Hellce,

I A)+I(A)IT(B—A4)+ Z(B—4))
= II(A)+II(B)+II(4) (B—A)
= II(4) Z(8)+I1(B)Z(8')+1I(4)
=1 (A)(Z(s')+1:r(3 —Ay 3

But. 8’CB—A4 so II(A)+IT(A) Z(B—4) =
1ndependence implies that 4 ~ (B— A) #0.

T

By (6}
S} CB

(B—4)
§)+Z(B—A4)).
II(4)

XZ(B—A), which by

icm°®
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Conversely, without loss of generality, let us assume that §;C A.
Then

21:/ 8)

= I(4—8)(I($)+I(B—(4- ) (T(S8)+ ) 1T(80)

11(A)+IT(B

= (A —8)(I(8)+ ) T(B—(A—8) I (80)

=2

= IT(A ~8)IT(8)+ Y H([A~8] v [B—(4—8)]v 8}

i=2

= IT(A)+II(B)

" 80

I(A)+I(B) < D) IT(85).

=1

THEOREM 8. An dlement a ¢ D is SII if and only if a = II(8)-+II(T)
where @ # 8 C T CJ, and 8 #J. Moreover the representation is unique..

Proof. Suppose a = II(8)+II(T),@+SCTCJ, S#Janda;b-}a'

n

where b= 2 II(8:),
=1

Then Lemma 7 implies, without logs of generality, that 8;CA and

m
¢= ) II(Ty); 8i, T; are non-empty subsets of J.
=1

U 8;CB. So by the converse of Lemma 7, a <b. Also if SeJ s

i=1
then a * 8.

Oonversely, suppose &= Z II(8:) is SJI, where @ = 8;CJ, and

w

s

exists @; e 8;— 8, for some 4 e {1, .
8JI, a < @, for some p. Hence

that for no ¢ is it true that 8;C ;. Then for each 4 {1, ..., n} there.

,m}. Since a £ @ +...+%n and @ is.

(22) 2 I(8s) = 2 o, I (84) -
=1 "1=1
Tet 8 = ( O 8¢) — {w}. Then
i=1
g ={ @RS el
SI®)=\m5) it ape 8.
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Since #, € 8p—Sp,, the product of (22) with II(8) yields:
‘T II(S) +II(S) = wpII(8) .

But (17) implies the contradiction #, e §. We now invoke (7) to obtain
n
a = IT(8y)+II( .E_{Sg).

If 8;=J then a <b for all beD.

The uniqueness follows from Lemma 7.

THEOREM 9. Let D be a DQL generated by a finite independent set J.
Then D has the form (Z, +, -) where Z is the family of all finite inter-
sections of {A'| @ = A CJ} where

1<i<n
1<j<m

(n n
(40 HA B = [) (Ao By

A;

s

(40 () 4=

F=n+1 ©

)

1
‘and A’ = {II(8)+I(T) SCTCJ, S #£J, AnS#0, ACT}

Proof. For each deD, let & ={seD] a<d, a is SIJI} and Z
= {d"| d ¢ D}. Then since D is finite, d* —d~ iy an isomorphism of (Xq, +, *)
onto (Z, +,-) where (Xp, +,-) is as in Corollary 5,

) A e =(d+e) and d -0 =(d-6) =d e .
Set A’ = (Z(4))”. Since J generates D, d ¢ D has the form
=[] 280, 0£8CT s a =[) (=8 =0 8.
=1 . i=1" i=1
Next

O(Z@a) -+ (2B))

=1
L

(1 49+ B)

n
K5 g=

.

=([] (=] +( T (z(B)
= [(

(]:[ Z(Ag)+ ”1 (Z@)”
= [T (z@ao+=2my)
=
=1<O<n (Z(A{ \JBj))_ =1m (AEUB:I)IB
1<is<m ééﬁ
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7n

() 49-( 73, s = (] zea) TT =)

=1 i=n+1
= (I;IZ(Ai)r: 0 41

It remains to show that if @+ 4 CJ then
(Z’(A))”: {II(8)+II(T)|SCTCJ, 8#J, An8+0, ACT}.

Now v e (Z(A))” iff @ < Z(4) and o is SJL. But & is 8IT iff & = II(8)+
J4II(T) where SCTCJ, 8+#4J so by Lemma T, v < X(4) it ACT
and A4 ~ 8 % @. This completes the proof.

ExampLE. Let J = {a,bd} be an independent set that generates
(D, +, -). Then .

@) = (o, atat};
{b} = {b, b+ab};
{a, b} = {a+ab, b+ ab} ;
WY ~n {0y =9;

{a¥ ~ {a, bY = {a+ab} ;
OY ~{a, b = B+ab}

Tt follows from Theorem 9 that the diagram for (D, <) is:

b(a+b)

ab

Oorollary B shows that every DQL D determines a unique_ semi-
lattice Xq which ig isomorphic—as a DQL—with D. We close with the
following question: To which meet semi-lattices M do there correspon_d
distributive quasi-lattices D such that Xop ig isomorphic to M—as a semi-
lattice?
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Characterizing the 3-cell by its metric

by
Dale Rolfsen* (Princeton, N. J.)

The purpose of this article is to prove that cerfain elementary prop-
erties enjoyed by the Fuclidean metric on the unit cube or ball in 3-space
yield some rather simple characterizations of the topological 3-cell.

ntroduction. In a metric space (X, d), m is a midpoint of # and ¥y
provided d(w, m) = d(m,y) = td(z,y). We say that a space (or its
metric) is conves if each pair of points has at least one midpoint, strongly
conven (SC) if each pair has exactly one midpoint, and without ramifica-
tions (WR) if no midpoint of 2 and ¥ is also & midpoint of #” an ¥, unless
z— o', A metric gpace which is simultaneously 8C and WR will be called
SC-WR.

Following are the paper’s main results (these have already been
announced in [10] without detailed proofs).

TurorEM A. Bach 3-dimensional compact SC-WER metric space S
homeomorphic fo the 3-cell.

TrmorEM B. Hach compact 3-manifold (with boundary) having o SC
melric is homeomorphic to the 3-cell. i :

TEEOREM C. Any crumpled cube having o SC metric is homeomorphic
to the 3-cell. (A crumpled cube is defined fo be the dosure of the bounded
complementary domain of some 2-sphere in ES.)

Theorem A generalizes the analogous result in 2-dimensions proved
by Lelek and Nitka [6]. The content of Theorem B is that if “fake cubes™
(i.e. homotopy 3-cells which are not real cells) exist, then they fail to
have a metric with unique midpoints. Although the higher dimensional
versions of these theorems seem at present to be unanswered, the following
related result is true at leagt for > 5: Bach compact n-manifold having
a SC-WR metric is topologically an n-cell [see 10]. Section I recalls some
general properties of convex metric spaces, Section IT contains the proof
of Theorem A, while Theorems B and C are proved simultaneously in
Section IIL . .

* Supported in part by National Jeience Foundation grant GP-7952X, and hased
on the author’s doctoral dissertation written under Joseph Martin at the University
of Wisconsin.

14%


GUEST




