264

is a k-ideal and by Lemma 9 \overline{R} satisfies the ascending chain condition on right annihilators, and so by Lemma 8 there exists an $\overline{x} \neq 0$ in \overline{R} such that $\overline{xR} = 0$.

Therefore $xR \subseteq R_n$ and $xRR^n = xR^{n+1} = 0$. By our choice of $n, x \in T_n$ so that $\bar{x} = 0$. This contradiction proves that $\bar{R} = 0$ and $R = T_n$. Hence $R^{n+1} = 0$.

COROLLARY. If R is a semiring satisfying the ascending chain condition on left and right k-ideals and such that $\mathfrak{L}(R)$ is a k-ideal, then any nil subsemiring of R is nilpotent.

Proof. Since every right or left annihilator ideal is a right or left k-ideal, the corollary follows from the theorem.

Note. This paper is part of the author's Ph. D. dissertation prepared under Professor Lawrence P. Belluce at the University of California, Riverside.

References

- D. R. LaTorre, On h-ideals and k-ideals in semirings, Depr. Hungary Publ. Math. 12 (1965), p. 219.
- [2] I. N. Herstein, Topics in ring theory, Univ. Chicago Math. Lecture Notes (1965), pp. 75-102.
- [3] Theory of rings, Univ. Chicago Math. Lecture Notes (1961), pp. 25-28.

Reçu par la Rédaction le 25. 6. 1968

A proof of deRham's theorem

b

M. L. Curtis and J. Dugundji (Houston, Tex.)*

It is the purpose of this note to give a short proof of deRham's theorem using a modification of Dugundji's cohomology comparison theorem [1] and a simple convexity lemma. We include a proof of this well-known lemma since we have been unable to find it in the literature.

LEMMA 1. Let $f: U \to V$ be a homeomorphism, where U and V are open sets in \mathbb{R}^n . Assume (1) that f is C^1 and that $g = f^{-1}$ is C^2 . Then for each $x \in U$ there exists an r(x) > 0 such that the image f(B(x, r)) of every ball B(x, r) of radius $r \leq r(x)$ about x is convex.

Proof. We can assume x=0 and that U, V are small enough so that there exist real numbers K>0, M>0 satisfying

(1) If γ is a curve obtained by restricting f to any line segment in U, then

$$\|\gamma'(t)\| \leqslant K$$

(where t is are length on the segment and prime denotes differentiation).

(2) If ϱ is a curve obtained by restricting g to any line segment in V, then

$$\|\varrho^{\prime\prime}(t)\|\leqslant M$$
.

Note that we also have $\|\varrho'(t)\| \geqslant 1/K$. Pick $\lambda > 0$ so small that

(3) $2M\lambda \leqslant 1/K^2$

and choose s > 0 so that

(4) $gB(f(0), s) \subset B(0, \lambda)$.

We are now going to show that

(5) For each ball $B(0,r) \subset gB(f(0),s)$, the image fB(0,r) is convex.

In fact, given y_0 , $y_1 \in fB(0,r)$, let $d = ||y_0 - y_1||$, let J be the closed interval [0,d], and let $\sigma: J \to V$ be the line segment joining y_0 to y_1 . We have $\sigma(J) \subset B(f(0),s)$, since the latter is a convex set containing y_0

^{*} Partially supported by NSF Grants.

⁽¹⁾ Although the given hypotheses imply that f itself is also \mathcal{O}^2 , we make no use of additional fact.

and g_1 so, because of (4), we are sure that $g\sigma(J) \subset B(0,\lambda)$. Let $\varrho = g\sigma$ and define $H: J \to \mathbb{R}^1$ by

$$H(t) = ||o(t)||^2$$
, $t \in J$.

Then

$$H^{\prime\prime\prime}(t) = 2||\varrho^{\prime}(t)||^2 + 2\langle \varrho^{\prime\prime}(t), \varrho(t)\rangle$$

where $\langle \cdot, \cdot \rangle$ is the usual scalar product in \mathbb{R}^n . Since

$$|\langle \varrho''(t), \varrho(t) \rangle| \leqslant ||\varrho''(t)|| \cdot ||\varrho(t)|| \leqslant M\lambda$$

whereas $\|\varrho'(t)\|^2 \geqslant 1/K^2$, we find from (3) that H''(t) > 0 on J, so that H is a convex function on J and therefore

$$H(t) \leqslant \max\{H(0), H(d)\} = \max\{\|g(y_0)\|^2, \|g(y_1)\|^2\} \, < \, r^2$$

for all $t \in J$. Thus, $||\varrho(t)|| < r$ for all $t \in J$, so $\varrho(J) \subset B(0,r)$ and consequently $\sigma(J) = f\varrho(J) \subset fB(0,r)$. This completes the proof of both (5) and the Lemma.

Now let M be a paracompact C^{∞} n-manifold, and put a Riemannian metric on M. Using the exponential map

$$\exp_x: U_x \to M$$
,

where U_x is an open neighborhood of 0 in the tangent space T_x of M at $x \in M$, a proof essentially the same $(^2)$ as that for the Lemma 1 shows that the image of every sufficiently small ball $B(0,r) \subset U_x \subset T_x$ is a geodesically convex neighborhood of x in M. Being paracompact and locally compact, M is the free union of subspaces each having the form $\bigcup_{i=1}^\infty U_i$, where each U_i is open, each \overline{U}_i is compact, and $\overline{U}_i \subset U_{i+1}$ for each i; covering \overline{U}_2 (resp. each $\overline{U}_{i+1} - U_i$) by finitely many geodesically convex open sets, each contained in U_3 (resp. $U_{i+2} - \overline{U}_{i-1}$) it follows that

Lemma 2. A paracompact C^{∞} manifold M^n has a star-finite open covering $\binom{3}{2}$ by geodesically convex sets.

It follows that all intersections of these sets are geodesically convex and hence all sets in the covering and all intersections are open n-balls.

DEFINITION. A structure S on a topological space X is a lattice of subsets (meet is intersection, join is union) such that the empty set \mathcal{O} and the space X belong to S. Given a structure S on X, the structure category (X, S) has as objects the elements of S, with the set $\operatorname{Hom}(A, B)$ of

morphisms being the inclusion whenever $A \subset B$ and empty otherwise. A cohomology theory on (X, S) is a sequence $\{h^q | q \in Z\}$ of cofunctors from (X, S) to the category of abelian groups and homomorphisms (any abelian category could be used), along with natural transformations

$$\delta \colon h^q(A \cap B) \to h^{q+1}(A \cup B)$$

for each (q, A, B) such that the following sequence is exact:

$$\dots \longrightarrow h^{q-1}(A \cap B) \xrightarrow{\delta} h^q(A \cup B) \xrightarrow{i^*} h^q(A) \oplus h^q(B) \xrightarrow{j^*} h^q(A \cap B) \longrightarrow \dots$$

Here

$$i^*(\xi) = (i_A^* \xi \,,\, i_B^* \xi) \,, \quad j^*(\eta \,,\, \zeta) = j_A^* \, \eta - j_B^* \zeta$$

where i_A : $A \subset A \cup B$, j_A : $A \cap B \subset A$, etc.

If for any space X we take S to be the lattice of all open sets, then singular cohomology is a cohomology theory in the sense just defined. (See, for example, [2], page 239). Given any covering U of X by open sets we get a structure S by taking the lattice generated by the members of U. Singular cohomology is then a cohomology theory for (X, S).

If X is now a C^{∞} manifold, we also have the deRham groups (vector spaces) defined on open sets of X. To see that this is also a cohomology theory (i.e., that we have a Mayer-Vietoris sequence) it suffices to notice that a p-form ω^p on an open set W is uniquely determined by its integrals on all differentiable p-simplexes in W; the proof is then like that for singular cohomology. Just as for singular cohomology, the deRham cohomology is a cohomology theory for (X, S) where S is the lattice generated by any covering of X by open sets. Our objective, of course, is to show these cohomology theories are isomorphic for a paracompact C^{∞} manifold.

LEMMA 3. Let h, \hat{h} be cohomology theories on (X, S) and let $t: h \rightarrow \hat{h}$ be a natural transformation. Assume that for some $A, B \in S$, both $t(A): h(A) \rightarrow \hat{h}(A)$ and $t(B): h(B) \rightarrow \hat{h}(B)$ are isomorphisms. Then $t(A \cup B)$ is an isomorphism if and only if $t(A \cap B)$ is an isomorphism.

Proof. Use the 5-lemma.

THEOREM 1. Let $\mathfrak{A} = \{U_{\alpha} | \alpha \in \mathfrak{A}\}$ be a star-finite covering of X and let S be the structure generated by \mathfrak{A} . Let h, \hat{h} be cohomology theories on (X,S) and let $t: h \to \hat{h}$ be a natural transformation. Assume that for each finite intersection $U_{\alpha_1} \cap \ldots \cap U_{\alpha_n}$, $t(U_{\alpha_1} \cap \ldots \cap U_{\alpha_n})$ is an isomorphism. Then $t(X): h(X) \to \hat{h}(X)$ is an isomorphism.

Proof. First we establish

(*) If I_1, \ldots, I_n are finite intersections of elements of \mathfrak{A} , then $t(I_1 \cup \ldots \cup I_n)$ is an isomorphism.

We prove (*) by induction, noting that for n=1 it is true by hypoth-

^(*) The only formal difference is that the $B(\exp_x(0), s)$ in (5) must be replaced by a $B(x, s^*) \subset B(x, s)$ having the property that any geolesic with endpoints in $B(x, s^*)$ lies in B(x, s).

⁽³⁾ A covering of a space is star-finite if each set of the covering meets at most finitely many sets of the covering.

esis. Assume it is true for all unions of n finite intersections and let I_1, \ldots, I_{n+1} be n+1 finite intersections. Then

$$I_{n+1} \cap (I_1 \cup ... \cup I_n)$$

is a union of n finite intersections so $t(I_{n+1} \cap (I_1 \cup ... \cup I_n))$ is an isomorphism and so is $t(I_1 \cup ... \cup I_n)$, both by the inductive hypotheses. By Lemma 3, $t(I_1 \cup ... \cup I_{n+1})$ is an isomorphism and (*) is established.

Now we well-order the index set a and proceed by transfinite induction.

Consider $t(\bigcup_{\beta \leq a} U_{\beta})$. Since U is star-finite, $I = U_{\alpha} \cap \bigcup_{\beta \leq a} U_{\beta}$ is a finite union of finite intersections, so by (*) t(I) is an isomorphism. By hypothesis $t(U_{\alpha})$ is an isomorphism, so by Lemma 3 $t(\bigcup_{\beta \leq a} U_{\beta})$ is an isomorphism. This proves t(X) is an isomorphism.

We are now ready to prove deRham's theorem.

Theorem 2. If M^n is a paracompact C^∞ manifold, then the singular cohomology groups with real coefficients are isomorphic with the deRham groups.

Proof. Let h denote singular cohomology and \hat{h} denote deRham cohomology. As noted earlier, these are cohomology theories for the structure 8 generated by a covering of M by open sets. In particular we take a star-finite covering $U = \{U_a\}$ as in Lemma 2' by geodesically convex sets.

A p-form ω gives rise to a p-cochain by defining $\omega(\sigma_p) = \int_{\sigma_p} \omega$, for each singular p-simplex σ_p . By Stokes' theorem

$$\int\limits_{\sigma_{p+1}}d\omega=\int\limits_{\partial\sigma_{p+1}}\omega\;,$$

so that this induces a natural transformation

$$t: \hat{h} \to h$$
.

By the Poincaré lemma $\hat{h}(U) = 0$, and by the cone construction h(U) = 0, where U is any finite intersection of the U_a 's. Thus t satisfies the hypothesis of Theorem 1, so t(M) is an isomorphism.

References

- J. Dugundji, Comparison of homologies, Ann. Scuola Norm. Sup. Pisa 20 (1966), pp. 745-751.
- [2] E. Spanier, Algebraic Topology, 1966.

RICE UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

Reçu par la Rédaction le 10. 12. 1968

Some remarks on the consequence operation in sentential logics

by
R. Wójcicki* (Wrocław)

1. Preliminary notions. Let S be the set of formulas formed by means of sentential variables $p_{\xi}(\xi \in \mathcal{Z})$ (the set of indices \mathcal{Z} being at least denumerably infinite) and a finite number of connectives F_1, \ldots, F_n . As known, $S = \langle S, F_1, \ldots, F_n \rangle$ is an absolutely free algebra, and $\{p_{\xi}\}_{\xi \in \mathcal{Z}}$ is the set of free generators of it. By a consequence in S we understand (cf. [5]) an operation Cn defined for every subset X of S and such that:

$$(1.1) X \subseteq \operatorname{Cn}(\operatorname{Cn}(X)) \subseteq \operatorname{Cn}(X) \subseteq S,$$

$$(1.2) X \subseteq Y \to \operatorname{Cn}(X) \subseteq \operatorname{Cn}(Y) .$$

Given an algebra S, as described above, and a consequence Cn in S, the couple $L = \langle S, \operatorname{Cn} \rangle$ will be called a *sentential logic*; S and Cn will be called the *language* of L and the *consequence* of L respectively. Let $X \subseteq S$. X is said to be *consistent* provided that $\operatorname{Cn}(X) \neq S$. If $X = \operatorname{Cn}(X)$, X is said to be a Cn -system (or a system in L). The elements of the set $\operatorname{Cn}(\emptyset)$, where \emptyset denotes the empty set, are called the theorems of L.

A relation $R \subseteq 2^S \times S$ will be called a rule of inference in S. If $R(X, \alpha)$, i.e. the relation R holds for the arguments X and α , we shall say that the set of premisses X entails the conclusion a under the rule R. It is often convenient to assume that the first domain of R consists of sets of a fixed cardinality, which is then called the cardinality of the rule R. A set X is said to be closed under a rule R provided that, for every $\alpha \in S$ and every $Y \subseteq X$, if $R(Y, \alpha)$ then $\alpha \in X$. Given a set of rules of inference $\mathcal R$ and a consequence Cn, we say that $\mathcal R$ is a basis for Cn (Cn is based on $\mathcal R$) if those sets which are Cn-systems and only those are closed under all the rules $R \in \mathcal R$. Every consequence operation possesses a basis (see [2]). The consequence based on $\mathcal R$ will be denoted by $\mathrm{Cn}_{\mathcal R}$.

The cardinal number m is called the cardinality of a consequence Cn in S if it is the least cardinal number for which the following is valid:

$$(1.3) \alpha \in \operatorname{Cn}(X) = \bigvee Y(Y \subseteq X \wedge \overline{\overline{Y}} < \mathfrak{m} \wedge \alpha \in \operatorname{Cn}(Y)),$$

^(*) The author is greatly indebted to Prof. J. Loś for his valuable suggestions and comments on this paper.