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is a k-ideal and by Lemma 9 R satisfies the ascending chain condition
on rig_lit_ annihilators, and so by Lemma 8 there exists an Z == 0 in § sueh
that 2R = 0.

Therefore 2R C R4 and sRR" = 2R™" = 0. By our choice of n, 5 ¢ T,
50 that = 0. This contradiction proves that R= 0 and R— T,.
Hence R™™ = 0. .

CoroLLARY. If B is @ semiring satisfying the ascending chain condition,
on left and right k-ideals and such that L(R) is a k-ideal, then any nil sub-
semiring o]: R is milpotent. -

Proof. Since every right or left annihilator ideal is a right or left
k-ideal, the corollary follows from the theorem. ‘

Note. This paper is part of the author’s Ph. D. dissertation prepared
under Professor Lawrence P. Belluce at the University of California,
Riverside. ’
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A proof of deRham’s theorem

by
M. L. Curtis and J. Dugundji (Houston, Tex.)*

It is the purpose of this note to give a short proof of deRham’s
theorem using a modification of Dugundji’s cohomology comparison
theorem [1] and a gimple convexity lemma. We include a proof of this
well-known lemma since we have been unable to find it in the literature.

LeMMA 1. Let f: U~V be a homeomorphism, where U and V are open
sets in R™. Assume (*) that f is C* and that g = f* is C*. Then for each e U
there exists an () > O such that the image f(B(x, 7)) of every ball B(w, r) of
radius r < r(x) about x 1is conves. :

Proof. We can assume # = 0 and that U,V are small enough so that
there exist real numbers K > 0, M> 0 satisfying

(1) Ifyisa curve obtained by restricting f to any line segment in U,
then

vl < K
(where 1 is arc length on the segment and prime denotes differentiation).

(2) If o is a curve obtained by restricting ¢ to any line segment in ¥,

then
lle" (0l < M .

Note that we also have |jo(t)] > 1/K . Pick 1 > 0 so small that

(3) 2M2 < 1/K?
and,choose s > 0 so that

(4) gB(f(0),s) C B(0, 4).

We are now going to show that

(3) For each ball B(0,r) C gB(f(0),s), the image fB(0,r) is convex.

In fact, given v, 4, « fB(0,7), let d=/yo—nl, let J be the closed

interval [0,d], and let o: J—V be the line segment joining 1, t'o Yy
We have ¢(J)C B( £(0) ,‘s) , since the latter is a convex set containing Yo

* Partially supported by NSF Grants.
(*) Although the given hypotheses imply that f itself is also (%, we make 10 use
of additional fact.
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and 9, so0, because of (4), we are sure that go(J)C B(0,1). Let 0=go
and define H: J—>R' by

H(t) =@, ted..
Then
H"(1) = 2o’ 0)IF4+2<0" (2), (2

where <., -> is the usual scalar product in R". Since
[Ko"(8), 0t} < lie” (DIl le()l] < MA

whereas |lo’(¢)|F > 1/K?, we find from (3) that H''(f) > 0 on J, so that
H i3 a convex function on J and therefore

H(t) < max{H(0), H(d)} = max {lg(y)IF, llg(y )i’} < »*
for all ¢ eJ. Thus, [lp(¢)} < 7 for all e J, so o(J) CB(0,7) and consequently

o(J)=Jfo(J) CfB(0,r). This completes the proof of both (5) and the

Lemma.

Now let .M be a paracompact. (°° n-manifold, and put a Riemannian
metric on M. Using the exponential map

expg: Uz —M

where U is an open neighborhood of 0 in the tangent space T, of M
at » « M, a proof essentially the same (*) as that for the Lemma 1 shows
that the image of every sufficiently small ball B(0,r)C U,C T, is
a geodesically convex neighborhood of z in M. Being paracompact and
locally compact, M is the free union of subspaces each having the form

o0
\TJ U;, where each U; is open, each U; is compact, and U;C Uy, for

each ¢; covering U, (resp. each Uiyu—Uy) by finitely many geodesically
convex open sets, each contained in U, (resp. Ujpa—U,;_y) it follows that
LEMMA 2. A paracompact O% manifold M" has a star-finite open
covering (°) by geodesically conver sets.
It follows that all intersections of these sets are geodesically convex
and hence all sets in the covering and all intersections are open. n-Dballs.

DEFINITION. A structure 8 on a topological space X is a lattice of sub-
sets (meet is intersection, join is union) such that the empty. set @ and
the space X belong to 8. Given a structure $ on X , the structure category
(X, 8) has as objects the elements of 8, with the set Hom (4, B) of

(*\ The only formal difference is. that the B i
Y d exp;(0),8) in (5
by a B{z,s*) c B(x,s) having the pro (i)
Bz, 8*) lies in B(x,s).
(‘).é covering of a space is star-finite if each
most finitely many sets of the covering.

must be replaced
perty that any geolesic with endpoints in

set of the covering meets at

»
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morphisms being the inclusion whenever A C B and empty otherwise.
A cohomology theory on (X, 8) is a sequence {1?] q € Z} of cofun.ctors from
(X,8) o the category of abélian groups and homomorphisms (any.
abelian category could Dbe used), along Wiﬂ:} patural transformations

8: WA~ B) (A U B)
for each (¢, 4, B) such that the following sequence is exact:
KA A B)— KA L B) s H(A) @ K(B) WA AB)—> ...

Here

’L*(E) = (iﬁigy 1%5) y j*("]y C) :.7:;77".725

where 4.4 ACLAUB, ja AnBC_;,A, ete.

If for any space X we take § to be the lattice of all open sets, ﬁhen
singular cohomology is @ cohomology theory in t}}e sense just defined.
(See, for example, [2], page 239). Given any covering U of X by open
sets we get a structure 8 by taking the lattice generated by the members
of . Singular cohomology is then a cohomology theory for (X, 8).

If X is now a C* manifold, we also have the deRham groups (vector
spaces) defined on open sets of X. To see that this is'also a whomology
theory (i.e., that we have a Mayer—Vietoris sequence).lt suffw:es 1{0 notice
that a p-form w? on an open set W is uniquely determmgd by its .mtegra-ls
on all differentiable p-simplexes in W; the proof is then like that
_for singular cohomology. Just as for singular cohomology,ﬁhe deRh%m
cohomology is & cohomology theory for (X,8) Where. 8 '1s the lattice
generated by any covering of X by open sets. Our- objective, of course,
is to show these cohomology theories are isomorphic for a paracompact
C¢* manifold. ’ X

LemuA 3. Let b, f be cohomology theories on (X, §) and let t: h—>h be
o natural transformation. Assume that for some A, B €8, both t(.A): th)

~+h(4) and t(B): h(B)——>hf(B) are isomorphisms. Tl-zm t(A v B) is an 1507
morphism if and only if t(A ~ B) i§ am isomorphism.

Proof. Use the 5-lemma.

TrporEM 1. Let b= {U.| aeca} be a star-finite co@em‘ng of X rarn‘d
Tet S be the structure generated by W. Let b, h be cohomology theories on (;&', §)
and lot 12 h—>h be a natural tramsformation. Assume that for 6fzch finite
intersection Uz ~ ey Ugyy B Uy Do U,,) is an isomorphism. Then
H(X): B(X)--h(X) ds an isomorphism.

Proof. First we establish

(#) ¥ I, ..., In ave finite inbersections of elements of AL, then

Iy v oo Iy) iy an isomorphism.
We prove () by induction, noting that for n = 1 it is true by hypoth-
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esis. Assume it is true for all unions. of » finite intersections and let
Iy «ery Inys be n+4-1 finite intersections. Then

Ty (v e U ly)

is a union of = finite intersections so t(I,.+1 ALva v I,.)) is an is0-
morphism and so is {(, v ... v Ip), both by the inductive hypotheses,
By Lemma 3, #(I;v..v Iny1) is an isomorphism and (*) is estab-
lished.

Now we well-order the index set a and proceed by transfinite in-

- duction. .

; Comnsider #( U Ug). Since W is star-finite, I = U, n U U; is a finite
union. of finite mtersectlons, 80 by (*) t(I)is an lsomorphlsm By hypoth.
esis 1(U,) is an isomorphism, so by Lemma 3 #( U Up) is an isomorphism.
This proves ¢(X) is an isomorphism.

We are now ready to prove deRham’s theorem.

THEOREM 2. If M" is a paracompact C manifold, then the singular
cohomology groups with real coefficients are isomorphic with the deRham
groups.

Proof. Let h denote singular cohomology and % denote deRham
cohomology.  As noted earlier, these are cohomology theories for the
structure 8 generated by a covering of M by open sets. In particular

we take a star-finite covering U = {U,} a8 in Lemma.2” by geodesically
convex sebs.

A p-form o gives rise to a p-cochain by defmmg w(op) = f @,
for each singular p-simplex 0. By Stokes’ theorem

Jao= fo,

api1 dop+1
80 that this induces a natural transformation
t: h>h.
By the Poincaré lemma h( U) = 0, and by the cone construction R(U)=0,

where U is any finite mtersectlon of the U,’s. Thus ¢ satisfies the hypoth-
esis of Theorem 1, so #(M) is. an isomorphism. q.e.d.
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Some remarks on the consequence operation
in sentential logics

by
R. Wéjcicki* (Wroctaw)

1. Preliminary notions. Let S be the set of formulas formed by means
of sentential variables pe(¢ ¢ Z) (the set of indices Z being at least de-
numerably infinite) and a finite number of connectives Fi, ..., Fn. As
known, 8= <8, Iy, ..., Fny is an absolutely free algebra, and {pslz= is
the set of free generators of it. By a comsequence in 8 we understand
(cf. [B]) an operation Cn defined for every subset X of § and such that:
(L1) X CCn{Cn(X))CCn(X)CA,

(1.2) XCY->Cn(X)CCn(Y).

Given an algebra 8, as described above, and a consequence Cn in 8, the
couple L= <8, Cn) will be called a sentential logic; 8 and Cn will' be
called the language of L and the consequence of L respectively. Let X C 8.
X is said to be consistent provided that On(X) # 8. If X = Cn(X), X is
aid to be a On-system (or a system in L). The elements of the set Cn (@),
where @ denotes the empty set, are called the theorems of L.

A relation B C 95 % § will be called a rule of inference in 8. If R(X, a),
i.e. the relation R holds for the arguments X and a, we shall say that
the set of premisses X entails the conclusion o under the rule R. It is often
convenient to agsume that the first domain of R consists of sets of a fixed
cardinality, which is then called the cardinality of the rule R. A set X is
said to be closed under a rule B provided that, for every a ¢ § and every
YCX if R(Y,a) then aeX. Given a set of rules of inference R and
a consequence Cn, we say that R is a basis for Cn (Cn is based on R) if
those sets which are On-systems and only those are closed under all
the rules B e R. Hvery consequence operation possesses a basis (see [2]).
The consequence based on R will be denoted by Cng.

The cardinal number m is called the cardinality of a consequence Cn
in 8 if it is the least cardinal number for which the following is valid:

(1.3) aeCn(X) =\ Y(YCX/\Y<m/\as(‘n(Y)

(*) The author is greatly indebted to Prof. J. Lo§ for his valuable' suggestions
and comments on this paper.
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