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esis. Assume it is true for all unions. of » finite intersections and let
Iy «ery Inys be n+4-1 finite intersections. Then

Ty (v e U ly)

is a union of = finite intersections so t(I,.+1 ALva v I,.)) is an is0-
morphism and so is {(, v ... v Ip), both by the inductive hypotheses,
By Lemma 3, #(I;v..v Iny1) is an isomorphism and (*) is estab-
lished.

Now we well-order the index set a and proceed by transfinite in-

- duction. .

; Comnsider #( U Ug). Since W is star-finite, I = U, n U U; is a finite
union. of finite mtersectlons, 80 by (*) t(I)is an lsomorphlsm By hypoth.
esis 1(U,) is an isomorphism, so by Lemma 3 #( U Up) is an isomorphism.
This proves ¢(X) is an isomorphism.

We are now ready to prove deRham’s theorem.

THEOREM 2. If M" is a paracompact C manifold, then the singular
cohomology groups with real coefficients are isomorphic with the deRham
groups.

Proof. Let h denote singular cohomology and % denote deRham
cohomology.  As noted earlier, these are cohomology theories for the
structure 8 generated by a covering of M by open sets. In particular

we take a star-finite covering U = {U,} a8 in Lemma.2” by geodesically
convex sebs.

A p-form o gives rise to a p-cochain by defmmg w(op) = f @,
for each singular p-simplex 0. By Stokes’ theorem

Jao= fo,

api1 dop+1
80 that this induces a natural transformation
t: h>h.
By the Poincaré lemma h( U) = 0, and by the cone construction R(U)=0,

where U is any finite mtersectlon of the U,’s. Thus ¢ satisfies the hypoth-
esis of Theorem 1, so #(M) is. an isomorphism. q.e.d.
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Some remarks on the consequence operation
in sentential logics

by
R. Wéjcicki* (Wroctaw)

1. Preliminary notions. Let S be the set of formulas formed by means
of sentential variables pe(¢ ¢ Z) (the set of indices Z being at least de-
numerably infinite) and a finite number of connectives Fi, ..., Fn. As
known, 8= <8, Iy, ..., Fny is an absolutely free algebra, and {pslz= is
the set of free generators of it. By a comsequence in 8 we understand
(cf. [B]) an operation Cn defined for every subset X of § and such that:
(L1) X CCn{Cn(X))CCn(X)CA,

(1.2) XCY->Cn(X)CCn(Y).

Given an algebra 8, as described above, and a consequence Cn in 8, the
couple L= <8, Cn) will be called a sentential logic; 8 and Cn will' be
called the language of L and the consequence of L respectively. Let X C 8.
X is said to be consistent provided that On(X) # 8. If X = Cn(X), X is
aid to be a On-system (or a system in L). The elements of the set Cn (@),
where @ denotes the empty set, are called the theorems of L.

A relation B C 95 % § will be called a rule of inference in 8. If R(X, a),
i.e. the relation R holds for the arguments X and a, we shall say that
the set of premisses X entails the conclusion o under the rule R. It is often
convenient to agsume that the first domain of R consists of sets of a fixed
cardinality, which is then called the cardinality of the rule R. A set X is
said to be closed under a rule B provided that, for every a ¢ § and every
YCX if R(Y,a) then aeX. Given a set of rules of inference R and
a consequence Cn, we say that R is a basis for Cn (Cn is based on R) if
those sets which are On-systems and only those are closed under all
the rules B e R. Hvery consequence operation possesses a basis (see [2]).
The consequence based on R will be denoted by Cng.

The cardinal number m is called the cardinality of a consequence Cn
in 8 if it is the least cardinal number for which the following is valid:

(1.3) aeCn(X) =\ Y(YCX/\Y<m/\as(‘n(Y)

(*) The author is greatly indebted to Prof. J. Lo§ for his valuable' suggestions
and comments on this paper.
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for every ae S, X C&S. Clearly, if m is the cardinality of Cn, then m < §
It the cardinality of On is not greater then ,, Cn is said to be finip.
If for every endomorphism & of § and for every X C §,

(1.4) £Cn(X) CCn(eX),

then L = <8, Cn) is said to be a structural logic and Cn a structural con-
sequence (cf. [2]). To the notion of a structural consequence corresponds
that of a structural rule of inference R. R is structural provided that, for
every endomorphism ¢ of 8, every a8, and every X C §:

(1.5) B(X, a)>E(eX, a) .

A rule R will sometimes be given in a schematic way as ¥/8. It will be
understood then that R(X, o) if and only if for an endomorphism ¢ of §,
X = ¢Y and a = ¢f (cf. the notion of a sequential rule [3]). All such rules
‘are structural. A consequence Cn is structural if and only if it possesses
a structural basis R, i.e. a basis such that, for every R ¢ R, B is structural
(see [2]).

Let V(X) denote the least set of variables which generates a sub-
algebra S, of § such that X C 8,. Loosely speaking V(X) is the set of
variables occurring in the formulas which are elements of §. Assume that
X and Y are subsets of 8. We shall say that X and Y are mutually uniform
in L= <8,Cn), in symbols X ~,¥, if and only if for every ZCS§,
every aef, and for every isomorphism »;,» of 8§ into § (*) such that
»w(V(8) CV(8) (i=1,2) the following condition holds:

(1.6) H V(o X)nV(2) =TV (#Y)nV(Z) =V (1,X) TV (a) =TV (#5Y)
NV (a)=0 then ceCn(ZvnX)=aeCOn(Z v »Y).
‘We shall need the following assertion.

 AssERTION 1.1. If L= (8, Cn) is a structural logic, then =~y is an
equivalence relation in the set of subsets of 8.

Proof. It is immediately seen that ~, is reflexive and symmetric.
To prove that it is transitive, assume that for subsets X, Y, Z, U of §,
a formulzy a ¢ 8, and for isomorphisms »,, », of § into 8 such that »V(S)
CV(8) (1=1,2): (1) XU, (2) U=~Y, (3) the antecedent of (1.6)
holds, (4) & eCn(Z v »X). Divide V(8) into mutually disjoint subsets
V1, V. such that the cardinality of each.of them equals the cardinality
of V(Sf). Let tn, g be -dsomorphisms of S into § sueh that wi(V(S))
=Vi(i =1, 2). Sinee L is assumed to be structural, we conclude from (4)
that waeOn(mZ v p»X). By (1) we obtain paeCn(uZ v u,U), and
by (2) @d (3) we have e Cn(pwmZ v v, ¥). As w4 18 a isomorphisms
and Cn is struetural, this yields aeCn(Z w»,Y). If we replace (4) Dy

(') We shall discern between an isomorphism snto and an isomorphism onio.

e ©
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deCn(Z v nY) we shall prove by an entirely analogous argument that
weOn(Z v v X). This gives X ~¥, concluding the proof.

TLet L= ¢S, 0n> be a structural caleulus. Denote by 4 the set of
all consistent systems in L. Let m be a cardinal number. We shall say
that I is a m-uniform logic (Cn is a m-uniform consequence) if and only
if either # is the empty set and m =1 or # is a non-empty sef and m is
the cardinal of the quotient set A~z of A with respect to ~r. If m is
finite a m-uniform logic will be called finitely wniform. The 1-uniform
logics (consequences) will be called uniform. One may easily verify that
a consequence Cn in § is uniform in the sense defined above if it is uni-
form in the sense defined by Xio§.and Suszko [2], ie. if it satisfies the
condition: for every subsets X, ¥ of § and for every a e 8§,

(L7 it V(X) ATV (X)=V(a) nV(¥)=@, Cn(Y)=# 8, and aeCn(XwY)
then a e Cn(X).

Again let L be structural. If for every set {X,}»eg of subsets of 8 the
conditions

(1.8) Xy =rXn, for every ry, 7y e R

(1.9) V(ZXn)n V(X,,) = O, for every r,,r, e It such that ry & 7,
imply .

(1.10) Xo2p|) X,

for evéry 7, ¢ R, then we shall say that I is a regular logic (Cn is a regular
comsequence). The consequence defined by the conditions Cn(X) = X when
there is an endomorphism ¢ of § such that ¢X is finite and Cn(X) =8
otherwise is an example of a consequence which is structural, uniform
but not regular.

AssErRrioN 1.2. If L= <8, Cn) is o structural logic, X, ~p X, ~p ...
~p Xy, and for every ©,j (1 <4,j <k) if i ] then V(X)) n V(X)) =9,
then for every i (1 <i<k) Xy =Xy v X,v .o v Xg.

Proof. To prove this assertion it is elearly enough to prove that
it L= (8, Cn) is a structural logie, X, ¥,, T, are subsets of § such that
V(Y AV (¥) # @, X p ¥y, X g, then X ~p(Yy v X,). Assume that
tor a formula a8, o set Z C 8§ and isomorphisms », v §—8 such that
»WV(8)CV(S) (i=1,2) the following condition holds: ¥ (va( ¥y v o))
ATV (Z) =TV (nX) AV(2) =V (T v o)) ~ Via) =Vnd)~ V(a) = 0.
We have to prove that aeCn(Z v »nX)=oaeCn (Zw (X v Y,)). The
implication from left to right is obvious. Tt is yielded by the assumption
X ~.Y, To prove the converse, assume that a eOn{Z vy ¥y v 7,))
=Cn(Z v »Y, v »Y,). Divide V(8) into pairwise disjoint sets Vi, Va, Vs


GUEST


272 R. Wéjeicki

such that the cardinality of each of them equals the cardinality of V(8).
Let p, pto) s be isomorphisms of § into § such that w¥V(§)=y,
(i=1,2,3). As Cn is a structural consequence we obtain g
eCn(wmZ v myY, v yrY,). Taking into account that X ~r ¥, we arrive
at maeln(mZ v X v ;y»nY,). Now by X~r¥, we obtain a
eCn(mZ v X w py X). Clearly there is an endomorphism & of § guch
that: suya = a, epZ = Z, ey X = v X, ey X = v, X. By the structurality
of Cn we have euyaeCn(emZ v euy X © euy X) and this in turn yields
aeCn(Z v »X), completing the proof.

As an obvious consequence of Assertion 1.2 we have

AssERTION 1.3. If Cn is a finite structural consequence n 8 then
L =<8, Cn> is regular. (%) .

Let L=<§,Cn) and L, = <8, Cn,> be sentential logics. If 8, is
a subalgebra of § such that for every X C&8,,

(1.11) Cny(X) = Cn(X) ~ §,,
then L is said to be an eatension of L,. If, in addition,
(1.12) on(X) = U v Ony»Y) ,

where » runs over all automorphisms of § with »¥ C 8, and Y runs over
all subsets of X of the cardinality less than that of Cn,, then we shall
say that L is a natural extension of L,. Given Cn,, condition (1.12) always
defines a comsequence operation; if Cn, is structural, it is structural
also’(cf. [2]).

2. Matrices adequate for sentential logics. Let & be the language of
a sentential logic L, and let 4 be an algebra similar to . Let {Buluer
be a set of subsets of 4. The pair M —= {4, {Buuer> will be called
a generalized matriy or shortly a matriz of 8. A homomorphism #: §-4
will be called a valuation of the formulas of 8 in M or, if § and M are fixed,
3 valuation. A formula o is said to be a tautology of M if and only if, for

every valuation h, ha e | B,. The set of tautologies of M will be de-
uey .

noted by BE(M). Let a8, X C & and let k run over the set of valuations
of formulas of § in M. As can easily be seen, the operation Cny, defined as

@2.1) aeCnm(X) = A h Aue U(hXC By hae By

is & consequence in 8. It will be called the matriz consequence determined
by M. One may easily verify that Cnp(@) = B (9). The notions defined

() Let B(X,a)=[~V £(cX < S AV(e) CV(E)A~V Y 5 G (T XAV (T) A
NV(X—Y) = 0], where £ runs over endomorphisms of §. The consequence Cng) may

serv:lzls an example of a consequence which being structural, uniform and regular is
not finite.

° © '
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here are generalizations of well-known ones. Namely, if {By}up is a unitary
get, they turn into the familiar notions of a matrix, a valuation, a tautology,
(cf. e.g. [1]) and matrix consequence (the latter notion was introduced
in [2]). The cardinality of the set {Bu}uey Will be called the degree of I%.
Thus the matrices in the usual senge are the matrices of degree 1.

We shall say that 3 is a matrix weakly adequate for L = (8, Cn)
if and only if M is a matrix of § and Cn(@) = Com(@), ie. the seb of
tautologies of IN coincides with that of theorems of L. If for every X C 8,
On(X) = Cnm(X), then the matrix M will be called strongly adequate
for L. The following theorem is known.

TemoreM 2.1. (Lindenbaum) If L is a structural logic then there is
o matriz M of the degree 1 weakly adequate for L. (3

The problem of existence of matrices. strongly adequate for sentential
logics was posed and investigated by 0§ and Suszko [2]. They stated
the following theorem: if L is a structural and uniform logic, then there
is a matrix 9 of degree 1 strongly adequate for L. However, a more
close inspection of the proof they gave reveals that what they actually
proved is:

THEOREM 2.2. (Ro§ and Suszko) If L is a structural, umiform amd
regular logic, then there is a matriz I of degree 1 stromgly adequate for L.

© The following argument shows that the requirement of regularity
of I cannot be omitted. Assume that L = (§,COn) is structural and
uniform but it is not regular (an example of such a logic has been given),
and suppose that a matrix I = (4, B) is strongly adequate for L. We
shall show that this is impossible. Since I is not regular, there is a set
{Xr}rer of subsets of § such that (1.8) and (1.9) are satisfied but (1.10)
is not. Since L is 1-uniform, this means that the sets X,.(r ¢ R) are con-
sistent but their union is not. Consider any formula « such that for a given
set X,,, o € On(X,,). Then for every X, such that V(a) nV(X,) = 0, »
e On(X,) either, and hence there is at most a finite number of sets
Xy oy Xpy such that a e On(Xy) (i=1, ..., k). Put B = R—(ry, ..., Tx).

* For every r ¢ R’ there is a valuation k. for which ,X,C B and hra<B.

The variables in the sets X, are separated, and we may const_ruct a valu-

ation h such that b | X, C B but ha € B. This proves that a< On( L%,X,).
reR’ ks ;

The union of X,(r ¢ R') is then consistent and therefore mutually uniform

(*) This theorem is an obvious consequence of a well-known result of Lindenbaum
(cf. [3]) which states that for every X C § such that {_J X C X, where s Tuns over the

L]
set of endomorphisms of S, there is a matrix M of the degree 1 for which B(M) = X.
Clearly if I is structural then |_J eCn (@) = Cn(9).
8

Fundamenta Mathematicae, T. LXVIII 18
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with each of the sets Xr, ..., Xro BY Asserbion 1.2 this proves that (1.10)
is valid, which contradicts the assumptions and concludes the proof,
It is easily seen that if L possesses a matrix strongly adequate for it,
then L is structural; if, in addition, this matrix is & matrix of degree 1, L i
uniform. Hence we have: .

ASSERTION 2.1. If there is a matriz I of degree 1 strongly adequaie
for a logic L, then L is structural, uniform, and regular.

Thus only logies of a particular, though important, kind may be
interpreted in the strong sense by means of matrices of degree 1. Theo-
rem 2.2. may be improved as follows.

TeEEOREM 2.3. If L s a structural, m-uniform and regular logic, then
there is a matriz M of degree m strongly adequate for L.

Proof. The main idea of this proof is borrowed from X.of and Suszko’s
proof-of Theorem 2.2. Assume that I = (8, Cn) is a structural, m-uniform,
regular logic. Liet # be the set of consistent systems of L. Take any natural
extension L* = (8% Cn*) of L such that 8% > £ Let {A,}ycv = A~y
where #/~7, is the quotient set of £ with respect to ~r, and let {X,},cx,
= #,. We put R =ule‘%rR"' Clearly {X,},er= 4. Divide V(8* into

pairwise digjoint sets V,(r ¢ R) such that 7, > V(8), for every » e R. Let
(r € B) be an automorphism of 8% such that @V (8)C V.. We put

(2.2) ‘ B, = Cn* (U mXo),

(2.3) ng <S*; {Bu}usU> ’

and we shall prove that 9t is strongly adequate for L. Note that 9 is
a matrix of degree m. Assume that X C 8, a e 8, a e Cn(X). For a valu-
ation %, let ha e By. h may be extended to an endomorphism h* of §*
and we have k%o e b*COn(X)C A*On*(X) C Cn*(h*X) = On*(AX) C Cn*(B.)
= By. This proves that On(X) C Cny(X). Assume now that o< Cn(X),
Cn(X) = X, ry¢ Ry, and take as a valuation b the automorphism g,
restricted to 8. This gives AX C hX,, C By,. Suppose that u

ha€ By, = Cn*(hXpy v {J peXy)

roFAT € Ry,

Letilm’ be tt_L_% cardinality of Cn and hence of On*. Then there is an R’ C Ry,
such that B' <m’ and ha e On*(hX,, rkzja' e Xy). m' < 8 and similarly
€

hXX,C< S,} for every re¢R. Therefore the cardinality of the union
vy rg{ #r X, must not be greater than the cardinality of §. This

guarantees that there is an automorphism » of §* such that vhXp v
A
"% vpr X> C 8 and also vha e 8. We have vha e Cn(vhX, v U vurXr):
) r€R’

iom°
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As On is regular, this yields vha ¢ On(vhX,,). In turn we have » ‘wha
— hae On(p 9hXy,) = Cn(hX,,) C Cn*(hX,,). Replace h by w,. This gives
Maécn*(lu,oX,a). tr, 18 an automorphism, and therefore by employing
4, we obtain in an obvious way a e Cn*(X,,) = Cn* (Cn(X)). a €, and
this gives a € Cn(X), contradicting the assumption. Hence Cnp(X) C Cn(X).
This, together with the inclusion proved before, yields Cnp(X) = Cn(X),
concluding the proof. .

Since for every structural logic L there is a cardinal m such that L
is m-uniform, all stroctural and regular logics possess matrices strongly
adequate for them. It can be proved that non-regular logics may also
be interpreted in the strong manner by means of generalized matrices.

TEEOREM 2.4. If L is a structural logic, then there is a matriz MM strongly

' adequate for L.

Proof. Consider the matrix M = <8, {Xylwew>, where {Xpjwew I8
the set of all systems of L. The valuations in M are the endomorphisms &
of 8 (we put L = (8, Cn}), and we have

(2.4) aeOnp(X) = NYC S/\E(EXQOH(Y)+EG€OD(Y)).

Assume first that o e Cn(X). L is structural and therefore ea ¢ Cn(eX),
for every endomorphism e. This yields &X C On(Y)->eaeOn(Y), for
every Y C 8. Hence a € Cng(X). Assume in turn that « ¢ Com(X). By (2.4)
we obtain: X CCOnY +ea e Cn(Y), for every Y C 8 and every endo-
morphism ¢ of 8. Put ¥ = X. Choosing the identity transformation as &,
we arrive at the formula: X C Cn(X)~a e Cn(X). This yields ¢ e Cn(X),-
concluding the proof.

We shall show in the next section that if L is not regular, then the
degree of any matrix 9 which is strongly adequate for L must be infinite.

3. The algebraic stiucture of the conmsequence operation. To consider
the result obtained from & more general point of view, we shall briefly
examine the algebraic structure of the consequence operation. Throughout
this section we shall agsume that § is an arbitrarily chosen but fixed
language of a sentential logic. It will then be understood that all the
notions which will be employed in the sequel arve related to S.

By ¢(8) we shull denote the set of consequences in 8. Given a con-
sequence Cn, &(Cn) will denote the set of On-systems. Let X be a set
of subsets of §. The operation Cny defined as

(3.1) T oaeOng(X) o AY e X(XCY>ael)
is a consequence in 8. We clearly have On = Ongon, and also

(3.2) © (i, << On, = S(0ny) C §(Cny)
18*
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where Cn, C Cn, stands for A .Y(Cul(X)_QCnE(X)]‘ Let us now define
two infinite operations o) and {-) over the elements of G(S8). They will
be ealled the sium and the product operation respectively. Given a set of

consequences {Cnger we pose

3. ) Oy = Cn e s -

(3.3) ' H ¢ U S(Cu »

(3.4) {1 Ong = Cn n scnp -
teT el

We shall write Cn, W Cn, U ... U Cny instead of UJ

i=1,

Cng; Cny ™ Cny L.

ek

A Cng is to be understood in an analogous way. Using (3.2) one may

prove by entirely obvious transformations that ¢U Cry is the least upper
" erT

bound and [} Cn; is the greatest lower bound of the set {Cnger with
teT

respect to <. This proves thab

AssErTION 3.1 C(8) = (C(8),M, W} is a complele laitice with the
lattice ordering <.

By (3.3) we almost immediately have

(3.4) ' [ACn(X) = Cn(X) .
tel teT

The analogue of (3.4) for |J is not, in general, valid {*). Still we may
additionally characterize the [(-J-operation as follows. For every te T,
let Cn; = Cng,, where R; is a rule basis for Cn;. Then

(3.5) JCny=Cn g, -
teT ler

The identity (3.5) follows immediately from the fact that for every .,
X is closed under i_J R, if and only if X is closed under each RyteT),
feT

ie, for every teT, X is a Cny-system.

Denote by Cy(S) the set of structural consequences in 8. The following
is valid:

ASSERTION 3.2. Cy(S) = (Cs(S), W, Oy is a complete sublaitice of the
lattice C(S) (°).

Proof. Assume that Cny(t e T) are structural. By (3.4) we have
e M Cn](X)=¢ ) Cny(X)C () Cry(eX)=[ (1) On/](e), for every
teT tel leT lel

(*) This is why we preferred to use () as the sum and @ as the product symbol,
rather then (U and My respectively.

(%) Perhaps it is worth while to state here a few properties of the two lattices C(S)
and Cy(S). By producing a suitable example it may be proved that neither of them is
distributive. In either lattice the( -complement-and (A -complement of a given Cn
may be non-existent. Notice also that, as can immediately be seen, they possess zero
and unit elements. These are Cn,; and Cn, respectively.

icm°®
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endomorphism ¢ of 8. Hence (7 Cn; is structural. |- is o
l@ a tLEJT Cn, is structural

also because it has a structural basis. Any union of structural bases of
all Ony (1eT') i3, by (3.5), such a basis. .

We shall use the symbols G (8) and C;(8) to denote the-set of structural
uniform and regular consequences, and the set of structural, ﬁnitel;i

uniform, and regular consequences respectively. As a consequence of
Theorem 2.4, we have

CoROLLARY 3.1. For every CneCyS), Cn= 17 Cny, where {Cngyer
tel
is the set of all consequences Cn' e C(S) such that Cx:C Cn'".

Proof. If Cn is structural, then by Theorem 2.4. there is a, matrix
M= <4, {Buluev> strongly adequate for Cn. Cn= |J Cngp,, where
teT

M= (4, By (ue U). We have also Cn < Cng, for every u ¢ U.
We shall now prove

THEORENM 3.1 Cs(8) ds the least set containing C3(S) and closed under
the operation 0.

Proof. It follows from Theorem 2.3. by an argument similar to that
used to prove Corollary 3.1. that every consequence Cn e C5(8) is identical
with & finite product of consequences which are elements of C3(S). Thus
we need only to prove that if Cn’, Cn"’ € C(8) then also Cn’ M Cn” ¢ G5 (8).
Let Cn' = Cn; M Cny M, ..., M Ciw and Cn”’ = Copyy O ...y M Cnn, where
Cn;i e Cy(8) for every ¢=1,2,..,n. Put L= <8,Cn' A Cn’y and
Li={8,Cn (i=1,...,n). The relation X~¥ = A i{(X ~;,¥) is an
equivalence relation. It is a matter of obvious transformations to verify
that X~¥— X ~,¥. But this proves that Cn'M Cn” is both finitely
uniform and regular. Indeed, let # be the set of all consistent Cn’ M Cn''-
systems. The cardinality of #/~ is not greater than 2", and at the same
time we have s/~ > #/~z. Cn’ M Cn’ is then at most 2"-uniform. We
shall show now that it is regular. Let {X.},er be any set of subsets of S
which satisfies (1.8) and (1.9) and let {X,}.er be an equivalence class of
the set {Xr}r under the relation ~. We have X, ~ X, for every
e I and for every ¢=1,..,n Each Cn,is regular and therefore
r[{jﬂX, ~p Xy, for every 7,e¢ R'. Hence also rL(JR'XT ~71X,. The same
may be proved about cvery equivalence class belonging to {X,}rer/~.
As we know, there is ouly a finite number of such classes, say k. Denote
their unions by 37, ..., ¥ respectively. Since each Y; is mutually uni-
form in I with a set X, and the sets X, are pairwise mutually uniform,
by the transitivity of =z we have ¥;~;Y;. By applying Assertion 1.2.
we may show that 3w Xy, .., v Y~ Yy, for every ¥; (i=1,...,%).
But v, ., 0¥, = UR X, and once again by the fransitivity.of =z

7€
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we conclude that the latter union is mutually uniform with every X,.
Hence Cn’ MCn” is regular. :

As an obvious consequence of Theorem 3.1., we have

COROLLARY 3.2. No matriz M of a finite degree is strongly adequate
for a non-regular logic L.

There is unfortunately an asymmetry in the properties which ure
displayed by the operations (-] and |J. By analogy to Corollary 3.1,
-one may expect that the sum of consequences Cn'eCJ(§) such that, for
a given Cn, Cn’C Cn is identical with Cn. To see that this is not true
consider Cn g, based on a single rule R given by the schema Fyp, F, q/F,p,
where p, ¢ are variables and F,,¥,, F, are unary connectives. If for
a consequence Cn, Fip e Cn (F,p, Fyq) then either Cn is not uniform or,
if Fip e Cn(F,p), On is stronger than Cng, i.e. Oy << On. The following
argument shows that the counterpart of Theorem 3.1. for W is not valid
either. Consider the sequence of consequences Cn¢r,), Cnz,, ry, Cngy i ry o
where the rules R,, R,, Ry, ... are respectively given by schemas:

P, Fiq/Fy(q, p);
P, FiFyg[F{Fy(q, p)p);
D, B FF q[Fy(Fy(Fo(q, p)p)p) 3

(this time ¥, is taken as a binary connective). Take now the corresponding
sequence Cngz), Cog! ), ... With the corresponding rules: Fy(g, p)/F,p;
Fy(Fy(q, p)p)/FaFyp; ... All these consequences, besides being structural,
are uniform and regular. This follows from the fact that the conclusion
of any rule cannot be, in the rules of the same sequence, used as a premiss.
For the same reason the sum of consequences of any of these two sequences
will be uniform and regular. But the infinite sum of the consequences of
both sequences is s)-uniform. No two of the formulas q,Iq,F,Fq,..
are mutually uniform with respect to such a sum consequence.

These negative results seem to. show that the properties of the
consequences which are constructed by means of the (o) -operation cannot
be described in terms of matrices in as simple a way as it- was possible
in the case of consequences obtained by applying (7.
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