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\ On the singularity of Mazurkiewicz
in absolute neighborhood retracts

by

Steve Armentrout (Princeton, N. J.)-

1. Introduction. According to Borsuk [6], a compact metric space
which cannot be expressed as a finite or countable union of eompact
absolute retracts of arbitrarily small diameter has the simngularity of
Mazurkiewicz. In [6], Borsik raises the following questions:

1. Suppose X and Y are compact metric absolute neighborhood refracis.
If X has the singularity of Mazurkiewicz, then does X XY also have the
singularity of Mazurkiewicz? . '

2. If a polyhedron is represented as a cariesian product, is every facior
free from the singularity of Mozurkiewics?

The purpose of this paper is to give negative solutions to both of
these questions. Our solution consists of the following: We give an
example of an upper semicontinnous decomposition G of the 3-sphere S8
into a null sequence of arcs and points such that if X is the associated
decomposition space, X hag the singularity of Mazurkiewicz. By results
of [7] or [9], X x & is homeomorphic to 8% % 8. By a theorem of Bor-
suk’s [6], X is a compact absolute neighborhood retract. Hence X is
a compact metric absolute neighborhood retract with the singularity of
Mazurkiewicz. X x 8" is a polyhedron, and no polyhedron has the singu-
latity of Mazurkiewiez [6]. Further, X is a factor of the polyhedron S x &
Indeed, the triangulable manifold §* x 8" ean be factored into a product
of compact absolute neighborhood retracts, one of which has the singu-
larity of Mazurkiewicz.

The author would like to thank T. M. Price for calling his attention
to the matters discussed here. :

In this paper, by “retract’ we shall always understand & retract
of compact metric spaces. We use the abbreviations “AR” and “ANR”
for “absolute retract’’ and “absolute neighborhood retract”, respectively.

~ If M is a manifold with boundary, then Bd M and Int M denote
the boundary and interior, respectively, of M.
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2. Antoine’s necklaces. In the construction of the decomposition,
we use sets similar to the standard Antoine’s necklaces in 8% and which
we shall also call “Anfoine’s necklaces”. In Section 3, for each positive
integer r, we shall ebnstruet such a set. In this section, we describe the
construction, notation for the construction,- and certain auxiliary sets.

Suppose 7 is a positive integer (fixed in this section). Suppose X, is
a polyhedral solid torus in &°, and suppose that {Tw, Troy cory Tomeg} 18
4 chain of linked polyhedral unknotted solid tori in IntZy circling 2
exactly once; see Figure 1. We suppose that if i=1, 2, ..., or my, Tr; has

Fig. 1

diameter less than one. If 1=1, 2, ..., or 1m0, leb {Tri, Trizy ooy Lrimny
be a chain of linked polyhedral unknotted solid tori in Int Ty circling T
exactly twice; see Figure 2. We suppose that if j=1,2,.., or my
dism Ty < 3. I i=1,2, .., or My, and j=1,2,.., or m,;, then let,s

{Trij1y Trijey ooy Trijmeyy De 2 chain of linked polyhedral unknotted solid

tori in IntTyy, each of diameter less than }, circling 7y, exactly once. .

Let this process be continued, with subsequent chains circling exactly once,
Mo

and let My, My, My, ... denote | J Ty, ”L'ji ﬂLLjiTrij, 60 @‘ erj, Trijky veey

i1 i1 = i1 =1 K

respectively. - T

Let N, denote ‘Do Hy; Ny is an Antoine’s necklace of type A circling 5.

Note that N,CIntZ,.

icm®
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In the construction of Ny, Tyi, Tie, ..., and T, are the solid tori
of the first stage of the construction of N,, the solid tori Tyi;, where
1 <1< me and 1 <j < my, are the solid tori of the second stage of
the construction of Ny, and so on.

If » is a positive integer, then « is a stage % index in the con-
struction of N, if and only if there exis integers &y, s, ..., and s such
that 1< iy < Mepy 1< 52K Mgy g oovy 30A 1 < U < Mrdyipns sy The statement
that o is an index (in the construction of N,) means that for some
positive integer n, a is a stage n index.

It is easy to see that if « is any point of Int ¥, we may construet Ny
50 that e Nr. .

Now we shall describe certain arcs associated with N,. Suppose
i=1,2,.., OF My. Consider the first stage torus Ty and the second
stage tori Ty, Trizy oorp a0d Trimy lying in Tpe. It is well known that if
j=1,2,.., OT M, there is an arc dri lying in IntTry and containing
..7.\7'- [ .T 785«

Mri
We shall construct ares brii, brizy -5 204 bripmy— 80 that ( le arij)

mpg—1 . . .
( U bris) is an are Ay with certain properties. We regard Trs as a copy
i=1
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of D*x 8" where D" is a dise and & is a circle. The copies of D® x {f},

where ¢ ¢ &, will be called cross-sections of Tri. We give 8" an orientation,,

“clockwise”, and use the induced orientation on the family of all cross

sections of T';. We assume that @i, tre, ..., and dpim, are constructed’

80 that if 1< j< mp, we may label the endpoints of ar; by @; and y;
in sueh & way that if we start at @, and go clockwise through the eross-
sections of Ty, these points occur in the order @y, #,y, oo Don Yy By
cireling through 7Ty twice. Then if 1 <j < mp, bryy is to be an arc in
Int Ty from y; to 44, intersécting precisely those cross-sections of 7);
that are encountered in going from ¥; to w;4, in the clockwise direction.
‘We suppose the construction done so that the wnion of all the cross-

- - . . . . mri
sections intersecting by is a 3-cell. Further, it is to be true that (| ary) v
K Li=1
mr—1

( U bry) is an are Ar;. Then Ny~ Ty C Ays.

i=1

3. Construction of the decomposition. Let 2, be a polyhedral solid
torus in S° Let {#1, #3, ...} be a countable dense subset of Int X,

Let J; be a polygonal simple closed curve in Int X, circling X,
exactly once, and containing ,. Let X, be a polyhedral tubular neighbor-
hood of J; lying in IntZX,.

Let ¥, be an Antoine’s necklace of type A circling X, (and hence
lying in Int X, and circling Zy) such that (1) #; ¢ N, and (2) each of the
first stage solid tori used in deseribing ¥, has diameter at mogt 1.

Hi=1,2,.., or my, there is an are A4; lying in Int Ty, containing
N1~ Ty, and constructed as deseribed in Section 2.

The arcs Ayyy Asgy vy a0 Ay, are nmutually disjoint, and each has

diameter. Tess than 1. Let A, denote ”UA”.
e i=1

Let 7, be the least positive integer ¢ such that z, ¢ 4;. Let J, be
E: ;p(?lygﬂnal simple :closed curve in Int ., , circling 3 exactly once, con-
taining #,,, and disjoint from 4,. Let X, be a polyhedral tubular neighbor-
hood of J, lying in Int X, and disjoint from Aj.

Let N, be an Antoine’s necklace, of type A circling %, such that (1)

Trye N, and (2) each of the first stage solid tori used in deseribing N, has
diameter at most 3.

i TEi=1,2,.., or my, there is an are A,; lying in Int Ty, containing
Ny~ Ty, and constructed as described in Section 2. The arcs Agyy Ay ooy

and Asp,, are mutually disjoint, and each has diameter less than §. Let 4,

a0
[ Aos i ] = ;
denote iL:lA_,. Note that if i=1,2,..., or My A0d §=1,2, ..., or my,

Ay; and A4.; are disjoint.
Let this process be continued. There results a sequence N, N,, V,,

iom°®
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of Antoine’s necklaces of type 4 in Int 2y, each cireling %, and a sequence
Ay Aray ooy Armyg sAn1y vy Aoy, ... of mutually disjoint ares in Int 20,
such that for each positive integer m, the following hold:

(1) NaChp v Apov o U Ay,
@) Bae U (Aao Aig U oo w Agny).
. i=1

(8) If j=1,2,..., OT my, then (diamd.;) < 1/2"

Let a denote the colleetion {dy;, Ay .oy Aimgs Aory Asoy eory Aomagy vonb
Then a is a null collection, i.e., for each positive number e, at most finitely
many sets of a have diameters greater than e.

Let G denote the collection consisting of the arcs of the family a
together with the singleton subsets of 8°— | J{4: 4 €a)}. Since q is a null
collection, it follows that & is an upper semicontinuous decompo-
sition of &%

Throughout the remainder of the paper, we shall let X denote the
decomposition space associated with @, and we shall let P denote the
srojection map from §* onto X.

Each nondegenerate element of @ lies in Int %, and thus P[Int ]
§ open in the associated decomposition space. Further, since {2, s, &, ...}

5 dense in Int X}, it follows that if U is any open set in the decomposition
space intersecting P[], then for some arc A of a, P[A]C TU.

An open set W in 8° is saturated if. and only if W is a union of ele-
ments of G. :

4. Preliminary lemmas. If T is a solid torus, then D is a meridional
disc in T if and only if D is a dise in 7' such that BADCBAT, BAD~0
on BdT, and IntD CIntT. .

LeMMA 1. Suppose k is a positive indeger, i = 1,2, ..., or My, and
D is a polyhedral meridional disc in Trs. Then there is a subarc By of Ax;
such that (1) the endpoinis of By; lie on D and Int By; misses D, and (2) the
two ends of Bii abut on D from opposite sides.

Proof. Let T* be the universal covering space of Tk;, and let ¢ be
the projection map from T* onto T:. Let D, be a copy of D in T*. It is
eagily seen that D, intersects ¢ '[Ni]. Let p; be a point of D, ~ ¢ '[Ni],
and let § be an integer such that ¢(p,) € Trij. Let T7 be the copy of Tgiy
in T* containing p;. )

Let T% T%, ..., Ti-1y Tiy1..., and Ty be copies in T* of Tiy,
_Tkig, vy Tki(:i—l), Tki(j+1)y —ey and —Tkimu: I'SSPECﬁVely, so that {T’f, 1’;, e
ey T%, o, Ty} forms a (Jinear) chain. Let T7% T%% .., and Thy be
copies in T* of Tyi, Trisy s a04 Trimy, Tespectively, so that (1) {Tt*,
T3, ..., Tt forms a (linear) chain and (2) T7* links Th,,.

Fundamenta Mathematicae, T. LXIX : 10


GUEST


icm°

136 : 8. Armentrout

Let D, and D; be copies of D in T™* such that D, is adjacent to D,
D, is adjacent to Dy, D, separates .D; and D, in T, and Ds intersects T3,
Let py be the point of Dy such that ¢(ps) = ¢(pi).

Finally, let A* and A** denote the copies, in T, of 4y containing
p, and p,, respectively. We shall establish the following:

. mes
PrOPOSITION 1. HEvery point of ¢ ‘[Nw] iy (TF o TF*) lies either
r=1
in A* or in A*.
mi
Proof. First consider ¢ '[Ni] (U T¥). Clearly, if »= 1,2, ..,
r=1

or mg, the subarc agy of Ap: (lying in Tri and containing Ngx ~ Tyy) lifts
to an are af lying in T7. Let #F and y; be the points of af so that ¢(af)
and ¢(y¥) are the endpoints @z and yxr, respectively, of axsr.

We may regard T* as D* x E' where D’ is a disc and E" is the real
line. We may suppose that if ¢ ¢ B, p[D® x {f}] is a cross-section of T%;.
Further, we suppose that the positive direction on E* corresponds to
the clockwise orientation on 8. Suppose 1 <7 < mg;. It then follows from
the construction of bxir that there is a copy by of bxir in T with endpoints

m mi—1
z7 and yr. Clearly then, 4* is (|Ja}) v (|J ). Thus each point of
r=1 r=1

my . .
¢ [Nl (’LJIT:) lies in 4* and by a similar argument, o '[Ni]~

ki)
{1 T7*) C A*. This establishes Proposition 1.

r=1

It is easily seen that there is a point p, of D, ~ ¢ '[Ny] lying in
mi

\J (T v T¥). Thus p, e A* or p, ¢ A**. Hence one of 4* and A** inter-

r=1

sects adjacent ones of D,, D,, and D,. Thus there is a subarc B* of A*
or of A* with its endpoints on adjacent ones of D,, D,, and D, and so
that Int B* misses D; v D, v D,. Let By; denote ¢[B*]. Tt is clear that By
satisfies the conclusion of Lemma 1.

Suppose that M is a polyhedral 2-manifold in 8% 4 is a polyhedral
singular dise in §° such that BdA misses M. , and M and 4 are in relative
general position. Let 4, be a 2-simplex, and let f be a piecewise linear
map from 4, onto 4 such that at each point of A M], f is locally
a homeomorphism. It follows that each component of F4 ~ M7 is
% simple closed curve. The statement that y is a curve of intersection of A
with M means that for some component y, of dn~M, y= Tvol-

LEMA 2. Suppose that & is a positive integer, i = 1,2, .., or My,
and U is a saturated open set in S° containing a singular dise A such that
BAAC Tyiry and Bdd+0 in Tiayry. Then U contains a loop y such
that yCTH and }ln'vo in Tkg. )
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Proof. We may suppose that 4 is a polyhedral singular dise, in
general position relative to Bd Ty;. If there exists a curve of intersection y
of 4 with Bd Ty such that y + 0 in Ty, then the Lemma is established.
Hence we shall suppose that each such curve of intersection is homotopie
to 0 in Tgs.

If every curve of intersection of A with Bd Tx; is homotopic to 0 on
Bd Ty, it would follow that Ty and Tty are not linked, a contradiction.
Thus for some curve of intersection § of A with Bd Ty, 6+ 0 on Bd Ty.
It follows that there exists a curve of intersection 1 of A with BdTx

- such that (1) A~ 0 on Bd Tk but (2) if 4 is the subdise of 4 bounded

by 4 and A’ is any curve of intersection of A with Bd T lying in Int 4,
then A'~0 on Bd T.
Let Ti: be a polyhedral solid torus in Int Tk, concentric with T,

mki
and such that Ag; n (U Trer) CInt Th;. For each curve of intersection A

of A with Bd Ty such that 4'~0 on BdTs, replace the subdisc of A
bounded by A’ by a singular dise on Bd T%;, and deform this new singular
dise slightly into (IntZTy:;)—T%. This yields a singular dise A’ with
BdA’ = 4, Int A’ CInt Ty, and A’ ~ T C A,

By the loop theorem [10, 12], there is a polygonal dise D in
Tu such that BdDCBdTm, BdDP~+0 on BdT}cz, IDtDCIntTm, and
D lies in a small neighborhood of A’. Indeed, we may assume that
DTy CU. We suppose D and BdT%; to be in relative general
pogition.

Since D is a meridional disc in Tk, it follows that D contains
a punctured disc D, such that BdD,C BdT%;, IntD,C IntT%:;, one
boundary curve g, of D, is not homotopic to 0 on Bd T%;, and every other
boundary curve is homotopic to 0 on BdTj;. Note that Dy C U. Now

we may construct a polyhedral meridional dise ¥ in T by (1) attaching

to D, an annulus in Ty—IntT%; having u, as one boundary curve and
having as its other a simple closed curve u on Bd Tk such that u~0
on Bd Ty, and (2) capping every other boundary curve of D, With a dise
lying, except for its boundary, in (IntTw:)—T%:;. We suppose that F is
constructed so that F ~ T = Do.

By Lemma, 1, there is a subarc Bi; of Az such that (1) the endpoints
of Bi; lie on F and IntBy: misses F, and (2) the two ends of By abut
on F from opposite sides. Clearly the endpoints of By lie in D,. Hence
D, v By contains a loop y such that y+ 0 in T

Since D, C U, Ay intersects U. Since U is safurated, Az CU.
Hence y C U. Clearly y C Ty This establishes Lemma 2.

Lemva 3. Suppose k and n are positive integers, U is an open s,
Ty is a stage n torus in the construction of Ng, and if 1=1,2, ..., 07 My,
Ty contains a polygonal simple closed curve ye such that yy+ 0 in Ty,

10%
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yi C U, and y;~0 in U. Then Ty, contains a polygonal simple closed curve y
such that y C U and y +0 in Ti.

Proof. If :=1,2,.., OT My, W shall assume that y; bounds
5 polyhedral singular disc 4¢ in general position relative to Bd Ty;.

Suppose there is an integer j, 1 < j < My, such that some curve of
intersection of 4; and Bd Tk is not homotopic-to 0 in T'x.. If we let y be
such a curve, then y satisfies the conclusion of Lemma 3. Thus we may
agsume that if 1 < j < M, each curve of intersection of A; with Bd T',
is homotopic to 0 in Ti.

Let T* be the universal covering space of Ty, and let ¢ be the
projection from T* onto Ty.. Let pi, ¥%; ..., ¥, and pi* be copies in I*
of 1,92, ey Ymy,s and y;, respectively, so that {1, ¥85 oy Vs 7T
forms a (linear) chain of loops.

Ifj=1,2,.., 0 My, let f; be a piecewise linear map from a standard
2-simplex A, onto 4; such that f;/Bd4, is a homeomorphism onto y;.
Some component of A,—f7 [BdT.;] contains Bddy; let Az denote this
component. Let A; denote f[Aj]. Then /; is a polyhedral singular pune-
tured disc with y; as one boundary curve and such that every other
boundary curve of A; lies on BdT,; and is homotopic to 0 there.

If j=1,2,.., OF My, there exists a singular punctured disc A}
in T* and a piecewise linear map g; from A;, onto A} such that pg; = fi|dsp
and g;|Bd 4, is a homeomorphism from Bd 4, onto yj. This may be seen
as follows: Since each boundary curve of A; other than y; is homotopic
t0 0 in Ty, there is an extension hy-of fj|d; to all of 4y, so that k;[4,] C Th,.
There is a mapg; from 4, into T* such that ¢g; = hs;. Then let g; denote
gjldjo; we may assume g; piecewise linear.

By a similar argument, there is a singular punctured dise A¥* in T*
and a piecewise linear map gy from A; onto A* such that pgi = fi|dj
and ¢1|Bd4, takes Bd4, homeomorphically onto yi*. For the following
let ym,+1, denote »7*, and let-A%, ., denote A !

PROPOSITION 2. If 1 <j < mpat1, p7 intersects Afyy, and if 1<j
< mp+1, y§ intersects A¥_.

Proof. We establish only the first assertion; the second follows by
an analogous argument.

Suppose:, 1<) < e+l If o7 does not intersect A%.;, then let D be
a cross-sectional dise in T* such that D misses y¥. Then D u BAT* is
simply connected. Then since each boundary curve of Ay, distinet
from y7, lies on Bd I*, there is an extension d; of g; to all of 4, so that dy
sends do—IntAs into D w BAT*. Thus yf;, bounds a singular disc in 7*
missing ;. This is a contradiction since y} and %, are linked in T*.
Hence 7 intersects 7. This establishes Proposition 2.

Let 2 be a point of y7, and (1) if #= 2, let y be a double translate
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of # belonging to »¥*, and (2) if n = 2, let y be a translate of « belonging
to 9¥. (Recall that, in each first stage solid torus, the chain of second
stage solid tori circles twice, but for every other =, the chain of (n+1)-sb
stage solid tori in a stage # solid torus circles only once.) It is easy to
gee that AX U A U ... U Ay, v A*F contains a path § from @ to y such
that @[] is a loop in T, eircling Tu; once (if » 5 2) or twice (if » = 2).
Since each of Ay, Ay, ..., and Am, lies in U, [f1C U. A slight adjustment
of p[B] yields a polygonal simple closed curve y such that y C U, y C Ta,
and y+ 0 in T,. This establishes Lemma 3.

LEMMA 4. Suppose that Uy, Uy, U, ... s a sequence of open sets in s
such that for each 4, U;+1 C Uy and, each loop in Uiy is homotopic to 0 in Us.

00
Suppose V is an open set, V. C () Uy, and for some integers k and j, Ax; CV.
=0

Then there is a polygonal simple closed curve y % Uy~ Ty such that
y0 in Ty;.

Proof. Now Ny ~ Ty C Ags, and since Ay lies in V, there is a positive
intéger n such that each stage » torus in the construction of Ny lying
in Ty lies in V.. '

Now congider the set Up. Sinee ¥ C Uy, then each stage n torus in
the construction of Ny lying in Ty lies in Un. Consider any stage (n —1)
solid torus Ty, in the construction of N lying in Txs. Then Trory Thozy oons
and Tim, are the stage n solid tori in Tree L r=1,2, ..., OF Mpa,
let vz be a polygonal simple closed curve in Thr such that ygrer~0
in Tkmr. Since Tkarc Un, ',Vkarc Un. Then ’)JWNO in Un—l.

By Lemma 3, there is a polygonal simple closed curve yiein T N Un-1
such that yge~ 0 in T Thus, if Ty, is any stage (n—1) solid torus lying
in Ty;, then there is a polygonal simple closed curve yi. such that yg
CTyer Unoy and yr.+0 in Ty.. Hence the argument above may be
repeated, using any stage (n—2) solid torus Tys and the stage (n—1)
solid tori (in* the construction of Ny) that lie in T

After at most # repetitions of this argument, we obtain a polygonal
simple closed curve y lying in some one of U,, Uy, Us, ..., and hence
in U,, such that y C T and y+0 in Tgs.

Lemma 5. Suppose that Uy, U, U, ... is a sequence of saturaied open
sets in 8° such that for each i, Ui C U; and each loop in Uiy is homotopic

o0
0 0 in U;. Suppose V is an open set in 8* such that VC Do U; and for some

integers & and j, Axy CV. Then there is-a loop y in Uy ~ X such that y ~ 0
in Ek.

Proof. By Lemmsa 4, there is a loop y; in Um, such that 75 C Tis
and y;+ 0 in Tx;. Now y; bounds in Uime—1, and hence, by Lemma :‘Z,
there is & 100p ¥j41 iD Utme—y, sUCR that y;41C Tiien a0d yi4+0 in
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Tyse We apply Lemma 2 repeatedly, using the sets U, Uy,
Upmp—2yy s Uy, 20nd Uy, and going around the chain Tx;, Ty, ..
aeey Tkmm; Tkl, T}a, aeey and Tk(j—l)-

There results, for each 7 such that 1 <7 < my,, a loop y, such that
yrC Try yrv 0 in Tir, and y, lies in some one of Uy, Uy, U,, ..., and
hence yr C U,. Then by Lemma 3, there is a loop y in X% C U, such that
y~0 in Xk,

5. Additional preliminary results. The following lemma is a conse-
quence of ([11], Theorem 4) and the fact that each AR is simply connected.

LemMa 6. Suppose M is a compact absolute retract in an LC' locally
compact metric space, and suppose that U is an open set comtaiwming M.
Then there is an open set V such that M CV C U and each loop in V is
homotopic 1o 0 in U.

By repeated application of Lemma 6, we may establish the follow-
ing result. .

Luvwma 7. Suppose M is a compact absolute retract in am LC" locally
compact metric space, and suppose U, is an open set containing M. Then
there is a sequence Uy, Uy, U,, ... of open sets such that for each i, U1  C Uy
and each loop in U,y is homotopic to 0 in Uj. ’

The following lemma is just a restatement of Corollary 12.14 of
Chapter V of [6]; it is also established in [4].

Luvwa 8. If R is an ANR, H is an upper semicontinuous decomposition
of B into absolute retracts, and the associated decomposition space S has
finite dimension, then S is an ANR.

Lieyma 9. Suppose 8 is a metric space, G is an upper semicontinuous
decomposition of 8 into compact absolute retracts, and §' is the associated
decomposition space with n the projection map from § onto 8. Suppose
that U and V are open sets in 8’ such that VC U and each loop in V is
homotopic o 0 in U. Then each loop in n '[V]is homotopic 10 0 in =~ [ U]

Proof. Suppose y is a loop in 7 '[V]. Then ay is a loop in V' and
thus zy~0 in U. Let F be a map from a dise D into U such that F|BdD

= my. Then = '[F[D]] is a compact set in & [T], and is a union of ele-
ments of G.

For each point z of F[D], let W, be an open set sueh that z '[x]

' CW2Ca=a'[U] and each loop in W is homotopic to 0 in a [U]; such

an open set W exists since each element of G iy a CAR. We further as-
sume that each such W; is a union of elements of 6.

By compactness of = [F[D]], there is a finite subset {@1, Bay ..y @)
of F[D] such that {Wa, Wa,,.., W} covers a |PD]. I 1<i<r,
Wf'l denote Wy by Wy; then {W,, W,, ... ; We} is an open cover W of
a [F[D]. Note that if z « F[D], a 2] lies in some set of W. It follows
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that {#[ Wi, #[Wa], ..., n[W,]} is an open cover W’ of F[D]. Let T be
a friangulation of D such that {Flo]: o T} refines W

We now construct a certain singular dise in x [U]. We shall do
this by “lifting” F [D] into «[U]. If v is a vertex of T in Int D, let v’ b.e
a point of @ '[F(v)]. If v is & vertex of T on BAD, let o' be y(v). If o ig
a 1-simplex {901 of T not in BdD, let 4 and 4’ be the 2-simplexes of F
so that o = 4 ~ A'. Select open sets W and W; of W so that F[4]C a[ Wi}
and F[A']1C #[W;]. Then v and v} belong to the same eomponent of‘
W~ W;, and let o’ be an are in this component of W; ~ W, from o

"o 0. If. ¢ is a 1l-simplex of T on BdD, let o denote y[dl.

Suppose 4 is a 2-simplex of T, with 1-dimensional faces oj, o3, and ;.
Tet Wi be a set of W so that FLA]1C #[Wil. In Wy, we eon.stmgtied arcs
o}, 04, and of 8o that o1 v o5 v 05 I8 @ loop.y. .NOVL‘MNO in o~ [U] by
construction of Wi. Let A° be a singular dise in = ‘[U]_ll)mmded by u.

Tt is clear that {J{4': 4 T} is a singolar dizsc m_;lm [T}, and thab
this singular disc has boundary y. Hence y~0 in @ [U]

6. The main result. ‘

TrmorEM 1. The space X described in Section 2 i:s “ compact absolute
neighborhood retract with the singularity of Mazurkiewicz  but such that
X x & is homeomorphic to 8° X 8

To proof Theorem 1 we first establish two lemmas:

Lmwara 10, X x 8 4s homeomorphic to S x 8

Proof. It follows from Theorem 5 of [9] (and from [7]) that if G is
a monotone decomposition. of E? into countably many arcs lm-ld points,
and W is the associated decomposition space, then W xE" is homzoit-;
morphic to E*. With no esgentia,l lzhangfe Jiﬂ’n) the proof, an analogous res
! blished for §° (in place o . .
00111‘};3 :hzsz)ioof of Theorem 5 of [9], the E*factor of the product E:;v(ﬁ
is divided into a sequence ...J_s, 14,1, Il', I,, ... of closed. inti 8
of equal length and, corresponding to eaich interval I;, certain hz}:ineo;
morphisms h; of the product B xI; are defined. Now the h‘?meo?noip . ;:)x;e
corresponding to different intervals are constructed by f copymgk)jE~
for one interval, so that for any j, therse is an order-preserving tm’nsl 1(;; g5
from I, onto I; such thab it e B, tely,, and Rz, t)———.(a:,t),a‘n ]e;;
hy(m, g(2)) = (=, '+ g;(1)). It follows that such homeomorphisms ¢

t " since, in th
constructed for products of the form B x & and §° x 8, since, in the

t ors repeat cyclically.
e ’_l?lfmi ,b;hz sff;fl};)le mol()liﬁcation of the proof of Theorfsr.n 5 oii E;],' vze
have the following result: If G is 2 monqtone deeoqlposmon 0 ;n z
countably many ares and points, and W is tllle associated deci?gogg V(v)s
space, then W x 8" is homeomorphic to &° % 8. Hence Lemma 10 follows.
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COROLLARY. X has dimension 3.

Proof. It is known that if § is a compact metric space of finite di-
mension, then dim (8 x&")=1+dimg. Thus dimX = 3.

Let 2, denote a polyhedral solid torus in §&* such that X,C IntQ,,
and X, and 2, are concentric.

Lumma 11. There ewists no ARM in X such that (1) M C P[IntQ],
and (2) if (M) denotes the (topological) interior (in X) of M ~ P[IntX],
then for some integers k and §, P[Ax;]Ci(M).

Proof. Suppose there is such an ARM. By Lemma 8, X is an ANR,
50 X is LO" Thus by Lemma 7, there exists a sequence of open gets in X,
P{Intfy], Wy, W1, Wy, W, ... such that for each 4, M C W, C W, , each
loop in W4, is homotopic to 0 in Wi, W, C P[Int2,], and each loop
in W, is homotopic to 0 in P[Intf,]. Further, the interior (in X) i(M)
of M ~ P[Int X} hag the property that for each 4, i(M)C W;. Since
P[Int %] is open in X, i(M) is open in X.

Let V denote P™'[i(M)], and for each i, let U; denote P [W,]. Then
by Lemma 9, for each i, each loop in Uy, is homotopie to 0 in U;, and
each loop in U, is homotopic to 0 in Intf,. Since for some integers &

and j, P[Ax]Ci(M), then Ay CV. By Lemma 5, there is a loop y in

Zr n U, such that y~ 0 in . From the construction of X3 and £y, it
follows that y + 0 in Q,. However, each loop in T, is homotopic to 0
in Int@Q,. This is a contradiction, and Lemma 11 is established.

We return to the proof of the theorem. ’

Proof of Theorem 1. By the Corollary to Lemma 10, X is finite
dimensional. Hence by Lemma 8, X is an ANR.

The referee pointed out the following simple proof that X is an ANR.
X is a retract of X x 8" But X x & is an ANR since, by Lemma 10
X x & is homeomorphic to & x 8% ’

Now we shall show that X has the singularity of Mazurkiewicz.
We suppose X metrized. : :
. There is a positive number ¢ such that any set in X of diameter less
than & and intersecting P[] must lie in P[IntQ,]. Suppose X is covered
by at most countably many absolute retracts, each of diameter less than e.
Let C he the family of those that intersect P[X)); each set of ¢ lies in
P[IntQ,).

Let C" be {¢~ P[Int Zy]: c e C}; €' covers P[Int X,] and is countable.
By the Baire theorem, some set of ¢’ has nonvoid interior relative to
the locally compact metrie space P[Int X]. Let M be a set of ¢ such

that M ~ P[Int X,] has nonvoid interior in PInt X]. Since P[Int PARTE

open in X, then M ~ P[Int ;] has nonvoid interior (M) in X.
By t%xe construetlon_ of @, each open subset of P[Int X] contains
for some integers k and j, P[4]. Thus for some k and j, P[A]Ci(M )t
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Thus if X is covered by at most countably many absolute retracts,
each of diameter less than e, there exists an ARM in X such (1) M
C P[Int2,] and (2) for some % and j, P[A4y]Ci(M) where i(HM) is the
interior (in X) of M ~ P[Int X]. This contradicts Lemmsa 11, and thus X
hag the singularity of Mazurkiewicz. This establishes Theorem 1.

7. Local properties of X. The methods of this paper are closely related
to those used in other papers studying local properties of decomposition
spaces, especially [1]; see [2] and [3] also. In this section we consider
further the local structure of X.

The argument of Lemma 11 can be used to establish the follow-
ing refult.

Lzvwva 12. If # € P[X], there is no compact, locally connected, simply
conmected neighborhood of x (in X) lying in P[IntQ]. '

The conclusions of Lemmas 6 and 7 hold if, in the hypotheses
of those lemmas, “compact AR” is replaced by “compact, locally con-
nected, simply connected set’”. For Lemma 6, this follows from ([11], -
Theorem 4).

THEOREM 2. It is not true that each point of X has arbitrarily small
compact, locally comnected, simply connected mneighborhoods.

The following may be established by a modification of the argument
given in this paper. ‘ '

Levmwa 13. If © e P[X,], there is no simply conmected open neighbor-
hood of z lying in P[IntQ].

We shall say that a topological space is strongly locally simply con-
nected provided each point of the space has arbitrarily small simply
connected open neighborhoods. Thus we have the following result:

THEOREM 3. The space X is not strongly locally simply connected.

In proving Lemma 13, we use the following consequence of Corol-
lary 5.4 of [5].

Levva 14. If U is a simply connected open set in X, then PT'[U] is
simply connected.

The proof of Lemma 13 is essentially the same as that of Lemma 11,
except that, in place of the sequence Uy, Uy, Us, ... of open sets, we can
use a single open seb.

A topological space is locally peripherally spherical provided each
point of the space has arbitrarily small neighborhoods whose (topological)
boundaries are (topological) 2-spheres.

TaroreEM 4. X s mot locally peripherially spherical.

Theorem 4 follows from Lemmas 12 and 15. For a proof of Lemma 15,
see [1].
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Luvaa 15. If W is a compact neighborhood of a point of a simply
connected metric space such that the topological boundary of W is a 2-sphere,
then W is compact, locally connected, and simply connected.

Thus we have proved that the space X described in Section 2 ig
a 3-dimensional ANR but (1) X is not strongly locally simply connected,
(2) X is not locally peripherally spherical, and (3) it is not true that X hag
arbitrarily small compact, locally connected, simply connected neighbor-
hoods.

8. Remarks. .

1. By representing §° as the union of two solid toii' 5, and 5, and
carrying out the construction of Section 2 in each solid torus, we obtain
a 3-dimengional totally non-euclidean space ¥ such that ¥ x 8* is homeo-
morphie to § x 8%

2. For each of the results mentioned above, there is a corresponding

result obtained by decomposing F°. :
V 3. According to Borsuk [6], a topological property is multiplicative
provided that for every two spaces X; and X, with the property, their
product X; x X, has that property. Borsuk raises the following question [6]:
Is the singularity of Mazurkiewice multiplicative?

Kwun [8] established the following theorem: Suppose m and n are
Dositive integers, o and § are arcs in E™ and B", respectively, and A and B
denote the spaces obtained by collapsing a and B, respectively, to poinis.
Then A XB is homeomorphic to E**™ ‘

One may conjecture that Kwun’s result holds in the case of upper
semicontinuous decompositions of euclidean spaces into at most countably
many ares. If this conjecture is true, then the construction of Section 2,
applied to E*, would yield a space Z with the singularity of Mazurkiewicz
but such that Zx Z is homeomorphic to E°. It seems plausible to con-

Jjecture that, for locally compact metric spaces, the singularity of Mazur-
kiewicz is not multiplicative.
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