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Some topological propertics
associated with measurable cardinals

by
W. W. Comfort* (Middletown, Conn.) and S. Negrepontis+* (Montréal)

§ 1. Introduction (). H. J. Keisler and A. Tarski have introduced
in [5] the symbols C;, Cf and G, to denote the following classes of cardinal
numbers. -

C,: the class of all cardinals a for which every a-complete ultrafilter

n (the discrete space of cardinality) a is prinecipal;

Cf: the class of all cardinals a for which either a is a singular cardinal
or some a-complete filter on (the discrete space of cardinality) a cannot
extend to an «-complete ultrafilter;

C,: the class of all cardinals « for which some a-complete filter on
some set cannot extend to an «-complete ultrafilter (2).

The class inclusion G, C C} is obvious, and it is clear also that ¢ e G,
whenever a is regular and « <Cf; it is an open question whether either
of these class inclusions is proper. Keisler and Tarski in [5] have studied
these (and other) classes, using a certain binary relation R on the class
of all cardinals. From our point of view, which focuses on the Stone-Uech
compagctification of diserete spaces of certain large cardinalities, it is
convenient to modify the relation R of [5] and introduce the binary re-
lation § on the class of all cardinals as follows.

DerinrrioN. Let o and f be cardinal numbers. Then aSp providéd
there is, on (the discrete space of cardinality) B, an a-complete filter
that cannot extend to an a-complete ultrafilter.

* This author acknowledges support received from the National Science Foun-
dation, under grant NSF-GP-8357.

** Thig author acknowledges partial support received from the Canadian National
Research Counecil under grant A-4035 and from the 1968 Summer Research Institute
of the Canadian Mathematical Congress.

(*) Notation and terminology not explained here will be given in § 2.

(*) That the class C, coincides with the one defined in [5] follows from the proof
of Theorem 5.6 in [5]. The classes C,, C, are 1dentxcal with the classes of all cardinals
satisfying properties Py, P, respectively, of [1]. :
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192 W.W. Comfort and 8. Negrepontis

Notice that aeC, if and only if a8f for some cardinal B, and for

regular « that a ¢Cf if and only if aSa.

The object of the present paper is to characterize the set-theoretic
relation § in topological terms. Using the (topological) concept of type,
we consider the way in which the set of all non-principal «-complete
ultrafilters on (the discrete space of cardinality) f is embedded in the
set () of all «-uniform ultrafilters on the space, where both 2,(8)
and Yo(p) are regarded as subspaces of the Stone-Cech compactification
of a discrete space of cardinality f. Specifically, we prove the following
two results for cardinals « not in Cy; the first of these describes when aSp
for f > «, and the second tells when aSa. (In the body of the text these
two results, together with cerfain other equivalences, appear as Theorems
3.6 and 3.9 respectively.)

THEOREM A. If a ¢C; and a < B, then oS fails if and only if Qu(B)
is C*-embedded in ¥o(p) and each open subset of ¥a(p) containing 2.(B)
contains densely an open set whose type does not ewceed a.

THEOREM B. If o ¢ C; and o™ = 2% then aSa fails if and only if Qu(a)
is O*-embedded in ¥y(a).

The last section of this paper contains some additional results,
holding for all eardinals a not belonging to the class G;. They relate to
the local behavior of uniform ultrafilbers on (the discrete space of
cardinality) a, and to the cardinalities of certain subsets of ultrafilters
on (the discrete space of cardinality) a.

In a direction different from ours, but nevertheless topological, there
are product-space theorems about meagurable cardinals given by Keisler—
Tarski [5] (Theorem 4.27, for example) and by Monk—Scott [6]. We
observe here, as in [11], that certain of the results of [1], [3], [5] and [6]
were anticipated by Parovidenko in [9] and [10]. We shall not attempt
ab this time to relate our “Stone-Cech compactification” theorems to
the “Tychonoff product-space” theorems given there and in [7].

§ 2. Definitions and lemmas. Ordinal numbers are denoted by & and £.
Each ordinal concides with the set of all smaller ordinals, so that the
condition &< is equivalent to the condition & ¢{. Nevertheless, we
will make the notational distinction between the first ordinal 0 and the
empty set &. A cardinal number is an initial ordinal. Cardinals are de-
noted by a, B, y. The first infinite cardinal is . The least cardinal greater
than a is denoted by o*. a i a limit cardinal if it is not of the form .
A cardinal o is regular if it cannot be espressed as the sum of fewer
than o cardinals each smaller than a. B* denotes the cardinal number
of the set of all mappings from a to f. We set f%= Y {f”: y < a}. The
cardinality of a set 4 will be denoted by [A]. For each cardinal number a,
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we shall denote by D(a) the (topologically unique) discrete topological
space of cardinality a. As sets, « and D(a) are indistinguishable.

If a and # are cardinals, then a filter 2 on the set D(B) will be called
a-uniform if |P|> o whenever F'ep. A filter p on the set D(B) will be
called «-complete provided that ((gep whenever ¢Cp and |¢g| < a.
Every filter p on D(f) for which p > 0O is, of course, a-complete for
all a. A filter on D(B) not properly contained in any filter on D(B) will
be called an ultrafilter. We shall be interested in the non-prineipal ultra-
filters on D(p), i.e., in those ultrafilters 9 for which M p = @. The set of
non-principal a-complete ultrafilters on D(p), and the set of a-uniform
ultrafilters on D(B), will be denoted respectively by the symbols Q,(8)
P(f). The inclusion 24(8) C ¥,(8) is obvious.

If w < a<p, then ¥,(f) # @. Indeed, the family of complements of
all subsets of D(B) of cardinality less than « forms a filter, any extension
of which to an ultrafilter on D(f) produces an element of Yo(p). Further,
for a = f = w0, Qu(0) = P,(w) % @. In contrast, it is not known whether
any uncountable cardinal « exists for which Q.(a) 5= @. Restated: It is not
known whether there is any uncountable cardinal number not in the
class C,. An uncountable cardinal not belonging to C, will be called
Ulam-measurable or, simply, measurable. Tt is precisely for these cardi-
nals « that there exists a measure 4 defined on D(a) with the following
properties: (a) each subset of D(a) is u-meagurable; (b) if §C D(a),
then u(8) =0 or u(8) =1; (c) if % € D(a), then u({z})=0; (d) M(D(a))
=1; (e) if u(8i)= 0 for each ¢ eI with |I| < e, then ul _L;S;) = 0. (Our

1€,

)

terminology in this respect differs from the traditional one, given in [2]
for example, according to which « is called measurable if there is a count-

. ably additive measure satisfying conditions(a), (b), (¢) and (d). Ac-

cording to the classical Ulam-Tarski theorem (ef. [14]) the first eardinal
number measurable in the sense of [2], is in faet Ulam-measurable).
If a is a measurable cardinal then « is strongly inaccessible in the sense
that a is a regular cardinal and that 2” < a whenever B < a (cf. [13]);
in particular, o = o = 2,

The notations clxY, intxY denote the (topological) closure, interior
of the subspace Y of the topological space X in X, respectively.

A subset ¥ of a topological space X is said to be 0*-embedded in X
if each bounded continuous real-valued function on Y extends continu-
ously to X. With every completely regular Hausdorff topological space
we associate its Stone—Cech compactification, denoted £(X) and charac-
terized by the following properties: (a) 2(X) is a compact Hausdorff space;
(b) X is (homeomorphic with) a dense subspace of B(X); (¢) X is C*-em-
béd}ied in @(X). (The space B(X) is constructed and discussed in [21)

‘For each discrete space D, the Stone-Cech compactification g(D) .
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of D will be regarded as the set of ultrafilters on D, topologized so that
for each subset 4 of D and each ultrafilter p on D we have

peclgpd if and only if Aep.

(Tn case p is in fact an element of D itself, our notation has identified p
with the ultrafilter on D consisting of all subsets of D to which p belongs.)
From the fact that X is C*-embedded in B(X), it follows that if 4 is any
open-and-closed subset of X then el‘g(X)A ig also open-and-closed in 2(X).
In particular 4 and D\A have disjoint closure in @(D) whenever D is
discrete and A C D, so that each set of the form clgp)4, with ACD,
is open-and-closed in #(D).

DerinrTIoN. M D is a discrete space and A CD, we set 4*
= (cl ﬁ(D)A)\-D- In particular, D* = (D\D.

9.1. LeMMA. For each discrete space D the family {A*: A C D} is
a base for the topology on D*.
" Proof. If U is a neighborhood in D* of p, then hecause D* is
completely regular there is a eontinuous function f from D* to [0, 1] for
which f(p) = 0 and f=1 on D*\U. Since pD is a normal space and D"
is closed in it, f extends by Tietze's theorem to a continuous function g
mapping gD to [0, 1]. Defining

A=g0,1/2)~D,
we have
ped*CU.
We need some additional facts about the topology of the Stone-Cech
compactification of a discrete space.

2.2. LEMMA. W (B) is a compact subset of D(B)*. )

Proof. To see that P, (f) is closed in D(B)*, let p e D(B)*\Wulp)
and find a subset .4 of D(B) for which |{4| < a and 4 ep. Then A* is
a neighbourhood in D* of p, and A* ~ V() =@.

2.3. Lemwa. Let W be a subset of ¥ (B) which is open-and-closed (in
the topology which ¥ (B) inherits from D(B)*). Then there is a subset A of D
for which

W= A* V().

Proof. For every p ¢ W, let 4, be a subset of D(B) such that p e 45 »
A ¥,(p)C W. Since W is compact, there is a finite number of elements
D1y Pay -y P in W such that

W= ,‘Ql A%, AP

icm®
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Defining 4 = kU Ap, we have
=1

W=A"~¥(p),

- a8 desired. :

We have a}ready observed that the condition a ¢C;, i.e., the con-
dition that o be measurable, is equivalent to the condition Q.(a) # O.
We pursue this further.

2.4. LeMMA. Let o be a measurable cardinal number. Then for each
cardinal number B the set Q) is dense in W, (B).

Proof. We shall suppose that « < 8, since otherwise both sets in
question are empty. For each nonvoid open subset U of ¥.(f) there is
a subset 4 of D(p) for which |4]|= « and

AT P (BHCTU.

Since « is measurable there is an a-completer ultrafilter p on 4 which

is not principal. Let ¢g={F CD: F ~ A ep}. Then ge U ~ Q(B).

2.5. LEMMA. Let {K}ier be a collection of closed subsels of Qu.(f), with
| < a. Then \JK; is closed in Q.(p).
iel
- Proof. It p e Q.(f)\ L) K: then there is, for each i in I, a subset A;
el

of D(p) with p e AT and with A% ~ K;= (. Since each of the sets 4;
belongs to p and |A4| < a, we have [} A;ep. Then ([ A)* ~ 2(f) is
tel iel

a neighborhood of p which misses { ) Ks.
iel

A topological space is said to be a-compact, where a is a cardinal
number, if each of its open covers admits a subcover by fewer than a
elements. The relation § defined above may easily be characterized in
terms of this concept.

2.6. LEMMA. Let o be measurable, and let a < f. Then the relation o8B
is false if and only if Qu.B) is a-compact.

Proof. Since {A4* ~nQ,f): ACD(B)} is a base for the relative
topology on 2,(f), the space 2,(f) is «-compact if and only if each cover
of 2,(B) by (open) sets of the form 4* ~ 2,(8) admits a subcover by fewer
than o sets; this is equivalent to the condition that each collection of
{closed) subsets of the form A* ~ Q,(8) has nonvoid intersection provided
that each subfamily with fewer than « members has nonvoid intersection;
this in turn iy equivalent to the condition that each collection of subsets
of D(B) extends to an «-complete ultrafilter provided that each sub-
collection with fewer than « members does so—i.e., to the condition
that «88 fails. . .
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We remark that the hypothesis that o« be measurable cannot be
dismissed. Indeed, if « is any regular, nonmeasurable cardinal whatever,
then it is easy to see that the relation aSa is valid but that Q,(a), since
it is empty, is compact.

According to Lemma 2.5, the intersection of fewer than a open sub-
sets of Q.(8) will again be open in Q.(8). Any analogous statement about
Y,(B) is emphatically false, but the following is a suitable substitute.

2.7. LeMua. Let ¢ be a measurable cardinal, and let {Wi}ier be a col-
lection of open-and-closed subsets of Wola) for which (iOT W) nQyfa) O

and |I| < a. Then int ya(,z)(‘(} W) #=9.
1€,

Proof. Lemma 2.3 assures us that for each 7 in I there is a sub-
set A; of D(a) such that Wi;= A} ~ ¥,(a). If p i3 chosen so that
p e () Wi) ~ 2,(a), then for each 7 in I we have 4:¢p, hence (\IA,- € P.

i€l 7€

Defining 4 = ("} 4;, we have
) el
A* A Pyla) Cint %(u)(() W), '
i€
as desired.

§ 3. Characterization of the relation § in topological terms. According
to Lemma 2.6, the relation § can be characterized in topological terms
by finding conditions equivalent to the condition that Q.(8) be a-compact.
Tt is to this project that the present section iz devoted. We begin with
two lemmas, the first a tool for the proof of the second.

3.1, LemmA. If O,8) is a-compact and U is (relatively) open-and-closed
in Q(B), then there is a subset A of D(B) for which U = A* ~ £.(p).

Proof. Because U-is open in Q4(f) there is for each point p in U
a subset A, of D(B) for which p e A5 ~ Q,(8) C U; since U is closed
in £,(8), and hence o-compact, a subset X of U exists for which |X| < a
and

UA )~ 2:(B) -

Writing 4 = LéA,,, we have U = A* ~ Q,(B): for surely U C A* ~ 2,(8),
ne

and if g e 4* ~ Q,(f), in which case A e g, then because ¢ is «-complete
a point p exists in X for which A4, € g, so that

e d;nQ(HCT.

©3.2. LmmmA. (a) If QuB) is a-compact, then 2.8) is C*-embedded
in Po(B);

(b) If QoB) is O*-embedded in ¥ (B) and U is (relatively) open-and-
closed in Q(B), then there is a subset A of D(B) for which U = A* ~ Qu(B).
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Proof. We shall suppose that o < a
otherwise.

To prove (a), indeed, we may take a> o (since Q,(8) = ¥, (B)).
In this case, then, given fin (*(Q2.(8)} and a real number r, the set F(r),
because it is a G5 in 4f), is open-and-closed in Q.(f) by Lemma 2.5.
Choosing by Lemma 3.1 a subset 4, of D(B) for which f™(r) = A¥ ~ Qu(B),
we wish to extend f to a bounded function g defined throughout D(8) ~
n Q) by writing g =r on 4,. Unfortupately the subsets 4, of D(f)
majy fail to be pairwise disjoint, so that g cannot be so defined. To remedy
this difficulty, we define

< B, the assertions being obvious

Br,—_— -A-r\ U -As
s<r
and we define g on D(B) by the rule
(@) = {7‘ if zeB,,
I =V i zeD@B\UB,.

To check that the bounded function ¢ has a continuous extension to

B(D(B)) which agrees with f on 2, (f), it suffices to check that

I7r) = B ~Q4(B)

for each real r. Fixing r we choose a sequence s, of real numbers, each
less than », with limit », so that

Bf:A"\U ( U A) -
neEw 8<Sp .
Now if p ¢ f7'(r) then p ¢( U As)*, since otherwise we would have
F(@) < sa<r=f(p).
Thus |J 4;¢p, so that (p being «-complete, with a > w) | 4s ¢p; thus
§<8n s<r

p e Bf nQuB),

a8 desired. This completes the proof of (a).

For (b), we note that by hypothesis there is an open-and-closed
subset U’ of ¥,(8) for which U = U’ n Q,(8). Applying Lemma 2.3 to U’
we gee that there is a subset A of D(B) for which

U= U nQp)= 4" ~VulB) n ()=

The following definition is taken from [8].

3.3. DurINmToN. Let U be an open subset of ¥,(B). The type of U,
denoted 7(U), is the smallest cardinal number which indexes a collection
of open-and-closed subsets of W,(8) whose union is U.

A* A Q(p) .
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This' concept furnishes an easy, though not particularly useful,
characterization of the relation 8.

3.4. THEOREM. Let o < o < . The following conditions are equivalent:

(a) Q4(B) is a-compact;

(b) if U is open in Po(B) and Qu(f) C U C Py(B), then an open subset V'
of W.B) exists for which Q) CVC U and 7V < a.

Proof. (a) = (b). For each point p in £,(p) there is a subset A, of D(B)
for which v '

pedinF(B)CU.

For the desired set ¥V we choose
V= (45~ Zu(B)),
peX
where X is a subset of the «-compact space £2,(8) chosen go that [X| < a
and 2(f) CpLE_)X(A; ~Yd(B)) -

(b)= (a). If W is a cover of 2.(8) by (relatively) open subsets, we
choose a collection U of open subsets of Py(8) for which W = {U ~ Q,(B):
U e U} and we define U = [ JUWU. According to (b), there are open-and-
cloged subsets V; of ¥,(8) for which ' '

2.8 C iLEjIVg cvU

and |I| < a. Since each of the sets V; is compact, each V; is covered by
finitely many elements of W. Thus a subsget- W’ .of W exigts with |U] < «
and with ‘

Q8) C U
1t follows that 2,(8) C | W', where

W= {T ~Qu(f): T'eW}ICW.

The following lemma, which furnishes us with a multiplicity of
equivalences in Theorem 3.6, shows that under certain ecircumstances
the condition =V < a may, in effect, be replaced by the condition 7V < a.

3.5. Levma. Let o be measurable, and let a < B. Suppose thai Q,(f)
is C*-embedded in PB) and that V in a dense open subset of ¥o(p) for
which ©V < a. Then QB)CV, and there is an open subset V' of W(B)
for which '

Qp)CV'CYV  and WV <a.

Proof. It ¥ = | J V¢, with each V¥, a non-void open-and-closed sub-
t<a
set of W,(B), we set
W=V nQ,B)

and  Wi="Ven Qup),
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so that, from Lemma 2.4, W is dense in 2,(8); and W= | W.. We set

£<a
We= WalU We;
i<t

each of the sets W; is, by Lemma 2.5, open-and-closed in 2,(8). In order

that we may complete the proof of the present lemma, we define
8= (& Wi 0)

and we congider two cages.

Case I: |8] < a. Then W, which is | J Wi, is a union of fewer than «
£eS

open-and-closed subsets of 2.(8); hence W is closed in Q,(8). Since W is
dense in 2.(f) we have W = Q.(f), i.e., VI Qu(B). We set V'= (JV,,
. £eS

so that
Qof)= | W:C | JVe=V'CV
£eS ges

and 7V’ < 8] < «, as desired.

Oage IL |8|= a. We show that this is impossible. According to
Lemma 3.2 (b) there is for each & in § a subset 4 of D(B) for which
Wi= Af ~ 2,(B). Since Wi W;= @ whenever & and { are distinct
elements of 8§ we have always |d: ~ 4] < a so that, setting

By = AU 4,
=

we have |AN\Bg < o, whence Bf n Py(B) = Af n ¥y(p). In particular,
then, )

BE n Q) = AE ~ Qo(B) = W

for each £ in S.

Now for each & in § we choose a pdint ps in B;. We set P = {p;: £ « S8}.
We have |P|= a, 50 that P* meets the dense subset W of Q,f). The
desired contradiction is given by the computation

0 £ P* A W= P*(USW;) = U@~ Wi
fe £e.

=P ~BEn2(p)=B=9,
&eS el
where P* ~ Bf = @ because P* ~ Bf = (P n Bg)* and [P ~ By = 1.
Juxtaposing the results given by the preceding lemmas, we obtain
the following theorem.
3.6. THEOREM. Let o be measurable, and let a < f. Then the following
conditions are equivalent: '
(a) Qq4(B) 18 a-compact—i.e., the relation oSf fails;
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(b) Qu(B) is C*-embedded in PuB); and if U is open in Yo (B) and
Q4() C U CWAB), then an open subset V' of ¥o(p) exists for which Qu(f)CV
CU and <V < a;

0.(B) is C*-embedded in PAB); and if U is open in Y(B) and
Q4B) C U CWB), then an open subset V of Wu(p) ewists for which Q.p)
CVCU and =V < a;

(d) Qa(B) is C*-embedded in Wip); and if U is open in P(B) and

Q.8) C U CW,P), then a dense open subset V of ¥y ﬁ) exists for which
vcC U and tV < a;

Q,(B) is C*-embedded in P,(B); and if U is open. in P,(B) and

.Qu(ﬁ) C U CW,B), then a dense open subset V of Wo(B) ewists for which
VCU and vV < a. |

Proof. The implication (a)=- (b) is given by 3.2 (a) and 3.4, and
(b) = (a) also follows from 3.4. Since £2,(8), and hence each of its super-
sets, is dense in ¥,(f), the implications (b) = (¢) = (e) and (b) = (d) = (e)
are formal truisms. That (e) = (b) follows directly from 3.5.

3.7. Corollary. Let a be measurable, let o < 8, and suppose that Q2.(B)
s O*-embedded in Po(B). If Qu(f) is at-compact, then Qu(p) is a-compact.

Proof. Tt suffices to show that for each cover U of Q2,(8) by (rela-
tively) open-and-closed subsets there is a subcover U for which |W'| < a.
We may suppose that |W| < a. From Lemma 3.2 (b) there is a family O
of open-and-closed subsets of ¥,(8) for which [U] < e and U = {W ~ 2,(8):
W eVl We set V="V, so that ¥V < [U| < a, and we find by 3.5 an
open subset ¥’ of ¥,(B) for which

QB)CV'CY and V' <a.

Sinee ¥ is a union-of fewer than « compact sets, there is a subfa,mlly ’
of U for which

VCUV CVY ' and
We use W' = {W ~Q,B): WeVU'}.

3.8. Remarks. It is worthwhile to remark on a couple of equivalences
called to mind by Theorem 3.6.

The first of these is the equivalence for any measurable cardinal a of the
a-compactness of the space Q.,(f) with the a-compactness of the space
D(B) v 2.(B). (This may be established by remarking first that £2,(8) is a
closed subset of D(f) v Q,(8), so that the former is a-compact whenever
the latter is. If {Wi}:cs is a cover of D(B) u 2,(8) by open-and-closed sets
and if J is a subset of I for which |J]| < a and 2,(8) C .UJW}, then L.Jr W

1€ 1€,

must contain every point of D(p), with fewer than a exceptions. For if
ACD(B)and |[A]= e and 4 ~ ({_ W) = @, then 4* ~ Q,(f) is a nonvoid
° ieJ

U] < a.
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open-and-closed subset of 0y /3) disjoint from U Wi. Thus D(B) v Q4(8)
is a-compact whenever Q,(f) i

The second equivalence is the following observation: In order that
2.(8) be.C*embedded in Y,(B), it is necessary and sufficient thab each
two-valued continuous function on 9,(8) be continuously extendable to
a two-valued continuous function on ¥,(8). The necessity being clear, we
can check this equivalence by showing that if each open-and-closed sub-
set of Q,(8) is the intersection with 0.(f) of an open-and-closed subset
of ¥.(B), then each bounded continuous real-valued function on 248)
extends continuously to Y(f). This is precisely the argument given in
the proof of Lemma 3.2(a), and we shall not repeat it.

We have been unable to determine whéther under the hypotheses
of Theorem 3.6 the condition that Q.,(8) is C*-embedded in ¥, (f) is itself
sufficient to guara.ntee that 2 (B) is a-compact. In the special case a = 8,
and assuming that o = 2°, the desired implication is provided by the
following result, proved by one of us in Corollary 6.3 of [8]: Let « be
a regular cardinal with ot = = 2% and let V be an open subset of Y, (a).
Then V is 0*-embedded in ¥,(a) iff V contains densely an open subset V'
for which 1V’ < a. Specifically, then, we have the following result.

3.9. THEOREM. Let o be a measurable cardinal number, and suppose
that a* = 2% Then the following assertions are equivalent:

(1) Qu(a) is a-compact, i.e. o¢Cl;

(2) D(a) v R(a) s a-compact;

(8) Qula) is C*-embedded in Wy(a) —i.e., B( (@) = Pa(a);

(4) each two-valued continuous function on 2, (a) extends commuously
to a two-valued continuous function or ¥ya).

Proof. The eqmvalences (1)<>(2) and (3)<(4) have been discussed
in the preceding remarks, while the equivalence (1)<-(3) is given by
Theorem 3.6 and the result cited from [8].

The Hewitt realcompactification of a topological space X, defined
and discussed in detail in [2], is that unique realcompact space »(X)
containing X densely with the property that each real-valued continuous
function defined on X extends continuously to o(X). If % denotes the
first uncountable measurable cardinal then D(x) is not realcompact
and O,(x) coincides with the space o(D(x)]\D(x). For the special case
o = x, then, Theorem 3.9 takes the form given in 3.10 below.

We intend no disrespect to the reader in remarking at this point,
in econnection with both 3.9 and 3.10; that if a number of conditions are
equivalent then either all are true or all are false. We are not able at this

- time to make a more substantive comment on this matter; in the general

context of 3.9, and even in the particular case handled in 3.10, we do

I
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not know if it is ,all true¥, or ,all false”, that the four conditions are.
(In the ease of 3.10, this is simply the question whether or not the firgt
meagurable cardinal = belongs to the class G defined in the Introduction.)

3.10. COROLLARY. Suppose that x+ = 2%, Then the following assertions
are equivalent:
u(D(z))\D(z

) o(D{x)) is x-compact;

) 18 - compact;

3) u( (D (%) is C*embedded in Wfx) —i.e., E[s(D)\D(x)
(4) each two-valued continuous fumction on o(D(x))\D(x) ewtends

continuously to o two-valued continuous function on ¥y(x).

§ 4. Some additional results. The question of when Q.(f) is C*-em-
bedded in ¥ (B) is settled by Theorem 3.3 only relative to the failure
of the condition a8, even in the special case a= . In Theorem 4.2
below, we shall give a complete and satisfying answer to the following
simpler question: For what points p in ¥(a) is Pu(a)\{p} C*embedded
in ¥(a)?

4.1, LemmA. Let a be a measurable cardinal number for which at = 2%
and let {Wheco be a collection of open subsets of Wa(a) for which ( eD We)

A Qya) # . Then .
int ‘Fu(ﬂ)(gﬂ We) # 0
<a

Proof. We consider the open set U= U (®(
open-and-closed subsets of ¥.(a). If 7(U) < a, then the nonvoid set () We

i<a
has nonvoid interior in ¥.(e) by Lemma 2.7. If 7(U) = « then from
Theorem 3.2 of [8] it follows that there is an open subset V of ¥ (a),
dense in U, such that 7(V) < a. There is, then, again by Lemma 2.7,
a nonvoid open subset of ¥ (a) missing V.

4.2, THEOREM. Lef a be o measurable cardinal, and let p € Wola).

(1) If p ¢ 24{a), then Wy (a)\{p} is C*-embedded in P, a);

(2) If at=2% and peQa), then ¥ a)\{p} is mot C*-embedded
in ¥ola). )

Proof. (1) Since p ¢Q.(a), there iz for some y < a a collection
{4g £ < y} of elements of p for which (‘\ Ag ¢ p. Without loss of generality
we may assume that ) 4= 0. Let V = (( anNdg)" A )) Then

&<y
V is a dense open subset of ¥,(a) for which r(V < v, so from Theorem 31
of [8] it follows that V is C*-embedded in ¥,(a). Hence, the intermediate
space P a)\{p} is C*-embedded in ¥ a).

a\Wg), & union of «
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(2) Assume that p e Q.(a) and that P(a)\{p} is C*-embedded in ¥(a).
From Corollary 6.3 of [8], there is a family {V}:<, of open-and-closed
subsets of ¥(a) whose union is a dense subspace of Py(a)\{p}. Let W;
= Ya(a)\V¢ for all & < a; then the family {W;}.., satisfies the condl‘olons
of Lemma 4.1 above, but it is clear that

b\ W) =0 .
E<a

4.3 COROLLARY. Let a¢ Cf, and assume that ot =2 If peQya),

" then Qua)\{p} is not O%-embedded in Qua).

Proof. Assume that Qua)\{p} is C*-embedded in Q,e) for some
P €Q2,(a). We shall derive a contradiction, by proving that P (a)\{p}
is C*-embedded in ¥,(a). Indeed, let f be a bounded, real-valued continu-
ous function on Wo(a)\{p}. Let g be its restriction to Qu(a)\{p}. By our
assumption, there is a continuous extension @ of ¢ to Q,(a). From Theo-
rem 3.5 it follows that there is a continuous extension F of @ to Wya).
From Lemma 2.4, it follows that ¥ is, in fact, an extension of f.

We conclude with the computation of the cardinalities of certain
of the subsets of @(D(a)) considered above. It is a well-known result
of Hausdorff [4] and Pospifil [10] that for every infinite cardinal a,
|{3(D(a))[ = 2%, The equality |¥ia)| = 22a, valid for every infinite car-
dinal «, appears as exercise 121 in [2].

4.4. THEOREM. Let o be a measurable cardinal. Then

() [B(D(a)\Pol@)] = a3
(b) (a\Lo(0)] = 2®  for  a> w;
(c) © | Qu(a)] = 2%

Proof. (a) We notice that ¢ < |8(D () \Pula)] < Z{ar-2"

(b) We express

ry <a}=a.
D(¢) in the form

D(a) = U Dn,

. new
where the sets D, are pairwise disjoint sets for which |Dy| = a. We set
Vo= D5 n ¥(a),

80 that [V,| = 2*°. We well-order ¥, according to the cardinal number 2%

| Vo= aif <25
having done so we select, for each & an accumulation point ¢ of the

sequence {Pne: % € w}. Then g ¢ ¥y(a) because the latter set is compact,
and ¢; # q¢ whenever & # & (because the set -

[Dag 1 e} U (Dag 1€ 0}


GUEST


204 W. W. Comfort and 8. Negrepontis

is O*-embedded in ¥,(a)). So it remains only to show that always g: ¢ 2.(a).

But for each n and each & we have Dy ¢ g, 5o that D\Dy € ¢s; yet
nLer(D\Dﬂ) =0dq.

This shows that g ¢ .,(z), 50 surely g: ¢ 2, (a).

(c) Note that a = 2%, It follows from a result of Sierpiniski [13] and
Tarski (Théoréme 7 in [12]) that there is a family {4.}:cs of subsets of D (q),
satisfying the following conditions: [4;] = a for all t1eI; |4 4j| < a
for all 4, j eI, 4 £ §; |I| = 2° Let Vi= A} n Q,(a) for all i e I. Tt is clear
that Vi @ for all iel, and that Vi~ V;=0 whenever 1¢I and jel
and 4 # j. Thus |Q.(0)] = 2° ’ ' _

We have been unable to compute precisely the cardinality of 2,(a),
even under the condition that a ¢ Cf. For an arbitrary measurable car-
dinal e, however, we can compute the density character of each of the
three spaces considered in Theorem 4.4. (The density character of a space X,
denoted d(X), is by definition the smallest cardinal number which is the
cardinal number of a dense subset of X.)

4.5 THROREM. Let a be a measurable cardinal. Then

(2) dB(D(@\¥ula)) = a;
{b) AV (a\2ofa)) = 2°  for o> w;
(e) d(Qufa)} = 2°.

Proof. The inequality < in (a) is clear, since in fact |#(D (a))\¥a(a)|
= a. The inequality > follows from the fact that no set of cardinality g

can be dense in a Hausdorff space whose cardinality exceeds 22’3, while

3% < o whenever f < a. The inequalities < of (b) and (¢) ean be established
by choosing, for each subset A of D(a) such that [4| = a, a point p4
in A* ~ Q,(a) and a point ¢4 in A* ~ (Po(@)\2u()). The sets {p4: |4| = a},
{g4: 14| = a}, each of cardinality 2% are dense in the spaces Q.(a)
Y (a\2.(a) respectively. ’

The family {4:}:cr described in the proof of Theorem 4.4 (c) has the
property that the sets A} ~ W.(o) are pairwise disjoint nonvoid open
subsets of ¥y(a). Since each of these sets meets both Q.(a) and Yo aN\L4(a),
the inequalities > of (b) and (c) both follow.

b
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