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On minimal regular digraphs with given girth
oy . ‘

Mehdi Behzad (Teheran), Gary Chartrand (Kalamazoo, Mich.),
Curtiss E. Wall (Olivet, Mich.)

Introduction. A problem in graph theory which has received much
attention in recent years is the determination of the smallest number
f(r,m) of vertices that a graph G may posses such that G has degree r
and girth n. (See [1], for example.) With few exceptions, the numbers
f(r,n) are unknown for 7 > 3 and » > 5. The purpose of this article is
to study the analogous problem for digraphs (directed graphs).

The Function ¢(r, #). For a vertex v of a digraph D, we denote by
idv and odv the indegree and outdegree, respectively, of o. If idv
= odw = r, then we speak of the degree of v and write degv = r. If every
vertex of D has degree 7, then D is said to be regular of degree » or simply
r-regular.

The girth of a digraph D containing (directed) cycles is the length
of the smallest cycle in D. For n > 2 and r > 1, we define g(r, n) as the
minimum number of vertices in an »-regular digraph D having girth ».
It is obvious that g(1,n) = n since the n-cycle has the desired properties
and is clearly minimal. The cycle is a member of a more general class
of regular digraphs which we now describe.

For r>1 and n>2 we denote by D(r,n) the digraph whose
r(n—1)-+1 vertices are labeled »;, 4=1,2,.., r(n—1)+1, and such
that v, is an are if and only if j = 41, ¢+ 2, ..., 447, where the numbers
are expressed modulo 7(n—1)+1. The digraphs D(2, 5) and D(3, 3) are
shown in Figure 1.

Clearly, D(r,n) is r-regular and, furthermore, it is easily seen that
D(r,n) contains cycles of every length k,-n <k<7r(n—1)+1 but of
no length k, % < u, so that D(r, n) has girth . This construction implies
the following. ‘

THEOREM 1. For each r =1 and n > 2, the number g{r,n) ewisis and,
‘moreover,

(1) glrym) < r(n—1)+1.
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Although there are no known values of 7 and » for which the s
inequality in (1) holds, there are several cases in which equality ca
proved. We now consider these, beginning with #» =2 and » = 3. !
complete symmetric digraph Ky has p vertices and for each two vertice;
and v, both uv and vu ave ares of K. A tournament is a digraph D su
that for each two vertices « and » of D, exactly one of the arcs uv and ¢
belongs to D. A digraph D is tramsitive if whenever uv and vw are arc
of D then uw is also an arc of D.

D(3,3)
Fig. 1

THEOREM 2. (i) An r-regular digraph with girth 2 has g(r, 2) vertices
if and only if D is the complete symmetric digraph K., .

(ii) An r-regular digraph with girth 3 has g(r, 3) vertices if and only
if D is a non-transitive, reqular fournament with 2r -1 vertices.

Proof. (i) Any r-regular digraph has at least -1 vertices. The
only such regular digraph with »+1 vertices is the complete symmetric
digraph K,,;, which has girth 2. '

(ii) Let D be an r-regular digraph having girth 3. Thus D contains
Do symmetric pair of arcs so that any vertex of D is necessarily adjacent
to and from 2r distinet vertices. The only digraphs with these properties
having 2r41 vertices are regular tournaments which contain 3-¢ycles.
These are precisely, however, the non-transitive regular tournaments
with 2r-4-1 vertices.

) We call a digraph D an [r, n] digraph provided it is 7-regular, has
girth #, and has g(r, n) vertices. From what we have seen, it now follows
that there is only one [1,n] digraph, namely the n-cycle, and that the
[r, 2] digraph is also unique, namely the complete symmetric digraph Ky.1.

. We shall see that, in general, the [r, 3] digraphs are not unique.
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For a fixed » > 4 and an arbitrary 7, the number g(r, #) is not known.
‘We consider the number ¢(r, 4) in somewhat more detail. Of course, by
Theorem. 1,
g(r,4) <3r+1.

We now give a lower bound for g(r, 4). We use here the well known
fact that if D is a- digraph having no cycles and which fails to consist
only of isolated vertices, then D contains a transmitter (a vertex with
positive outdegree and zero indegree) and a receiver (a vertex with
positive indegree and zero outdegree).

THEOREM 3. For r > 1,

’ glr,4) = (5r+4)2.

Proof. Let D be a [r, 4] digraph and let » be any vertex of D.
Since D has no 2-cycles, the set V, of vertices adjacent to v and the
set V, of vertices adjacent from v are disjoint. Hence g¢(r, 4) > 2r 1.
Because D is r-regular, the number of arcs emenating from the vertices
in V, totals 72 Since D has no 3-cycles, no vertex of V, can be adjacenst
to a vertex in V,; thus none of the aforementioned #* arcs can lead to
any vertex in the set ¥V, v {v}. The subdigraph <V,» of D induced by
the set ¥, (i.e. the subdigraph with vertex set ¥V, and arc set consisting
of those ares of D joining two vertices in V,) contains less than r(r—1)/2
arcs or is a tournament. In the last case <(V,> has no cycles because <V,
has no 3-cycles, therefore from the previous remark <V,)> contains a re-
ceiver. Hence in every case at least one vertex w of <V, has outdegree
less than 4(r—1). Therefore, » is adjacent to at least (r4-2)/2 vertices,
10 one of which belongs to V; v ¥V, u {v}. This, however, implies that D
has at least 2¢ 41 - (r+2)/2 = (5r--4)/2 vertices so that g(r, 4) = (5r+4)/2.

Combining this. result with Theorem 1, we have the following.

COROLLARY 3a. For r=1, 2, and 3,

g(r,4)=38r+1.

There is one additional pair (r, #) for which g(r,n) is known, namely
(ryn)=.(4, 4). We consider this next.

THEOREM 4. ¢(4, 4) = 13.

Proof. By Theorem 1, g(4,4)<13. Suppose g(4,4)=k<13.
Thus there exigts a [4, 4] digraph D having & vertices. Let v; be a vertex
of D adjacent from the vertices in Vy= {wy, 7, %, v;} and adjacent to
the vertices in V, = {0, ¥s, U, ¥}, We now distinguish two cases, de-
pending on whether both induced subdigraphs <V,> and (Vs> contain
cycles.

Case 1. Suppose one of Vyiy or (V,) fails to contain u cycle, say .
In this case, (¥V,> has a transmitter in (Vy), say v,. However, v, cannot
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be adjacent from any of the vertices v, 1< 7 < 9. Hence there exist for the digraph D(3,3) (shown in Figure 1) and the digraph of Fignre
at least four additional vertices of D which are distinet from the vertices v;, 9 are non-isomorphie [3, 3] digraphs.
1 <4< 9; thus k> 13, producing a contradiqtion. : We conclude with the following.

Case 2. Bach of V1) and (V3> contains o cydle. Since D has girth 4, CONJECTURE. For all ¥ =1, n> 2,
both (V;> and (Vy> are cycles of length 4. Observe now that each vertex (rm)— Dt
of V, has outdegree 1 and, therefore, must be adjacent to three other glryn)=rim—1)+1.

vertices, none of which is 2s, 1 <4< 9; hence k= 12. Suppose vy, vy,

and vy, are vertices which are adjacent from all vertices of V,. At this

point each vertex of ¥, has indegree 1; thus each of these vertices must

be adjacent from three additional vertices. Because D has girth 4, we

must have vy, 0y, and 7, adjacent to each vertex in V.. Thus far every

vertex in V, has insufficient outdegree while every vertex in ¥, has )
insufficient indegree, but all other vertices have degree 4. Thus a vertex

in ¥, must be adjacent to a vertex in V,, but this produces a 3-cycle and : <
a contradiction.

This completes the proof.

We now turn our attention to specific values of » >1. For r = 2,
the number g(r,n) has already been determined for » = 2, 3, and 4, Fig. 2
namely ¢(2, n) = 2n—1.

‘We now show that this formula holds for #» = 5.

" THEOREM 5. ¢(2,5)=9.

Proof. Let D be a [2, 5] digraph and o, a vertex of D. Denote by v,
and v, the vertices of D which are adjacent to v;; denote by v, and v;
those vertices of D adjacent from u;. Necessarily, the five vertices vi,
1< i< 5, are distinet. Since D has girth 5, at least one of v, and w5 is
adjacent to two other vertices; say #, is adjacent to v; and v,. Moreover,
at least one of », and v, is adjacent from two vertices different from
either v, or vy; say v, is such a vertex. It is now easily checked that v, is
not adjacent from any of the vertices v, 1 < 4 < 7; thus there exist two
vertices vy and v, distinet from the »;, 1 4 < 7. This implies that
g(2,5)>9, so by Theorem 1, ¢(2,5)=9.
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Uniqueness. We have determined the number g(r,n) for several
values of r and %, and in each case we have shown that g(r, #) = r(n—1)+1.
We conclude here by making some comments regarding the unigueness
of [r, n] digraphs. ) .

It has already been noted that for each # > 2, there is precisely
one [1, n] digraph and, furthermore, there is exactly one [r, 2] digraph for
each r > 1. .

For other [r,n] digraphs, the situation is not entirely clear. For
example, it can be proved that for (r,n)= (2, 3) and (2, 4), there is
only one [, n] digraph. Such is not the case, however, for (r,n) = (3, 3),
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