H. Schirmer

226

- II. Donitimos
- [7] S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math. J. 8 (1941), pp. 457-459.
 [8] C. J. Rhee, Homotopy groups for cellular set-valued functions, Proc. Amer. Math.
- Soc. 19 (1968), pp. 874-876.

 [9] H. Schirmer, A Brouwer type coincidence theorem, Canad. Math. Bull. 9 (1966),
- pp. 443-446.
 [10] Coincidence producing maps onto trees, Canad. Math. Bull. 10 (1967), pp. 417-423.
- [11] E. H. Spanier, Algebraic Topology, New York 1966.
- [12] W. L. Strother, Continuous multi-valued functions, Bol. Soc. Mat. São Paulo 10 (1955), pp. 87-120.
- [13] W. L. Strother, Multi-homotopy, Duke Math. J. 22 (1955), pp. 281-285.

CARLETON UNIVERSITY Ottawa, Canada

Reçu par la Rédaction le 2. 6. 1969

On minimal regular digraphs with given girth

Mehdi Behzad (Teheran), Gary Chartrand (Kalamazoo, Mich.), Curtiss E. Wall (Olivet, Mich.)

Introduction. A problem in graph theory which has received much attention in recent years is the determination of the smallest number f(r,n) of vertices that a graph G may posses such that G has degree r and girth n. (See [1], for example.) With few exceptions, the numbers f(r,n) are unknown for $r \ge 3$ and $n \ge 5$. The purpose of this article is to study the analogous problem for digraphs (directed graphs).

The Function g(r, n). For a vertex v of a digraph D, we denote by $\mathrm{id}\,v$ and $\mathrm{od}\,v$ the indegree and outdegree, respectively, of v. If $\mathrm{id}\,v$ = $\mathrm{od}\,v = r$, then we speak of the degree of v and write $\mathrm{deg}\,v = r$. If every vertex of D has degree r, then D is said to be regular of degree r or simply r-regular.

The girth of a digraph D containing (directed) cycles is the length of the smallest cycle in D. For $n \ge 2$ and $r \ge 1$, we define g(r,n) as the minimum number of vertices in an r-regular digraph D having girth n. It is obvious that g(1,n)=n since the n-cycle has the desired properties and is clearly minimal. The cycle is a member of a more general class of regular digraphs which we now describe.

For $r \ge 1$ and $n \ge 2$ we denote by D(r,n) the digraph whose r(n-1)+1 vertices are labeled v_i , $i=1,2,...,\ r(n-1)+1$, and such that v_iv_j is an arc if and only if j=i+1,i+2,...,i+r, where the numbers are expressed modulo r(n-1)+1. The digraphs D(2,5) and D(3,3) are shown in Figure 1.

Clearly, D(r,n) is r-regular and, furthermore, it is easily seen that D(r,n) contains cycles of every length $k,\ n\leqslant k\leqslant r(n-1)+1$ but of no length $k,\ k< n$, so that D(r,n) has girth n. This construction implies the following.

THEOREM 1. For each $r \ge 1$ and $n \ge 2$, the number g(r, n) exists and, moreover.

(1)
$$g(r, n) \leq r(n-1)+1$$
.

Although there are no known values of r and n for which the sinequality in (1) holds, there are several cases in which equality can proved. We now consider these, beginning with n=2 and n=3. complete symmetric digraph K_p has p vertices and for each two vertices and v, both uv and vu are arcs of K_p . A tournament is a digraph D su that for each two vertices u and v of D, exactly one of the arcs uv and v belongs to D. A digraph D is transitive if whenever uv and vw are arc of D then uw is also an arc of D.

Fig. 1

THEOREM 2. (i) An r-regular digraph with girth 2 has g(r, 2) vertices if and only if D is the complete symmetric digraph K_{r+1} .

(ii) An r-regular digraph with girth 3 has g(r, 3) vertices if and only if D is a non-transitive, regular tournament with 2r+1 vertices.

Proof. (i) Any r-regular digraph has at least r+1 vertices. The only such regular digraph with r+1 vertices is the complete symmetric digraph K_{r+1} , which has girth 2.

(ii) Let D be an r-regular digraph having girth 3. Thus D contains no symmetric pair of arcs so that any vertex of D is necessarily adjacent to and from 2r distinct vertices. The only digraphs with these properties having 2r+1 vertices are regular tournaments which contain 3-cycles. These are precisely, however, the non-transitive regular tournaments with 2r+1 vertices.

We call a digraph D an [r, n] digraph provided it is r-regular, has girth n, and has g(r, n) vertices. From what we have seen, it now follows that there is only one [1, n] digraph, namely the n-cycle, and that the [r, 2] digraph is also unique, namely the complete symmetric digraph K_{r+1} . We shall see that, in general, the [r, 3] digraphs are not unique.

For a fixed $n \ge 4$ and an arbitrary r, the number g(r, n) is not known. We consider the number g(r, 4) in somewhat more detail. Of course, by Theorem 1,

$$g(r, 4) \leq 3r+1$$
.

We now give a lower bound for g(r, 4). We use here the well known fact that if D is a digraph having no cycles and which fails to consist only of isolated vertices, then D contains a transmitter (a vertex with positive outdegree and zero indegree) and a receiver (a vertex with positive indegree and zero outdegree).

THEOREM 3. For r > 1,

$$g(r, 4) \geqslant (5r+4)/2$$
.

Proof. Let D be a [r,4] digraph and let v be any vertex of D. Since D has no 2-cycles, the set V_1 of vertices adjacent to v and the set V_2 of vertices adjacent from v are disjoint. Hence $g(r,4) \ge 2r+1$. Because D is r-regular, the number of arcs emenating from the vertices in V_2 totals r^2 . Since D has no 3-cycles, no vertex of V_2 can be adjacent to a vertex in V_1 ; thus none of the aforementioned r^2 arcs can lead to any vertex in the set $V_1 \cup \{v\}$. The subdigraph $\langle V_2 \rangle$ of D induced by the set V_2 (i.e. the subdigraph with vertex set V_2 and arc set consisting of those arcs of D joining two vertices in V_2) contains less than r(r-1)/2 arcs or is a tournament. In the last case $\langle V_2 \rangle$ has no cycles because $\langle V_2 \rangle$ has no 3-cycles, therefore from the previous remark $\langle V_2 \rangle$ contains a receiver. Hence in every case at least one vertex u of $\langle V_2 \rangle$ has outdegree less than $\frac{1}{2}(r-1)$. Therefore, u is adjacent to at least (r+2)/2 vertices, no one of which belongs to $V_1 \cup V_2 \cup \{v\}$. This, however, implies that D has at least 2r+1+(r+2)/2=(5r+4)/2 vertices so that $g(r,4) \ge (5r+4)/2$.

Combining this result with Theorem 1, we have the following.

COROLLARY 3a. For r = 1, 2, and 3,

$$g(r, 4) = 3r + 1$$
.

There is one additional pair (r, n) for which g(r, n) is known, namely (r, n) = (4, 4). We consider this next.

THEOREM 4. g(4, 4) = 13.

Proof. By Theorem 1, $g(4,4) \le 13$. Suppose g(4,4) = k < 13. Thus there exists a [4, 4] digraph D having k vertices. Let v_1 be a vertex of D adjacent from the vertices in $V_1 = \{v_2, v_3, v_4, v_5\}$ and adjacent to the vertices in $V_2 = \{v_6, v_7, v_8, v_9\}$. We now distinguish two cases, depending on whether both induced subdigraphs $\langle V_1 \rangle$ and $\langle V_2 \rangle$ contain cycles.

Case 1. Suppose one of $\langle V_1 \rangle$ or $\langle V_2 \rangle$ fails to contain a cycle, say $\langle V_1 \rangle$. In this case, $\langle V_1 \rangle$ has a transmitter in $\langle V_1 \rangle$, say v_2 . However, v_2 cannot

be adjacent from any of the vertices v_i , $1 \le i \le 9$. Hence there exist at least four additional vertices of D which are distinct from the vertices v_i , $1 \le i \le 9$; thus $k \ge 13$, producing a contradiction.

Case 2. Each of $\langle V_1 \rangle$ and $\langle V_2 \rangle$ contains a cycle. Since D has girth 4, both $\langle V_1 \rangle$ and $\langle V_2 \rangle$ are cycles of length 4. Observe now that each vertex of V_2 has outdegree 1 and, therefore, must be adjacent to three other vertices, none of which is v_i , $1 \leqslant i \leqslant 9$; hence k=12. Suppose v_{10} , v_{11} , and v_{12} are vertices which are adjacent from all vertices of V_2 . At this point each vertex of V_1 has indegree 1; thus each of these vertices must be adjacent from three additional vertices. Because D has girth 4, we must have v_{10} , v_{11} , and v_{12} adjacent to each vertex in V_1 . Thus far every vertex in V_1 has insufficient outdegree while every vertex in V_2 has insufficient indegree, but all other vertices have degree 4. Thus a vertex in V_1 must be adjacent to a vertex in V_2 , but this produces a 3-cycle and a contradiction.

This completes the proof.

We now turn our attention to specific values of r > 1. For r = 2, the number g(r, n) has already been determined for n = 2, 3, and 4, namely g(2, n) = 2n - 1.

We now show that this formula holds for n=5.

THEOREM 5. g(2,5) = 9.

Proof. Let D be a [2,5] digraph and v_1 a vertex of D. Denote by v_2 and v_3 the vertices of D which are adjacent to v_1 ; denote by v_4 and v_5 those vertices of D adjacent from v_1 . Necessarily, the five vertices v_i , $1 \le i \le 5$, are distinct. Since D has girth 5, at least one of v_4 and v_5 is adjacent to two other vertices; say v_4 is adjacent to v_6 and v_7 . Moreover, at least one of v_2 and v_3 is adjacent from two vertices different from either v_2 or v_3 ; say v_2 is such a vertex. It is now easily checked that v_2 is not adjacent from any of the vertices v_i , $1 \le i \le 7$; thus there exist two vertices v_8 and v_9 distinct from the v_i , $1 \le i \le 7$. This implies that $g(2,5) \ge 9$, so by Theorem 1, g(2,5) = 9.

Uniqueness. We have determined the number g(r, n) for several values of r and n, and in each case we have shown that g(r, n) = r(n-1)+1. We conclude here by making some comments regarding the uniqueness of [r, n] digraphs.

It has already been noted that for each $n \ge 2$, there is precisely one [1, n] digraph and, furthermore, there is exactly one [r, 2] digraph for each $r \ge 1$.

For other [r, n] digraphs, the situation is not entirely clear. For example, it can be proved that for (r, n) = (2, 3) and (2, 4), there is only one [r, n] digraph. Such is not the case, however, for (r, n) = (3, 3),

for the digraph D(3,3) (shown in Figure 1) and the digraph of Figure 2 are non-isomorphic [3,3] digraphs.

We conclude with the following.

Conjecture. For all $r \ge 1$, $n \ge 2$,

$$g(r, n) = r(n-1) + 1$$
.

Fig. 2

Reference

[1] W. T. Tutte, Connectivity in Graphs, University of Toronto Press. 1966.

Recu par la Rédaction le 27, 6, 1969