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Finally, we note that the first gtatement of Theorem 4 (coneerning
isotone maps) is trivial from Theorem 1 if K has a zero. If K has a zero
define

fd»n =V (fi.(-A(;.))l le /1) .
f obviously satisfies all the requirements. If no Ay exists, then, of course,

4> =0.
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Non-existence of certain Borel structures

by
B. V. Rao (Calcutta)

This note conceptually simplifies the proofs and extends the theorems
of [1] and puts them in a more general setting.

Let (X, B) be any separable (countably generated and containing
singletons) Borel space, where to avoid trivialities X is- assumed to be
uncountable. Sets in B are to be called Borel subsets of X, Throughout,
B is fixed.

TeEOREM 1. For any o-algebra ¥ on X containing B, the following
are equivalent:

(i) Any one-one real X-measurable Sfunction on X coincides with
a B-measurable function on an uncountable Borel subset of X.

(ii) Any separable o-algebra S on X with BC SC X coincides with B
on an uncountable Borel subset of X, that is, on some uncouniable Borel
subset of X the restrictions of B and S coincide.

Proof: Given (i), we can prove (ii) by looking at the Marczewski
function associated with any countable generator for . Conversely,
given (ii), we can prove (i) by looking at the separable o-algebra induced
by the given function and B.

DEFINITION 1. A o-algebra ¥ on X containing B and satisfying
any one of the above two equivalent conditions is said to be a B-Souslin
o-algebra for X (with due respect to the work done by Souslin).

DEFINITION 2. A o-algebra Z on X is said to be B-mizing if Z con-
taing B and any uncountable Borel subset of X contains an element
of Z—B.

From the above definitions and Theorem 1, we have the following
theorem, which can be easily.proved by contradiction.

THEOREM 2. Let Z be amy B-mizing o-algebra on X. Let X be any
B-Souslin o-algebra containing Z. Then there is no separable o-algebra
on X containing Z and contained in 3. Consequently, no separable o-algebra
containing Z can be a B-Souslin o-algebra.

Remark 1. Throughout this paragraph let X be I the unit interval,
B its usual Borel o-algebra, Z = A the c-algebra generated by its usual
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analytic sots, and ¥ the class of Lebesgue-measurable sets or sets with
the Baire property. From well-known facts it is easy to verify that the
conditions of the above theorem are satisfied. Consequently, Theorem 1
of [1] follows from the above theorem. It also follows that there is no
separable o-algebra on I containing A and contained in O, the clags
of sets with the Baire property. We believe that Theorem 2 says something
more in the following fense: Fix any analytic non-Borel set 4 in I and
let 4, be the o-algebra on I generated by B and all the Borel isomorphs
of A. Then 4, is also B-mixing and hence the preceeding two special
cases of Theorem 2 are still valid with 4 replaced by 4,. However, we
do not known whether 4, is properly contained in 4. We do not know
whether any two analytic non-Borel subsets of I are Borel isomorphie.

The following theorem is a direct consequence of Theorem 2.

THEOREM 3. Asswme the hypothesis of Theorem 2. Let U be any subset
of X xX such that the vertical sections of U generate Z. Then U ¢ G XX
Here C is the class of all subsets of X,

Clearly, Theorem 2 of [1] is a simple special cage of the above theorem.

Remark 2. Assume the setup of Remark 1. If C is a B-Souslin
o-algebra, then there is no separable o-algebra containing A4. In fact,
there is no such algebra containing 4, in that case. Thus, in particular,
if one assumes the axiom of determinateness, then there is no separable
¢-algebra containing 4, on I. However, we do not know whether, con-
versely, the non-existence of a separable c-algebra containing 4 implies
that C is a B-Souslin ¢-algebra.

The author is thankful to Prof. Aghok Maitra for several useful
discussions and to Prof. Jan Mycielski for some useful correspondence
regarding the axiom of determinateness.

Note added in proof: Regarding non-isomorphic analytic sets see A. Maitra

and C. Ryll-Nardzewski in Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phy. 18
(1970) pp. 177-178.
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On uniform universal spaces

by
W. Kulpa (Katowice)

The aim of the paper iy to prove (Theorem 2) the existence of
a universal space for the class of all uniform spaces whose uniformities
have a dimension not greater than n and have a base of cardinality not
greater than y, consisting of coverings of cardinality not greater than T,
where » is & finite number,  and 7 are infinite cardinal numbers. A theorem
of Nagata [6] concerning a universal metrizable space of a given topo-
logical dimension may be regarded as a special case of our theorem
for y=n,.

The condition limiting the cardinalities of the coverings from the
base of the uniformities is necessary, because the class of uniform spaces
of a given dimension and a fixed cardinality of bases for uniformities,
such that each two spaces of the class are not uniformly homeomorphie,
does not form a set in- general. For example, the class consisting of all
discrete spaces (they have uniformities consisting of single-point-set
coverings) do not form a set.

The proof of the existence of this universal space is based on Theo-
rem 1, which presents a strenghtened form of a factorization theorem
from [3].

I wish to express my gratitude to Docent J. Mioduszewski for helpful
conversations during the writing of this paper.

§ 1. Preliminaries. A pseudouniformity U on set X is a family of
coverings of X guch that:

(1) U is directed with respect to star refinement,

(2) if Pe U and P S P, then P’ e U (P & P’ —this means that P is
a refinement of P’).

A subfamily B of U such that each P’ e U has a refinement P ¢ B
is said to be a base of T.

If a pseudouniformity U is such that:

(3) for each distinet point #’ and & from X there exists a PeU
such that o' ¢ st(a’, P),
then U is said to be a wuniformity.
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