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A class of topologies with Ti-complements

by
B. A. Anderson* (Tempe, Ariz.)

1. Introduction. Let A be the family of all T, topologies definable
on an arbitrary set X. When 7, ¢ 4 and v, e 4, 7; < 7, if every set in 7,
is in 7,. Under this order, 4 is a complete lattice. The greatest element
of 4 is the discrete topology, 1, and the least element is the cofinite
topology 0 = {U: U =@ or XU iz finite}.

Recently several papers have been published dealing with the structure
of the lattice 4. An example [17] was given to show that 4 is not a com-
plemented lattice, unless X is a finite set. In [19], a T;-complement for
the reals with the usual topology is constructed. This result was gener-
alized in [1] to yield the fact that every T, space with a countable dense
metric subspace has a T';-complement. For other results on the lattice 4,
see [4]. ‘

The main purpose of this paper is to show that the construction
used in [19] can be made to do much more than has been previously
realized. It turns out to be quite an interesting exercise to see how much
of the construction in [19] can be jettisoned. Now it appears that large
classes of nice topological spaces have T,-complements. For example,
it can be proved that every first axiom Hausdorff space has a T, -comple-
ment and that every locally compact Hausdorff space has a T;-comple-
ment. Actually the theorems deduced here are quite a bit stronger than
these statements..Another rvesult of [1] is extended to show that there
is a large clasy of spaces (X, 7T) and that T is one of three mutually
T,-complementary topologies on the set X. Furthermore, it is shown
that every 7, space is an open and closed subspace of a T, space that
has a T,-complement.

Lastly, some questions are raised. T am indebted to Roger Countryman
for an interesting conversation on the properties of Fréchet spaces and
symmetrizable spaces.

* Research supported by NSI Grant GP-8873.
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2. Ty-complements. Tn this section, we show that several of the mogt ,
important classes of topological spaces have T,-complements,

DeriNiTioN. Suppose (X, T) is a Ty topological space. A T'-comple-
ment T’ for T is a Steiner complement iff there exist disjoint 7'-open
sets B, and B, in X such that

(1) Byv B, =X,

(2) for i= 0,1, By contains an infinite subset A; such that every
T'-open set coutaining points of -4; containy & cofinite subset of B,
and 4; is 71"-closed,

(3) every T-open set containing a cofinite subset of B; containg
points of Ay, j # . oo

LeMMA 1. Suppose the nonempty Ty space (Z,7)= M v N such that

“({) M and N are disjoint and v-open,

(i) 7|V i discrete,

(ili) 7| M has a Steiner complement.

Then v has a T4-complement ©'. Furthermore, if the Steiner complement
(x]M)" is compact on cofinite subsets of M, then t’ is compact on cofinite
subsets of Z. )

Proof. If N iy empty, the result is obvious. So we agsume N is non-
empty. Then define 7' as follows. The (| M)'-open sets that miss A, form
a 7'-base ab all points of M except those points in 4,. The cofinite sub-
sets of N v B, are taken to form a v'-base for the points in N v 4,. It
is then clear that (+'|M)= (z|M)" so that sup{z,7’}=1. If Uern
and U # O, then since no nonempty element in ' is contained in X,
U~ M ¢ Cy, the cofinite topology on M. But then U ~ M must contain
points of 4, so that U is cofinite in N w B,. Thus inf{r, +'} = 0. Since
every cofinite subset of Z contains points of 4,, it is clear that if (z| M)’

is compaet on cofinite subsets of M, then ¢’ is compact on cofinite sub-
sets of Z..

DerFmvrion. A topological space (X, T) is splitable iff X contains
an infinite family of pairwise digjoint nonempty open sets.
) DEFINITION. A topological space (X ,» T) is a DN -space iff for each »
in X, there is at least one net in X — {z} that converges to » and has the
property that its range is a discrete subspace of X,

Lemwa 2. If (X, T) is @ T., splitable DN - space, then T has o T, -com-
plement I' that is compact on cofinste subsets of X.-

N ]?roof. Pick a maximal infinite (hence dense) family of pairwise
dls]om{: nonempty open sets in X and define ¥ = UJ{Us i eI} to be
the union of the elements in this family. Partition the index set I into
two disjoint infinite subsets, I, and I,. For each ¢ in T , pick ¢; in T; and
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a net 8 in Us;—{e:} that converges to ¢; and whose range is a discrete
subspace. We shall find it convenient in what follows to identify a net
with its range. Suppose

Aj= U{Sut tel}, j=0,1,
By= A [(X—4g) n {(U{Ts ieli})], i, k=0,1;j#5k,
By={ex iels}, j=0,1,
D={d;: ael}= Y—(AOUAlquyEI).
Define (T|Y) to be the topology generated by
(i) {z}, ze By By,
(i) Cy, the cofinite topology on X,
(ifi) Bi, 4=0,1,
(iv) Cay e,

when O, is defined as follows. If d, e D, then there is an i(a) such that
do e Uiy. Liot Co be {du} v {e;: jeI and j # i(a)}. Then B, and B, are
disjoint sets whose union is Y. Since Oy C (T|Y)’, it follows that (T|¥)’
is a T,-topology.

Now, it is easy to see that sup{T|Y,(7|Y)'} = 1. ¥ has three kinds

.of points; those in H,w H;, in 4,v 4, and in D. Points in E, v H; are

isolated by (T|Y). If x e A,, then there is an ¢ such that z e Si. Since
the range of 8, is a T'-discrete subspace, there is a T'-open set V such
that VC Uz and V ~ S = {#}. Thus V ~ B, = {z} and a similar argument
holds for points in 4,. If d, e D, then there is an ¢ such that d, ¢ Uy, and
clearly U; n Cy = {d,}. : )

Finally, we must show that inf{T|Y,(T|Y)}= Cr.Suppose Ue T'|Y
~(T|X) and U # . Suppose there i a d, such that d, e U. Let us as-

- sume that d, e By. Then since U ¢ (7|Y)’, U must contain a cofinite sub-

set of ¢, ~ B, since these are the basic open sets at d,. But this implies
that U containg a point of B,. If U ¢ T|Y and U contains a point of H,,
then U must contain a point of 4;. The (T'|Y)’-open sets that contain
points of A4, are cofinite in B,. Thus U must be cofinite in B, and hence
contain a point of X,. Then, as above, U must contain a point of 4, and
therefore be cofinite in By, '

It iy clear that the same kind of argument will work if we assume
dq € B;. Furthermore, if we assume that U containg a point of #, (H,)
or 4, (4,), we just enter the above argument at the appropriate point
and continue from there. Thus, the inf{T|¥,(T|Y)}= Cyr.

Since every cofinite subset of ¥ containg points of both 4, and 4,
it iy easily seen that (7|¥)’ is-compact on cofinite subsets of ¥. Since ¥ is
T-dense in X, the result follows from Theorem 6 of [18].
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The argument given for Lemma 2 is essentially that used in (197,
with most (hopefully) of the irrelevant details omitted. There is nothing
immutable about the proofs given so far. As a matter of fact, there are
a pumber of variations available for both Lemma 1 and Lemma 2, Note
that the 7" of Lemma 2 is a Steiner complement.

DeFINITION. Suppose (X, T) is a topological .space ‘and N is the
set of isolated points in X. Then (X —CIN) is the open kernel of X.

TrEOREM 1. Suppose (X, T) is a T, space whose open kernel is empty
or.a splitable DN -space. Then T has a Ty-complement T' that is compact
on cofinite subsets of X. :

Proof. If the open kernel, M, of X is empty, the result follows from
Theorem 6 of [18]. If M is nonempty, and N is the set of isolated points,
then M v N is dense in X and the result follows from Lemmas 1 and 2
and Theorem 6 of [18].

REMARK 1. Actually, by Theorem 6 of [18], it follows that any T,
space which has a dense subspace satisfying the hypotheses of Theorem 1
has a Ti-complement that iy compact on cofinite subsets. The same is
true of the corollaries now to be stated.

It i easily seen that the hypotheses of Theorem 1 arve satistied by
large classes of important topological spaces. ‘ ‘

CoROLLARY 1. Bvery Fréchet Hausdorff space has a T.-complement
that is compact on cofinite subsets. ‘ ‘

Proof. By definition (see [7] and [8]), a Fréchet space has the
property that a point is in the closure of a set iff there is a sequence in
the set converging to the point. Thus, every first axiom space is a Fréchet
space. Every sequence in a Hausdorff space that converges to a point
not in the range of the sequence clearly is a discrete subspace. It is well-
known that every infinite Hausdorff space is splitable ([16], p. 88). One
may now repeat the proof of Theorem 1.

Certain well-known Hausdorff spaces are ag badly non-Fréchet
as possible. .

ExAMPLE 1. A compact Hausdortt space with no dense Fréchet
subspace. k

If N denotes the positive integers, then BN —N is a compact Haus-
dmjﬁ space. Suppose X is a subspace of BN — N that is not discrete. We
Glalm‘tha,t X .is not a Fréchet space. By hypothesis, there is a point of X
that is a limit point of X—{w}. If X ig a Fréchet space, then there is
a sequence {z:}i»: C (X —{w}) that. converges to # in X and hence in BN.
Then {2}i>, v {#} would be a closed countable subset of BN, contradicting
a result of Cech [18]. But no discrete subspace of SN —N can be dense
in BN —N since N —N is dense-in-itself ([15], p. 414)
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CoROLLARY 2. Bvery locally compact Hausdorff space has a T, - comple-
ment that is compact on cofinite subsets.

Proof. Suppose (X, T') is a locally compact Hausdorff space. It is
clear, by previous arguments, that it will suffice to consider the open
kernel, M, of X. M iy also locally compact and Hausdorif. If M = @,
then the result is obvious, so assume M # @. Let {U;}i<: be an infinite
maximal (hence dense) family of pairwise disjoint open sets in M. Then
each U; is locally compact and we may pick an open set V; such that
V,CClV:C Ui and ClV; is compact. Since M has no isolated points,
neither does V;. Thus V; is an infinite Hausdorff space and one may pick
o countably infinite discrete subspace {ei};z=1 of Vi. By the compactness
of C1V, {eij}s>: Has a cluster point e; in ClV; and a subnet {4, a e Ky}
converging to ¢;. Since the subnet has range a subset of {¢;;};>1, the subnet
has a range that is a discrete subspace, even though the net may not
be a sequence. Now by the argument of Lemma 2, (M, T| M) has a T, -com-
plement that is eompact on cofinite subsets. : :

Example 1 shows that Corollaries 1 and 2 are really different results,
since it is trivial to construct Fréchet Hausdorff spaces that aren’t locally
compact. :

Let us consider one more clags of spaces with T'-complements.

DEFINIRION. A topological space (X, T) is symmetrizable iff there
is a real-valued function d defined on X* such that

(i) for any @,y in X, d(w,y)=d(y,s) 20,

(i) for any @,y in X, d(z,y) =0 iff z=1y,

(iii) for any PC X, P = ClP iff for any # in X—P, d(z, P)> 0.
If, in addition, we require '

(iv) for any PC X, 2 e CIP iff d(x, P) =0,
then (X, T') is said to be semi-metrizable.

CoROLLARY 3. Hvery Hausdorff symmeirizable space has a T'y-comple-
ment that is compact on cofinite subsets.

Proof. The open kernel of a, symmetrizable space is symmetrizable,
and it is easily seen that a symmetrizable dense-in-itself Hlausdorif space
is a DN -space. The result then follows directly from Theorem I.

It turns out that Corollary 3 is not subsumed by Corollaries 1 and 2.

ExAMPLE 2. A symmetrizable Hausdorff space with no dense sub-
space that ig either Fréchet or locally compact.

Let X be the plane and define d as follows. Suppose == (&, b;)
and y = (a,, b,) are in X. Then d(#,¥) is ordinary Huclidean distance
itf # any y can be joined by either a horizontal or vertical line (i.e., iff
either a, = a, or b, = b,), and d(z,y)=1 otherwise. The topology T
indueed by this symmetric clearly contains the usual plane topology =

Fundamenta Mathematicae, T. LXIX 18
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and fails to be first' axiom. Thus the whole space fails.to be a Fréchet
space ([3], p. 129). o .

Now, every T-dense subset must be z-dense and it is easy to see
that if D is a T-dense subset, z ¢ D and A, is the set of points in D that
can’t be joined to # by either a horizontal or vertical line, then in (D, T'|D),
@ ¢ ClA,, bub no sequence in A4, converges to . Thus D is not a Fréchet
gpace. : . .

Finally, no dense subset is locally compact. For suppose D is a dense
locally compact subset. Then D must be open ([11], p. 163) and (D, T|D)
is a regular space with all points @y’s since I'D 7. If # € D, pick an open
set ¥, such that # € V., and ClpV, is compact. But.then Clp V', is a compact
Haugdorff space such that all of its points are Gs's. It follows easily, that
Clp¥V 5 must be first axiom. Since # was arbitrary in D and V is open in X,
D is a dense first axiom subspace. This contradicts the preceding paragraph.

3. Other uses of the Stejier construction. As we have now seen, it
is possible to use the construction of [19] to verify that many topological
spaces have T,-complements. However, we still haven’t exhausted the
uses for this construction. The following result is presented as an aid
to disposing of conjectures concerning spaces that might not have T,-com-
plements. - :

THEOREM 2. Every T, space (X, T') is an open-closed subspace of a T,
space (X*, T*) of the same cardinal, weight and dimension such that T*
has a T'-complement that is compact on cofinite subsets.

Proof. We may assume that X has at least 8, points. The main
idea here is that we don’t really need the DN -property on the whole
space. It will suffice for the space to be DN at one point in each of an
infinite family of pairwise disjoint open sets, as we saw in the proof of
Corollary 2.

Thus, let X* be the topological free union of X and the rationals
with the usual topology. The rationals can be written as the union of

_ infinitely many pairwise disjoint open intervals. Add X to one of the
open intervals and proceed as in Lemma 2, bsing sure to pick the e's
and $;’s in the rationals. : :

The construction in [19] made it appear that regolvability (see [6]
and. [9]) was crucial for the existence of T, -complements. However, the
arguments given here have not used resolvability. Tt may, however, still
be that there is some connection.

COROLLARY 4. There are irresolvable dense-in-themselves spaces . that
have T -complements. )

Proof, This is an immediate consequence of Theorem 2.

It is pos§ible.to use the methods developed so far to extend a major
result of [1] in several ways. An argument wag given in [1] to show the

©
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existence of three mutually T'-complementary topologies on a countably
ipfinite set. The proof given here works on a large class of topological
spaces, the cardinality of the set involved is unimportant and it is not
necessary (to answer a question of 8. C. Armentrout) to pick smaller
and smaller subspaces as we define more and more topologies.

THEOREM 3. Suppose (X, T) is a Ty DN -space that can be expressed
as the union of infinitely many pairwise disjoint open sets. Then there emist
topologies Ta and Ty on X such that every distinct pair from {T, Tq, T}
are T-complements.

Proof. We may assume that X is the union of exactly s, pairwise
disjoint open sets. Split this family into subfamilies as follows. If M and N
are countably infinite pairwise disjoint sets indexed by the set of all
integers, there is a 1-1 function from M w N onto the family of pairwise
digjoint open sets. Let Py and Py denote the “even elements” of M and ¥
respectively, and let @y and Qy denote the “odd elements” of M and N.
It will be helpful to the reader at this point to draw two rows of pairwise
disjoint cireular dises and label the top row the M -row, the bottom row
the N-row and alternate columns between P-columns and @ -columns.
From now on we shall use the notation MP to mean all points in the
open sets indexed by Par, that is, all points in the M -row that are also
in the P-columns. NP, MQ and NQ have the corresponding meanings.
Similarly P will denote all points in the P-columns and @ all points in
the Q-columns.

We now proceed with the definition of 7', and Ty. Pick a point in
each open set. The notation ey will denote the point picked in the set
indexed by the ¢ in M. This gives sets (with obvious definitions) Hue,
¥uq, Byr, Bye, Bu, Bx, Br, Bq and B. For each eémi, pick a net Sme
such that if Uns is the open set associated with ¢ in M

(i) the first element of Sp: is en, _
(ii) every other element of Sp: is in Umi—{emi},
({ii) Sme T-converges t0 emi,
(iv) the range of Sus is a discrete subspace.
For each 6ns, pick a net Sy such that
(v) the firgt element of Spy I8 em, 41,
(vi) every other element of Sus i8 in Upr— {eni},

(vii) Spe T'-converges 0 en,

(vii) the range of Sy is a discrete subspace.
Now, make the following definitions.

Apa=J {8m: 4 Pu}, Ag=J{8ns i¢Qu},

App = U {Sni: 1Py}, Ap=J{Sn: 1e¢Qn}.
19*
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Furthermore, [
Bpo= A o [(X—4g) nQ], Bu= Agav [(X—A4ps) ~ P],
Byp = Ay © [(X—Ag) ~ (MP U NQ)],
_ By = Ap v [(X—Agp) ~ (MG v NP)].
Notice that
' ExpCApCP, ByoCAuCq,

) BaaC Ay C (NP MQ), FurC ApC (NQ © MP)

and

@ Byr v EygC By, ENQ v Byp C B,
BoqCBp, EpCBy.

Furthermore

3) Bpav Bu=2X, BunBu=09,

By Bp=2X, BpnBp=0.

It ¢ B v dpyw Ay, we make the following observations and definitions.

) It 2 e P, then @ e By and Oga = {2} w Barp .
If 2@, then z € Bps and O = {2} v Byg .

Iw¢E v Ay Ap, we make the following observations and definitions.

) If 3¢ MP v NQ, then @ ¢ By and Oy = {8} w Eng .
If z¢ NP U MQ, then z e By and Cupp = {a}-w Eyp.

‘ Finally we can define T and Ty. T, is the topology generated by
siugletons in Ey, cofinite subsets of By, and Bya, {Caa: % ¢ B w Ao v Ag).

‘ 'Notiee that every Ta-open set containing a point of Ay, (dga) is
cofinite in Bps (Bya), and that if @ ¢ Bu Ay, v Aga, then every To-open
set containing # contains infinitely many points of Hy. T is the topology
generated by singletons in By, cofinite subsets of Bypy and Bg, {Cuo:
B w Ap v Ap}

Every .T,,-open set containing a point of A (Ag) is cofinite in By
(Bp), and itz ¢ B v Apy v Ay, then every Tp- open set containing » contains
infinitely many points of Hy. ‘

By an argument like that given in Lemma, 2, one easily sees that T
and T, are T;-complements. Similarly T and T, are T - complements.
. Thus, it will suffice to show that 7T, and Ty are T,-complements.
First let us verify that sup{Ts, Tp} = 1. Clearly we may assume that
ﬁ: f iuppoIsfe @ e MP. Then by (5), © ¢ By and by (4) either @ e dpe
ot e M o ey, then by (1), (2), (3) and (5), oo Bya= fo}.

% € Bya, then Op v Oy = {2}, Similarly one can dispose of the cases
TeMQ, z¢ NP and z e NQ.
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Lastly, we must prove that inf{T., T)} = Cx. Suppose U e Ton L
and U # @. 1t is clear that every nonempty T,-open set intersects Enr
and every nonempty Tp-open set intersects By. It U ~ Enp # O, then
gince Hurp C Agp, U must contain a cofinite subset of By. But EyrC By
and Eyp C Ape which implies U must contain a cofinite subset of Bya.
Sinee Burg C By and Hyq C Apy, U must contain a cofinite subset of Byy.
Thus U is cofinite in Bypp w Bp = X. A similar argument holds for the
other cases.

Tt is clear that every Hausdorff DN -space has an open dense sub-
space that satisfies the hypotheses of Theorem 3. This result also implies
that every infinite set carries three mutually T' - complementary topologies.

4. Questions. At preseni, there are few known examples ([4], [17])
of a T, space with no T;-complement, The theorems of this paper show
that if a space is to fail to have a T;-complement, it must have some
fairly bad features. There is a class of spaces that incorporate certain
properties which seem to ingure that if these spaces have T'-complements,
they cannot be described by constructions like the ones used here.

DErFINITION. A topological space that is dense-in-itself and has the
property that every dense subset iz open is called an MI-space ([9],
p. 322).

RemMARK 2. If (X, T) is o Hausdorff MI-space, then

(i) (X, T) is not resolvable, )

(ii) mo dense subspace of (X, T') 7.s locally compact, in fact all compact
sels are finite, :

(i) (X, T') has the properly that mo “non-trivial’’ convergeni met in
the space has o subnet whose range is o discrele subspace, so that no subspace
whatsoever is o DN - space, . |

(iv) no dense subspace of (X, 1) is Fréchet, in fact all Fréchet sub-
spaces are totally isolated (have mo limit points in X),

(v) mo dense subspace of (X, T) is symmetricable, in fact all sym-
melrizable subspaces are totally isolated,

(vi) we may assume (X, T) is countable, conmected and thus not regular.

Proof. Hewitt ([9], p. 322) established (i) and Kirch [12] proved (ii).
Lemma 4 of [12] shows that X can’t be locally countably compact.

Tt is elear that no totally isolated subspace is a DN-space. Thus,
it ¥is a DN-subspace of X, then T—IntY¥ s ¢ ([9], p. 325). Then
T-IntY is o DN-subspace that in also a Hausdorff MI-space ([9],
. 325). Thus it will suffice to show that (X, 7T) itself is not a DN -space.
Suppose ¢ X and {8, a e A} is a net in X —{x} converging to ». It is
clear that every discrete subspace of a dense-in-itself space must have
a void interior. But every subset of an MI-space that has a void interior
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must be totally isolated and hence closed. Thus, # is not a limit point
of any discrete subspace of {S.: a ¢ A} and therefore no cofinal subget
of {S,: a'e A} is a discrete subspace.

Every Fréchet subspace with a non-isolated point would have a non-
trivial convergent net whose range was a discrete subspace. Thus every
Fréchet subspace is totally isolated. Clearly (v) also follows from (i),

The - properties mentioned in (vi) follow from known results. For
example, see [2] or [5] (Part 1, p. 138, 139, 155).

QUESTION 1. Does every Hausdorff MI-space have a T, -complement?

For a particularly explicit example of an MI-space, see [14].

It is clear from Remark 2 that the results of this paper don’t answer
this question. In view of (iii) of Remark 2 and the fact that the Steirer
method appears to require DN -ness at at least s, points (B, and ), it
seems likely that if the answer to this question iy affirmative, some new
technique will have to be developed. ) :

In [1], it was proved that if a T space (X, T) has a countable dense
metric subspace, then 7' has a T'-complement. Is Corollary 1 for count-
able sets really an improvement on the result?

QUESTION 2. Does every countable Fréchet (first axiom) space have
a dense metrizable subspace?

Note that by Remark 2, there are countable connected Hausdorft
spaces such that every metrizable subspace is totally isolated. It is dlso
known [10] that there exist countable regular Hausdorff dense-in-them-
selves spaces with no dense metric®ubspaces.
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